
Geosci. Model Dev., 14, 645–659, 2021
https://doi.org/10.5194/gmd-14-645-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Model-driven optimization of coastal sea observatories through data
assimilation in a finite element hydrodynamic model (SHYFEM v.
7_5_65)
Christian Ferrarin1, Marco Bajo1, and Georg Umgiesser1,2

1CNR – National Research Council of Italy, ISMAR – Marine Sciences Institute, Venice, Italy
2Marine Research Institute, Klaipeda University, Klaipeda, Lithuania

Correspondence: Christian Ferrarin (c.ferrarin@ismar.cnr.it)

Received: 27 February 2020 – Discussion started: 18 May 2020
Revised: 30 November 2020 – Accepted: 15 December 2020 – Published: 1 February 2021

Abstract. Monitoring networks aims at capturing the spa-
tial and temporal variability of one or several environmen-
tal variables in a specific environment. The optimal place-
ment of sensors in an ocean or coastal observatory should
maximize the amount of collected information and mini-
mize the development and operational costs for the whole
monitoring network. In this study, the problem of the de-
sign and optimization of ocean monitoring networks is tack-
led throughout the implementation of data assimilation tech-
niques in the Shallow water HYdrodynamic Finite Element
Model (SHYFEM). Two data assimilation methods – nudg-
ing and ensemble square root filter – have been applied and
tested in the Lagoon of Venice (Italy), where an extensive
water level monitoring network exists. A total of 29 tide
gauge stations were available, and the assimilation of the ob-
servations results in an improvement of the performance of
the SHYFEM model, which went from an initial root mean
square error (RMSE) on the water level of 5.8 cm to a final
value of about 2.1 and 3.2 cm for each of the two data assim-
ilation methods. In the monitoring network optimization pro-
cedure, by excluding just one tide gauge at a time and always
the station that contributes less to the improvement of the
RMSE, a minimum number of tide gauges can be found that
still allow for a successful description of the water level vari-
ability. Both data assimilation methods allow identifying the
number of stations and their distribution that correctly rep-
resent the state variable in the investigated system. However,
the more advanced ensemble square root filter has the ben-
efit of keeping a physically and mass-conservative solution
of the governing equations, which results in a better repro-
duction of the hydrodynamics over the whole system. In the

case of the Lagoon of Venice, we found that, with the help
of a process-based and observation-driven numerical model,
two-thirds of the monitoring network can be dismissed. In
this way, if some of the stations must be decommissioned
due to a lack of funding, an a priori choice can be made, and
the importance of a single monitoring site can be evaluated.
The developed procedure may also be applied to the continu-
ous monitoring of other ocean variables, like sea temperature
and salinity.

1 Introduction

Ocean and coastal monitoring networks are fundamental for
tracking contaminants in the water, assessing environmental
change and water quality, observing sea level rise, and de-
veloping strategies for managing resources in a changing cli-
mate (Stammer et al., 2019; Trowbridge et al., 2019). Coastal
zones are dynamic and subject to changing environmental
conditions caused by natural and anthropogenic variations
in climatic and oceanographic processes. The monitoring of
the spatial and temporal complexity of the coastal ocean is
challenging and a large number of observational sites are
required to correctly describe the interactions at the land–
sea transition and coupled physical, chemical, and biological
processes. However, the implementation and maintenance of
such large monitoring networks are expensive, and there-
fore their optimization is of crucial importance. In the last
decades, satellite earth observation technologies have been
widely used to integrate in situ observatories for better un-
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derstanding the current state of oceans and coastal seas (Levy
et al., 2018).

Oceanographic models are increasingly used in coastal
systems to describe sea dynamics induced by tide and at-
mospheric and terrestrial forcing, thus complementing the
collected information retrieved by direct observations (Mey-
Frémaux et al., 2019). Numerical models are also often used
for predicting the ocean conditions, especially during storm
events for endangered areas (Chaumillon et al., 2017). All
models, however, need observations of the sea state to be
calibrated and validated. Once the model is calibrated, new
measurements can be used in a continuous validation of the
model results. Observations can also be assimilated into the
model, increasing its capacity to represent the dynamics of
the investigated system (Edwards et al., 2015; Carrassi et al.,
2018). In this case, we can speak of observations that im-
prove the numerical model.

There is however another point of view. If only observa-
tions were available, the best distribution of the monitored
variable over the system could be given only by data inter-
polation (DI) of the observation points to the other areas.
The direct observations of the sea conditions are considered
to represent the true state at the monitoring point. However,
the spatio-temporal interpolation of such true values is not
meant to correctly describe the variability of the investigated
state variable over the whole system. This is especially true
in coastal systems that are characterized by complex small-
scale and high-frequency dynamics. In this case the result-
ing picture of interpolated values may show non-coherent
features and inconsistency between data points. When an
oceanographic model is available, the interpolation of these
observations can be carried out by the model and much bet-
ter representation of the environment can be achieved. In this
context, models are used to connect sparse observations (in
space and time) or synthesize them through data assimilation
(DA) techniques (Mey-Frémaux et al., 2019).

Validated ocean circulation models and DA can also assist
in the network design of a new observing system or in op-
timizing an existing observatory (Fujii et al., 2019). In the
case of new monitoring networks, observing system simu-
lation experiments (OSSEs) are performed assimilating syn-
thetic observation data (generated from a free-running model
simulation that is intended to represent a virtual “true” ocean)
into other data-assimilative simulation runs in which differ-
ent initial or forcing conditions are used (Raicich, 2006; Xue
et al., 2011). The evaluation of the impact of the assimi-
lated data in the OSSE simulations allows designing an op-
timal observing system. In order to evaluate existing moni-
toring networks, observing system experiments (OSEs) are
performed by assimilating in several simulations a certain
amount or type of observations and evaluating their impacts
on the model against a reference dataset. Such an approach
can be adopted in coastal regions to optimize existing obser-
vational arrays, with implications for sampling technology

and networks (Frolov et al., 2008; Schulz-Stellenfleth and
Stanev, 2010).

In this study, we show how data assimilation techniques
are implemented in the Shallow water HYdrodynamic Finite
Element Model (SHYFEM) for optimizing the tide gauge
network of the Lagoon of Venice (Italy). Since one limita-
tion of the observing system evaluation procedure is that it
depends on the properties of the DA employed for the evalu-
ation (Fujii et al., 2019), here we adopted a multiple-systems
approach implementing the nudging and the ensemble square
root filter data assimilation methods.

2 Methods

2.1 SHYFEM model description

The numerical experiments consisted of simulating the cir-
culation in the Lagoon of Venice using the open-source
SHYFEM hydrodynamic model (Umgiesser et al., 2014).
The model has already been applied to simulate hydrody-
namics in the Mediterranean Sea (Ferrarin et al., 2018), in the
Adriatic Sea (Bellafiore et al., 2018; Bajo et al., 2019), and
in several coastal systems (Umgiesser et al., 2014, and refer-
ences therein). The model solves the shallow-water equations
in their formulations with levels and transports using a finite
element numerical method and semi-implicit time stepping.
In the present work, a relatively simple two-dimensional con-
figuration of the model has been used, solving the following
equations:

dU
dt
− fV =−H

(
g
∂ζ

∂x
+

1
ρw

∂pa

∂x

)
+AH∇

2U +
1
ρw
(τwx − τbx) , (1a)

dV
dt
+ fU =−H

(
g
∂ζ

∂y
+

1
ρw

∂pa

∂y

)
+AH∇

2V +
1
ρw

(
τwy − τby

)
, (1b)

∂ζ

∂t
+
∂U

∂x
+
∂V

∂y
= 0, (1c)

where t is time, x and y are the spatial Cartesian coordinates,
and η = η(x,y, t) is the water level. U = U(x,y, t) and V =
V (x,y, t) are the zonal and meridional water transport com-
ponents, g is the acceleration due to gravity, pa = pa(x,y, t)

is the atmospheric pressure at mean sea level, ρw the aver-
age density of sea water, h= h(x,y) is the water depth at
rest, H = h+ η is the total water depth, and f = f (y) is the
Coriolis parameter, varying with latitude. Smagorinsky’s for-
mulation (Smagorinsky, 1963; Blumberg and Mellor, 1987)
is used to parameterize the horizontal eddy viscosity (Ah).
τwx and τwy are the two components of the wind stress in the
x and y directions, and τbx and τby are the two components
of the bottom stress.
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The Coriolis term and pressure gradient in the momentum
equation, and the divergence terms in the continuity equa-
tion are treated semi-implicitly. Bottom friction and vertical
eddy viscosity are treated fully implicitly for stability reasons
due to the shallow nature of the lagoon, while the remaining
terms (advective and horizontal diffusion terms in the mo-
mentum equation) are treated explicitly. At the boundaries,
water levels are either prescribed at the open boundaries
or the free-slip condition is implemented at solid (closed)
boundaries. A detailed description of the model equations is
given in Umgiesser et al. (2014) and Bellafiore et al. (2018).

2.2 Data assimilation methods

2.2.1 Nudging

The nudging method is a flexible assimilation technique that
is computationally more economical than other assimilation
methods like variational data assimilation. First used in me-
teorology (Hoke and Anthes, 1976), the nudging method has
been used with success in modelling the atmosphere (Stauf-
fer and Seaman, 1990) and in oceanography (Verron, 1990;
Blayo et al., 1994). Nudging is a simple assimilation tech-
nique where a new source term is added to the prognostic
equations that drag the results vs. the observed values. There-
fore, it uses dynamical relaxation of the equations to tend to
the observational points. The extra term to be introduced in
the prognostic equation can be formulated as

∂S/∂t = . . .+ (Sobs− S)/τ, (2)

where S is the variable where nudging has to be applied, Sobs
is the observation value, and τ is the relaxation timescale.
Depending on the value of τ , the relaxation is very strong
(small τ ) or weak (large τ ). The value of τ can be different
from point to point. It is worth mentioning that, by adding
this extra term in the governing equations (e.g. the continuity
Eq. 1c for the water level), the numerical solution is no more
mass conservative.

2.2.2 Ensemble square root filter

The ensemble square root filter (hereinafter referred to as En-
SRF) is a more complex assimilation method, widely used
in environmental sciences (Evensen, 2004), and can be re-
garded as an evolution of the ensemble Kalman filter (EnKF,
Evensen, 2003). The assimilation code that allows one to
use both these methods, has been recently implemented in
SHYFEM (Bajo, 2020) and used for the first time in a study
on seiches and storm surges in the Adriatic Sea (Bajo et al.,
2019).

The formulation of the EnSRF is slightly different from
the EnKF and avoids the perturbation of the observations.
Using the notation of Evensen (2004), if we define the model
states as ψi ∈ Rn and the matrix holding them as

A= (ψ1,ψ2, . . .,ψN ) ∈ Rn×N , (3)

with N the number of ensemble members and n the dimen-
sion of the states, the ensemble mean is

A= A1N , (4)

where 1N ∈ RN×N is a square matrix with each element
equal to 1/N . If we define P as the background error co-
variance matrix, which contains the covariance of the errors
between all the model variables in the whole computational
domain, then its ensemble approximation is

Pe =
A′(A′)T

N − 1
, (5)

where A′ = A−A is the matrix containing the ensemble per-
turbations.

In the traditional Kalman filter formulation, the covariance
matrix P is updated every time new observations are avail-
able. The matrix before the update is referred as forecast, f ,
while after the update it is referred as analysis, a. The updat-
ing process is expressed by

Pa = Pf −PfHT
(

HPfHT
+R

)−1
HPf , (6)

where H ∈ Rm×n is the observation operator, with m the
number of observations, and R the observation error covari-
ance matrix.

In the ensemble methods, using Eq. (5) and the approxi-
mation P≈ Pe in Eq. (6), we obtain

Aa′Aa′T = A′
(

I−STC−1S
)

A′T, (7)

where S and C are defined as

S=HA′, (8)

C= SST
+ (N − 1)R. (9)

After some eigenvalue and singular value decompositions
(Evensen, 2004), the equation splits into two symmetrical
parts:
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(10)

where V2 ∈ RN×N and 62 ∈ Rm×N are two matrices com-
ing from the decomposition of STC−1S and I is the identity
matrix. The solutions are

Aa′ = A′V2

√
I−6T

2622
T (11)

for any random orthogonal matrix 2T, which allows a ran-
dom redistribution of the variance reduction among the en-
semble members.

The approximation of the covariance matrix with the en-
semble perturbations (Eq. 5) becomes perfect when N goes
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to infinity. However, with a finite number of ensemble mem-
bers, model variables that are far from each other and not
really correlated can have a variance different from zero. To
avoid this issue, keeping a reasonable number of ensemble
members, we apply a localization scheme. Localization is of-
ten used in ensemble data assimilation and can be done fol-
lowing different methods (Houtekamer and Mitchell, 2001;
Hamill et al., 2001; Anderson, 2003). In the present case
we used a local analysis method, which performs in a sim-
ilar way to the covariance localization method (Sakov and
Bertino, 2011). This method reduces the influence of the ob-
servations too far from the location of the model variable
which is going to be modified. If the model has N variables,
the distance of each of them from each observation is com-
puted and a weighting factor, depending on such a distance,
is computed. We used a Gaspari–Cohn function (Gaspari and
Cohn, 1999), with which the weight decreases in a way sim-
ilar to a Gaussian but vanishes for distances r > 2d , where
d is a cut-off distance. Instead of making a global analysis,
the analysis is made for each node of the grid near enough
to some observations and the matrices are reduced to a local
dimension. Then, the total analysis is the sum of all the local
contributions (Carrassi et al., 2018).

2.3 The optimization procedure

Starting from the DA run with the assimilation of all sta-
tions (N ), the monitoring network evaluation procedure was
designed as an iterative process in which several numerical
simulations are carried out excluding one tide gauge from
the assimilation at a time. In this study, we consider the root
mean square error (RMSE) of the simulated values in re-
spect to the observations as the cost function to be mini-
mized in the optimization process. Similar to the approach
described in the previous section, for each run the RMSE
is evaluated for all data points. After doing this for all re-
maining stations, the observation site that contributes less to
the improvement of the RMSE (the one having the lowest
RMSE value) is excluded in the next optimization step (as-
similation of N − 1 stations). The iterative process contin-
ues (N − 2,N − 3,N − 4, . . . ) until only one station is as-
similated. At each optimization step, the mean RMSE over
the whole monitoring network is evaluated. The whole opti-
mization procedure requiresN×(N+1)/2 numerical simula-
tions. In the case of the DA-EnSRF, the computational effort
is much higher and depends on the number of members of
the ensemble.

The optimization procedure is easily and efficiently par-
allelized since all simulations within each iteration step are
independent of each other. Similarly, all members of each
DA-EnSRF process are independent and can be carried out
simultaneously on different processors.

2.4 Application to the Lagoon of Venice

The Lagoon of Venice (Fig. 1) is situated in the northern
Adriatic Sea and is the largest Mediterranean lagoon (area
of 550 km2). The principal hydraulic forcings of the Lagoon
of Venice are the tide and the wind (Umgiesser et al., 2004b).
Even if the lagoon is a micro-tidal system (tidal range of
about 80 cm), tides are a major factor in shaping landforms
and driving ecological gradients and biological communi-
ties. The lagoon is separated from the open sea by barrier
islands, and three inlets (Lido, Malamocco, and Chioggia)
ensure an active renewal of the lagoon waters (Ferrarin et al.,
2017). The lagoon is characterized by a complex system of
tidal channels. The density of the drainage network increases
landward as the main tidal collectors departing from the
inlets branch in progressively smaller-size channels, rang-
ing in depth from more than 15 m in the main reaches to
a few decimetres in salt marsh creeks (Madricardo et al.,
2017). Such a drainage network cuts across a large extent
of shallow-water areas, which have an average depth of 1 m
and include mudflats and salt marshes.

The city of Venice is located in the centre of the lagoon
and is composed of more than a hundred islands linked by
bridges. The elevation of these islands is extremely low, sub-
jecting them to flooding during storms, which in turn threat-
ens the unique cultural heritage of this city and affects its ev-
eryday life. The northern Adriatic Sea is frequently affected
by storm surge events, mainly triggered by strong south-
easterly wind (Orlić et al., 1994). It is therefore of crucial
importance for the management of this environment to mon-
itor water level variations outside and inside the lagoon.

2.4.1 The tide gauge network

The Lagoon of Venice has two tide gauge networks
for supporting the local real-time storm surge predic-
tion and warning system. They are managed by the In-
stitute for Environmental Protection and Research – Na-
tional Centre for Coastal Zone and Characterization Ma-
rine Climatology and for Operational Oceanography (IS-
PRA, Unit for Tides and Lagoons, http://www.venezia.
isprambiente.it/, last access 10 January 2020) and the
Tide Forecast and Early Warning Center of the City
of Venice (CPSM, https://www.comune.venezia.it/it/content/
centro-previsioni-e-segnalazioni-maree, last access 10 Jan-
uary 2020). ISPRA manages a network of 45 tide gauge sta-
tions equipped for the systematic measurement of water level
and other related parameters, such as wind direction, wind
speed, atmospheric pressure, precipitation, and wave height
inside the Lagoon of Venice and in the north-western Adri-
atic coastline. The monitoring network of CPSM consists of
17 hydro-meteorological stations distributed within the la-
goon and along the Venetian littoral for the real-time mon-
itoring of the water levels, waves, and meteorological pa-
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rameters. Some locations with high valuable relevance are
monitored by both institutions.

In this study, we collected all the available data from both
the ISPRA and CPSM monitoring networks over a 1-month
period (November 2013) with the highest number of sta-
tions without missing data. The selected dataset consists of
quality-controlled 10 min values of sea level measured at
the 29 tide gauge stations marked with red dots in Fig. 1.
As shown in the figure, all tide gauges are installed within
navigational channels in order to allow their installation and
maintenance. Most of the tide gauges are located in the cen-
tral and northern parts of the lagoons, where most of the ur-
ban settlements are placed (Venice, Murano, and Burano), at
the inlets, and at the southern end of the lagoon near Chiog-
gia. The selected period of investigation comprises both calm
weather conditions as well as significant wind events.

In order to investigate at which degree the observations
represent the state variable over the whole system, a field ap-
proximation through optimal interpolation (OI) of the data
has been performed. OI is a commonly used and fairly sim-
ple method to perform interpolation of sparse data also in
data assimilation. OI was first described in Gandin (1965)
and other references, and implementations can be found also
in Daley (1991). It is also often referred to as statistical inter-
polation. In OI, starting from a background grid, observation
points are used to correct the background grid. Points that lie
close to each other are given less weight. The interpolation
of the water levels was carried out on a 0.5×0.5 km regular
grid.

2.4.2 Simulation set-up

The water circulation in the Lagoon of Venice, induced by
tide and wind was simulated by the unstructured model
SHYFEM applied over a spatial domain that represents the
entire Lagoon and its adjacent shore. The model adequately
reproduces the complex geometry and bathymetry of the La-
goon of Venice using unstructured numerical meshes com-
posed of triangular elements of variable form and size, going
down to a few metres in the channels (Fig. 1). The model
bathymetry was obtained from the data collected in 2002 by
Magistrato alle Acque di Venezia – merged with later sur-
veys – and the 2014 MBES bathymetry acquired in the main
channels of the lagoon (Madricardo et al., 2017).

The application of the SHYFEM model to the Lagoon of
Venice has been validated in previous work reproducing cor-
rectly tidal propagation, storm surge, water flows at the la-
goons’ inlets, and water temperature and salinity variability
(Umgiesser et al., 2004a; Ferrarin et al., 2008, 2010; Ghezzo
et al., 2011).

In this study, hydrodynamics in the lagoon were simulated
using 10 min observed forcing and boundary conditions (i.e.
wind stress and open sea level). The initial condition is al-
ways a calm state. This is certainly no problem for the current
velocity and the water level since these quantities approach

a dynamic state very fast (less than a day). The numerical
simulations were performed over the period covered by the
selected dataset (November 2013).

In order to apply the nudging DA method, a value for the
relaxation parameter τ has to be determined. In our case, it
was supposed that every observation point would only influ-
ence the grid points up to a certain distance. For every obser-
vation, a Gaussian bell curve was constructed. The standard
deviation of the curve (σ ) was set to 2 km, and all points fur-
ther than 3 standard deviations are excluded from the com-
putations (Fig. 2a). Overlapping areas of influence are con-
sidered by summing the value of the Gaussian curve in these
points. The τ value at the peak point of the Gaussian curve
was set to 100 s, and this value then increases smoothly to in-
finity in order to simulate an influence which becomes lower
when moving away from the observation point.

The EnSRF needs an ensemble of model states that should
ideally represent the error of the simulation. In the present
case the ensemble of the model states is created varying the
boundary condition. We used 60 perturbations for the sea-
level boundary condition (member 0 is unperturbed) taken
from a Gaussian distribution with a zero mean and a standard
deviation set to 30 cm. This value was found empirically, in
order to have a good spread at the boundary, which is then
propagated to the variables computed by the model. As as-
serted, the perturbations are centred, having a null mean, and
correlated in time. To do this, each perturbation at time t is
obtained from a weighted average of a new perturbation and
of the one at time t−1. This type of perturbation is classified
as red noise, and in the present case we used a decay time of
2 d. We also made perturbations for the wind, with the same
method but using a standard deviation proportional to 40 %
of the wind speed. Due to the small study area, we consid-
ered the wind constant in space so that the perturbations can
vary only in time, as the boundary conditions. However, be-
cause of the smallness of our system, the perturbations on the
wind are not very effective, nor are perturbations on the ini-
tial state. Therefore, the perturbations at the boundary condi-
tion are necessary both to create the initial ensemble of states
and to keep the spread of the ensemble during the whole time
of the simulation.

After several preliminary numerical tests, the best cut-off
distance for the local analysis was set to 0.1 geographical de-
grees (about 10 km). In order to illustrate the important effect
of the localization, in Fig. 2b we show the correlation val-
ues between each observation station and each model level in
each node of the model grid, at a specific time step. The cor-
relation is weighted with the Gaspari–Cohn function, which
makes the value approach zero if it is too far from the sta-
tion. This quantity is not used directly by the local analysis
routine, but it is useful to understand its effect. Note also that
this is the correlation with the water levels, but the EnSRF
considers also the cross-correlations with the water veloci-
ties and corrects them as well. The strong difference with the
relaxation time used by the nudging to weight the observa-
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Figure 1. Bathymetry and unstructured mesh of the Lagoon of Venice. The red dots mark the tide gauge monitoring station.

tions (Fig. 2a), is that the use of the real correlations between
the model variables produces an anisotropic distribution of
the observation correction, which respects the water dynam-
ics forced by the channels, by the tidal flats, and by the basin
morphology. Moreover, as the dynamics vary at each time
step, so does the correlation between model variables and the
weight of the assimilation increments.

The EnSRF assimilates water level from the selected sta-
tions considering them independent (the R error covariance
matrix is diagonal), and the error of each station is set to
1 cm. The model evolves the ensemble members forward in
time, each one with a different boundary condition and wind
forcing, and an analysis step is done every hour. The results
considered in this work are extracted by the analysis states,
which are saved every hour.

3 Results

In the exposition of the results, we defined the model run
without data assimilation as the control simulation, while,
for both the DA schemes, the base run accounts for the as-
similation of all the 29 monitoring stations. All mentioned
parameters (τ , σ , cut-off distance for the local analysis) were
manually defined through trial and error calibration process
and evaluating the goodness of fit of the water level RMSE
in the DA-nudging and DA-EnSRF base simulations.

3.1 Data interpolation vs. data assimilation

When entering a shallow basin, such as the Venice la-
goon, the tidal wave is deformed, either damped or ampli-
fied, according to a relationship between local flow resis-
tance and inertia and the characteristics of the incoming tidal
wave (Ferrarin et al., 2010). In the data interpolation method,
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Figure 2. Spatial distribution of (a) the relaxation time adopted in the nudging and (b) the weighted correlation of the ensemble considered
in the EnSRF method.

the distribution of the water levels is given by a spatial in-
terpolation of the observations. Figure 3a reports a snap-
shot of the interpolated water levels over the lagoon during
a flood tide. The map shows, for this particular time frame,
a patchy non-coherent distribution with the lowest values in
the nearshore area close to the inlets, while the highest are in
proximity to the central and northern lagoon’s margins.

Does the interpolation of the observations provide a re-
alistic spatial representation of the water level variability
over the lagoon domain? To answer this question, in Fig. 3b
we show the water level computed by the model, with-
out any data assimilation (Control sim.). The nudging run
(DA-nudging) is shown in Fig. 3c and the EnSRF run (DA-
EnSRF) in Fig. 3d. The control simulation has a completely
different distribution of the water levels with respect to the
data interpolation. The mode simulation shows the lowest
water level in the open sea, which gradually increases going
from the inlets to the inner lagoon, describing the propaga-
tion of the tidal wave. The three inlets lead the water circu-
lation in three sub-basins, divided by narrow areas with lit-
tle water exchange (these zones are identified as dynamical
watersheds). The modelled maps (control, DA-nudging, and
DA-EnSRF) clearly account for islands and marsh bound-
aries. DA-nudging shows a similar representation of the con-

trol simulation but with slightly higher values of the water
levels on the central and southern tidal flats (Fig. 3c). Simi-
larly, the DA-EnSRF adjusts the water levels towards the ob-
servations while keeping the physical dynamics of the flow
(Fig. 3d). It is worth mentioning that the water level distri-
butions at different tidal phases would lead to similar DI and
DA considerations.

In order to establish which method better represents the
water level variability over the lagoon, we need to evaluate
the capacity of each approach to describe the parameter at
locations not included in the computation. Thanks to a large
number of available tide gauges in the Lagoon of Venice, the
model skill assessment (in terms of the root mean square er-
ror, RMSE) is determined by re-running DI and DA experi-
ments removing one station from the assimilation and com-
paring the water level in this station with the modelled one.
The evaluation procedure was repeated for each monitoring
station and the results are reported in Table 1. When using the
optimal interpolation approach, the average RMSE is 3.9 cm,
with values ranging from 0.8 to 8.5 cm. The highest RMSE is
found at stations located at the lagoon margins (9, 14, 25, and
27) and the Chioggia and Malamocco inlets (4 and 12). The
control SHYFEM simulation, the one without data assimi-
lation, has a mean RMSE of 5.8 cm, with the highest errors
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Figure 3. A snapshot on 4 November 2013 at 14:00 UTC of the water level distribution in the Lagoon of Venice as obtained by the optimal
interpolation (a), the control simulation without assimilation (b), the DA-nudging base run (c), and the DA-EnSRF base run (d). The grey
colour indicates dry salt marshes.
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Figure 4. Observed, interpolated, and simulated water levels at sta-
tion 12. In this computation, station 12 was not included in the DI
and DA algorithms.

Figure 5. Observed and simulated vertically integrated current ve-
locity at the Lido inlet. The ADCP was located close to tide gauge
number 15.

found at the stations located near the lagoon margins (1, 9,
14, 24, and 29). The correlation coefficient (not reported in
the table) is everywhere higher than 0.97, except for station
24 where it is 0.47. Therefore, from the statistics we deduce
that the control simulation has a worse performance with re-
spect to the direct interpolation of the data and that it slightly
fails in reproducing correctly the water dynamics in border
areas, especially in the small creeks surrounded by marshes
(e.g. station 24). However, even if data interpolation is statis-
tically better, looking at Fig. 3a the spatial distribution of the
water level is clearly unphysical.

By contrast, both DA methods strongly improved the
model skills in all parts of the lagoon. The average RMSE
resulted in 2.1 and 3.2 cm for DA-nudging and DA-EnSRF,
respectively. The results reported in Table 1 show that results
improved at all stations, even those affected by the highest
errors in the control simulation. The capacity of the different
methods in reproducing the temporal evolution of the water
level is shown in Fig. 4 for station no. 12 (in this case re-

Table 1. Root mean square errors (in cm) of DI and DA considering
all other stations except the one for which the index is computed.
The RMSEs of the control simulation are also reported.

Station Data Control DA- DA-
ID interp. sim. nudging EnSRF

1 4.5 8.3 5.8 7.5
2 0.8 4.1 0.9 2.4
3 3.0 5.2 2.8 3.4
4 6.5 4.1 2.5 3.5
5 1.4 4.1 1.8 2.1
6 1.5 4.2 1.4 2.3
7 3.1 5.2 1.9 3.1
8 2.4 5.3 1.4 2.3
9 7.3 9.5 3.3 9.4
10 2.5 4.0 0.9 2.4
11 3.8 4.3 2.2 3.0
12 8.5 4.5 2.5 3.7
13 3.6 4.6 0.9 2.3
14 6.0 6.6 3.9 2.5
15 2.8 3.7 2.7 2.6
16 1.9 4.1 1.0 1.8
17 2.6 4.5 1.4 2.1
18 7.3 4.3 1.1 2.3
19 2.6 3.6 0.9 1.5
20 4.2 3.8 0.7 1.6
21 2.5 4.1 0.8 1.4
22 4.3 3.7 0.9 2.0
23 2.3 3.4 2.5 1.9
24 5.2 28.3 4.4 7.0
25 8.2 4.9 2.1 2.8
26 1.1 4.2 1.3 2.5
27 6.4 6.6 1.9 4.0
28 2.8 5.2 1.7 3.6
29 3.5 8.5 5.4 6.2

Mean 3.9 5.8 2.1 3.2

Table 2. Statistical analysis of simulated current velocity at the Lido
inlet. Results are given as RMSE (root mean square error, cms−1),
bias (difference between the mean of simulation results and obser-
vations, cms−1), and R (correlation coefficient between model re-
sults and observations).

Simulation RMSE Bias R

Control 14.1 0.6 0.84
DA-nudging 15.7 5.3 0.83
DA-EnSRF 13.6 0.4 0.85

moved from the assimilation or interpolation). It is evident
that in this case, the interpolation does not represent cor-
rectly the water level variability, being influenced by values
recorded outside the lagoon domain, which do not take into
account the correct tidal propagation dynamics. On the other
hand, the data assimilation results adjust the water levels to-
wards the observations keeping the physical dynamics of the
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flow. Therefore, the model simulation with a DA scheme is
the approach that better represents the variability of the water
levels in the lagoon.

Additionally, in a multivariate analysis approach we tested
the capability of the applied DA-driven simulations in repro-
ducing the current velocities recorded by an acoustic Doppler
current profiler (ADCP) mounted on the bottom of the Lido
inlet, close to station no. 15 shown in Fig. 1. Time series
of observed and simulated vertically integrated velocities are
illustrated in Fig. 5, while the statistical results are summa-
rized in Table 2. Since the DA-nudging does not adjust the
velocities according to the correction of the water level, the
model computes spurious velocities according to the pres-
sure gradients generated by the water level increments. The
DA-nudging current velocities – and therefore the water ex-
change through the inlets – resulted in them being overesti-
mated and slightly out of tidal phase. Interestingly, the DA-
nudging performances on the current velocity are even worse
than those of the control simulation. On the other hand, since
DA-EnSRF uses cross-correlation to propagate the observa-
tion correction to the other model variables, the velocities
are corrected according to the modification of the levels, to-
wards a better agreement with the ADCP currents. This is
a demonstration of the potential of a complex DA method,
where a correct specification of the cross-correlations in the
background covariance matrix allows a correction of model
variables even if they are not directly correlated with the as-
similated quantities.

3.2 Monitoring network optimization

The next step is to use DA methods to find the minimum
number of stations – and their distribution – that correctly
represent the state variable in the investigated system. The
optimization procedure of this tide gauge network, composed
of N = 29 stations, requires 435 (N × (N + 1)/2) numeri-
cal simulations. However, the computational cost of the DA-
EnSRF is much higher, since the ensemble is composed of 61
members. So in this case the simulations are 26 535, but the
computing scalability is high since the 61 simulations of the
ensemble are independent and can be parallelized on multi-
ple CPU computers. The results of the water level observa-
tory evaluation are reported in Fig. 6 in terms of the model
RMSE as a function of the number of stations considered
in the assimilation. For comparison, the same procedure was
applied to the data interpolation.

The evaluation procedure allows finding the minimum
number of tide gauges for a successful description of the wa-
ter level in the lagoon. However, the optimization criterion
(the RMSE threshold) is arbitrary and may differ for differ-
ent environments, state variables and monitoring networks.
In the present case, we can see that using both DA-nudging
and DA-EnSRF, the RMSE does not change too much pass-
ing from 29 to 10–12 assimilated stations. Even if the En-
SRF has an average RMSE higher than the DA-nudging, the

Figure 6. Root mean square error of the water levels as a function
of the number of tide gauge stations interpolated or assimilated. The
RMSE value with zero considered stations for DA also indicates the
error of the base simulation when no DA methods are applied.

RMSE of the EnSRF has a slower increase with the reduction
of the stations. The initial decrease in the RMSE is probably
due to the fact that observations have errors, and tide gauges
close to each other can provide slightly different data. The
EnSRF considers the observation error in the observation co-
variance matrix, but it is difficult to find the right value and
normally the nominal instrument error is used.

Considering the spatial interpolation method, the use of
10 stations has an RMSE comparable to the error of the con-
trol simulation. But we have to stress that in this case the
spatial representation of the water level is clearly wrong. We
should also mention that the model with the assimilation of
only three stations gives a lower RMSE than DI with all 29
stations, apart from the fact that results are physically more
coherent and consistent.

The resulting optimal distributions of the 10 tide gauge sta-
tions determined by DA-nudging and DA-EnSRF are shown
in Fig. 7. In both cases, the optimization procedure selected
tide gauges located near the inlets (one each, avoiding re-
dundancy of nearby stations), in some of the islands in the
northern part of the lagoon, and at stations along the lagoon
margins. We can therefore consider that, with the help of
DA methods, only 10 of the considered 29 tide gauges are
necessary for properly describing the spatial and temporal
variability of the water level in the Lagoon of Venice. Con-
sidering that the average annual maintenance cost of a tide
gauge in the Lagoon of Venice is approximately EUR 3500
(Alvise Papa, CPSM, personal communication, 2019), the
optimization of the monitoring network could allow saving
about EUR 66 000 per year.

However, the choice of which stations to keep in the mon-
itoring network depends also on many practical factors. As
an example, the monitoring authority would decide to keep
some stations because of their strategic relevance, mainte-
nance costs, distance from the laboratory, or for continuing
long-term time series. The optimization method can be easily
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Figure 7. The optimal distribution of 10 tide gauge stations (marked with green dots) according to DA-nudging (a) and DA-EnSRF (b).

Figure 8. Same as Fig. 6 but for the optimal and the custom network
experiment using nudging data assimilation.

customized based on predetermined specific constraints. As a
realistic exercise, we fixed the stations at the inlets (4, 12, 11)
and in the main urban settlements (2, 6, 17, 19) in the mon-
itoring network. The evaluation procedure is then repeated
using the DA-nudging method, keeping these 7 stations and
the results are presented in Fig. 8. In this customized opti-
mization exercise, the results show that 15 stations are nec-
essary to guarantee a proper description of the water level
variability in the lagoon.

4 Discussion and conclusions

The methodology presented in this study allows for the eval-
uation of existing coastal observatories. Using a DA system,
which is an observation-driven and process-based method,
the iterative optimization procedure establishes the relevance
of each single monitoring station for the description of the
considered environment. The example reported in this study
describes the optimization of an existing observatory with
defined monitoring points. However, the methodology could
be applied also to design new monitoring networks. As de-
scribed by Raicich (2006) and Xue et al. (2011), in an observ-
ing system simulation experiment, synthetic observations are
generated by a model run in some locations and then they are
assimilated as real observations. The procedure is similar to
a twin experiment, a method used to assess the quality of a
data assimilation system.

As indicated by Fujii et al. (2019), the goodness of the
results of such methods strongly depends on the numerical
model applied, on the DA scheme implemented, and on the
optimization procedure. This effect is evident in the results
presented above, where the numerical model performances
differ when using a different methodology for assimilating
the observations. Moreover, the optimization procedure se-
lected some stations at the lagoon edges, where the RMSE
of the control simulation was the highest. The DA scheme
should be selected not only considering the computational

https://doi.org/10.5194/gmd-14-645-2021 Geosci. Model Dev., 14, 645–659, 2021



656 C. Ferrarin et al.: Model-driven optimization

Figure 9. Ensemble weighted correlation (averaged over the simu-
lation period) of the 10 monitoring stations selected using the En-
SRF method.

cost, but also considering the capacity in reproducing a cor-
rect multivariate dynamics of the system. This can be done
using observations not assimilated to the same type as the
assimilated ones and also observations of other variables of
the model (as the ADCP data in our case). In semi-enclosed
basins such as lagoon environments, the fluxes through the
inlets control the water and the sediment and the nutrient
exchanges between the sea and the lagoon, influencing the
whole dynamic of the system (Ferrarin et al., 2010). Indeed,
the more advanced EnSRF method improved not only the as-
similated water level but also the current velocity, and there-
fore the fluxes, at the inlet. Therefore, as also outlined by
many authors (e.g. Jones et al., 2012; Edwards et al., 2015;
Bajo et al., 2019), the description of the coastal sea environ-
ment can be improved with the use of a modelling, process-
based approach and the use of observations in a complex data
assimilation system.

Additionally, as specified at Sect. 2.4.2, the perturbation
method implemented in the ensemble data assimilation sys-
tem allows the creation of ensemble members that are dy-
namically consistent and generates realistic correlations in
the background error covariance matrix. These correlations,

along with the covariance matrix, are not constant in time but
vary accordingly with the dynamics induced by the periodic
tide and by the non-periodic stress of the wind. In designing
or optimizing a monitoring network, such a correlation ma-
trix represents a precious source of information which can
be used to investigate the area of representativeness of each
selected station. To better understand the potentiality of the
ensemble data assimilation methods, we show in Fig. 9 the
correlation between the sea level at each station location with
the other nodes of the grid, weighted by the Gaspari–Cohn
function. The figure is similar to Fig. 2b, but in this case
the correlations are averaged over the duration of the whole
simulation and consider only the stations selected by the op-
timization procedure. Even at a first glance, this map gives
information about the influence area of each station. These
areas do not spread isotropically from the station locations,
but they are constrained by the morphology and by the wa-
ter dynamics, which are considered in the model. This is true
not only for the water level, but, as asserted before, the other
variables should also benefit from the assimilation of water
level observations. Maps similar to that in Fig. 9 can be ob-
tained considering the cross-correlation of the sea level with
the water current or with other variables like temperature or
salinity, in the case of a baroclinic model.

The combination of observations and numerical models is
particularly important in coastal regions with scarce mon-
itoring resources. However, to reduce the model error, the
applied numerical models must correctly reproduce the com-
plex morphology of the coastline and the exchange processes
between the shelf and the open seas. The processes in such
complex systems at the land–sea transition are extremely dy-
namic and require a holistic approach in which all the hydro-
logical entities (river mouth, salt marshes, lagoons, swamps,
coastal sea) should be regarded as integral parts of the en-
tire domain of computation. Moreover, due to the complex
geometry and morphology of the coastal regions, the numer-
ical models need to be able to represent hydrodynamic con-
ditions with very high resolution, in the horizontal, vertical,
and temporal dimensions. With respect to the above-cited re-
quirement, unstructured models – as the one applied in this
study – realize a seamless transition between different spatial
scales for reproducing the coast–sea interactions, adopting
a variable resolution of the mesh elements (Ferrarin et al.,
2018; Kärnä et al., 2018; Maicu et al., 2018; Stanev et al.,
2018; Androsov et al., 2019). The applied numerical models
need to be continuously evaluated and upgraded to maintain
the highest accuracy.

The model-driven optimization procedure was here ap-
plied using hindcast simulations, but it can be also used in
forecasting modelling for evaluating the effect of the as-
similated data on the predictions (Cummings and Smedstad,
2014; Bajo et al., 2017). An observation assessment is par-
ticularly important when the assimilated data come from dif-
ferent data sources (e.g. fixed monitoring stations, satellite,
radar, gliders) or for a priori estimation of new data sources
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in an already existing DA system (Bonaduce et al., 2018). It
is crucial in operational oceanography to have a DA scheme
keeping the correct physical description of the dynamics in
the investigated environment, without introducing errors that
can propagate in time. As indicated by Fujii et al. (2019), in
an operational framework a DA system can also be used as
an automatic control system for the quality of observations.

In the case of the Lagoon of Venice tide gauge network, we
demonstrated how numerical models with data assimilation
can play a valuable role in optimizing and designing coastal
observatories. The iterative optimization process was based
on the evaluation of the RMSE at the stations not assimilated.
It is worth noting that the existing monitoring network can
be reduced by a factor of 2/3 using the tide gauge system
in conjunction with a high-resolution numerical model, by
means of DA. The applied methodology is easily exportable
to other coastal environments and can be extended to other
physical variables.
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open source (GNU General Public License as published by the
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The SHYFEM model v. 7_5_65 with the data assimilation
code (version ens2.1) is available on Zenodo (Bajo, 2020,
https://doi.org/10.5281/zenodo.3757843). The data assimilation
code is based on Geir Evensen’s routines, available at the web page
https://github.com/geirev/EnKF_analysis (last access: 20 January
2020). Configuration files, data, and scripts used to run the models
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