Articles | Volume 14, issue 1
Development and technical paper
01 Feb 2021
Development and technical paper |  | 01 Feb 2021

Model-driven optimization of coastal sea observatories through data assimilation in a finite element hydrodynamic model (SHYFEM v. 7_5_65)

Christian Ferrarin, Marco Bajo, and Georg Umgiesser

Related authors

Assessing the coastal hazard of Medicane Ianos through ensemble modelling
Christian Ferrarin, Florian Pantillon, Silvio Davolio, Marco Bajo, Mario Marcello Miglietta, Elenio Avolio, Diego S. Carrió, Ioannis Pytharoulis, Claudio Sanchez, Platon Patlakas, Juan Jesús González-Alemán, and Emmanouil Flaounas
Nat. Hazards Earth Syst. Sci., 23, 2273–2287,,, 2023
Short summary
Modelling the barotropic sea level in the Mediterranean Sea using data assimilation
Marco Bajo, Christian Ferrarin, Georg Umgiesser, Andrea Bonometto, and Elisa Coraci
Ocean Sci., 19, 559–579,,, 2023
Short summary
ChemicalDrift 1.0: an open-source Lagrangian chemical-fate and transport model for organic aquatic pollutants
Manuel Aghito, Loris Calgaro, Knut-Frode Dagestad, Christian Ferrarin, Antonio Marcomini, Øyvind Breivik, and Lars Robert Hole
Geosci. Model Dev., 16, 2477–2494,,, 2023
Short summary
A flexible z-coordinate approach for the accurate representation of free surface flows in a coastal ocean model (SHYFEM v. 7_5_71)
Luca Arpaia, Christian Ferrarin, Marco Bajo, and Georg Umgiesser
Geosci. Model Dev. Discuss.,,, 2023
Revised manuscript accepted for GMD
Short summary
Developing a framework for the assessment of current and future flood risk in Venice, Italy
Julius Schlumberger, Christian Ferrarin, Sebastiaan N. Jonkman, Manuel Andres Diaz Loaiza, Alessandro Antonini, and Sandra Fatorić
Nat. Hazards Earth Syst. Sci., 22, 2381–2400,,, 2022
Short summary

Related subject area

Open-ocean tides simulated by ICON-O, version icon-2.6.6
Jin-Song von Storch, Eileen Hertwig, Veit Lüschow, Nils Brüggemann, Helmuth Haak, Peter Korn, and Vikram Singh
Geosci. Model Dev., 16, 5179–5196,,, 2023
Short summary
Using Probability Density Functions to Evaluate Models (PDFEM, v1.0) to compare a biogeochemical model with satellite-derived chlorophyll
Bror F. Jönsson, Christopher L. Follett, Jacob Bien, Stephanie Dutkiewicz, Sangwon Hyun, Gemma Kulk, Gael L. Forget, Christian Müller, Marie-Fanny Racault, Christopher N. Hill, Thomas Jackson, and Shubha Sathyendranath
Geosci. Model Dev., 16, 4639–4657,,, 2023
Short summary
Data assimilation sensitivity experiments in the East Auckland Current system using 4D-Var
Rafael Santana, Helen Macdonald, Joanne O'Callaghan, Brian Powell, Sarah Wakes, and Sutara H. Suanda
Geosci. Model Dev., 16, 3675–3698,,, 2023
Short summary
Using the COAsT Python package to develop a standardised validation workflow for ocean physics models
David Byrne, Jeff Polton, Enda O'Dea, and Joanne Williams
Geosci. Model Dev., 16, 3749–3764,,, 2023
Short summary
Improving Antarctic Bottom Water precursors in NEMO for climate applications
Katherine Hutchinson, Julie Deshayes, Christian Éthé, Clément Rousset, Casimir de Lavergne, Martin Vancoppenolle, Nicolas C. Jourdain, and Pierre Mathiot
Geosci. Model Dev., 16, 3629–3650,,, 2023
Short summary

Cited articles

Anderson, J. L.: A Local Least Squares Framework for Ensemble Filtering, Mon. Weather Rev., 131, 634–642,<0634:ALLSFF>2.0.CO;2, 2003. a
Androsov, A., Fofonova, V., Kuznetsov, I., Danilov, S., Rakowsky, N., Harig, S., Brix, H., and Wiltshire, K. H.: FESOM-C v.2: coastal dynamics on hybrid unstructured meshes, Geosci. Model Dev., 12, 1009-1028,, 2019. a
Bajo, M.: SHYFEM v. 7_5_65 with the data assimilation code version ens2.1,, 2020. a, b
Bajo, M., De Biasio, F., Umgiesser, G., Vignudelli, S., and Zecchetto, S.: Impact of using scatterometer and altimeter data on storm surge forecasting, Ocean Model., 113, 85–94,, 2017. a
Bajo, M., Medugorac, I., Umgiesser, G., and Orlić, M.: Storm surge and seiche modelling in the Adriatic Sea and the impact of data assimilation, Q. J. Roy. Meteor. Soc., 145, 2070–2084,, 2019. a, b, c
Short summary
The problem of the optimization of ocean monitoring networks is tackled through the implementation of data assimilation techniques in a numerical model. The methodology has been applied to the tide gauge network in the Lagoon of Venice (Italy). The data assimilation methods allow identifying the minimum number of stations and their distribution that correctly represent the lagoon's dynamics. The methodology is easily exportable to other environments and can be extended to other variables.