Articles | Volume 14, issue 8
https://doi.org/10.5194/gmd-14-5217-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-5217-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A model-independent data assimilation (MIDA) module and its applications in ecology
Xin Huang
CORRESPONDING AUTHOR
Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA
School of informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
Dan Lu
Computational Sciences and Engineering Division, Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Daniel M. Ricciuto
Environmental Sciences Division, Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Paul J. Hanson
Environmental Sciences Division, Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Andrew D. Richardson
Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA
School of informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
Xuehe Lu
International Institute for Earth System Science, Nanjing University, Nanjing, China
Ensheng Weng
Center for Climate Systems Research, Columbia University, New York, NY 10027, USA
NASA Goddard Institute for Space Studies, New York, NY 10025, USA
Sheng Nie
Key Laboratory of Digital Earth Science, Aerospace Information Research
Institute, Chinese Academy of Sciences, Beijing, China
Lifen Jiang
Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA
Enqing Hou
Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA
Igor F. Steinmacher
School of informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA
School of informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
Department of Biological Sciences, Northern Arizona University, Flagstaff,
AZ 86011, USA
Related authors
No articles found.
Fangxiu Wan, Chenyu Bian, Ensheng Weng, Yiqi Luo, and Jianyang Xia
EGUsphere, https://doi.org/10.5194/egusphere-2025-1243, https://doi.org/10.5194/egusphere-2025-1243, 2025
Short summary
Short summary
We developed an improved model that captures how nutrients, especially phosphorus, influence carbon cycle in subtropical forest. By combining biogeochemical cycling with advanced data analysis techniques, our model creates a powerful tool for parameter optimization and reliable predictions. Using field observations from a phosphorus-limited forest, we validated that this integrated approach provides more accurate estimates, offering better support for climate-related decision making.
Adam M. Young, Thomas Milliman, Koen Hufkens, Keith Ballou, Christopher Coffey, Kai Begay, Michael Fell, Mostafa Javadian, Alison K. Post, Christina Schädel, Zakary Vladich, Oscar Zimmerman, Dawn M. Browning, Christopher R. Florian, Minkyu Moon, Michael D. SanClements, Bijan Seyednasrollah, Mark A. Friedl, and Andrew D. Richardson
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-120, https://doi.org/10.5194/essd-2025-120, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
Here, we describe the PhenoCam V3.0 public data release. The PhenoCam Network characterizes vegetation phenology in ecosystems across the US and around the world using repeat digital photography. This V3.0 release includes new additions to the data records (e.g., camera NDVI and simplified data sets) and provides >4800 site years of phenological time series and transition dates, a 170% increase relative to the previous data release (V2.0). Over 450 of the time series are 5 y or longer in length.
Jianghao Tan, Muhammed Mustapha Ibrahim, Huiying Lin, Zhaofeng Chang, Conghui Guo, Zhimin Li, Xianzhen Luo, Yongbiao Lin, and Enqing Hou
EGUsphere, https://doi.org/10.5194/egusphere-2025-310, https://doi.org/10.5194/egusphere-2025-310, 2025
Preprint archived
Short summary
Short summary
Controlled experiments show that adding phosphorus (P) to soils relieves microbial P limitation to degrade soil organic carbon (SOC). No alternative explanation currently exists. We show increased desorption of OC with P supply in subtropical forests, which was used to satisfy microbial C-limitation induced while incorporating P into microbial biomass, and driving CO2 emission, without further SOC degradation. We provide newer an alternative mechanism vital for constraining land C models.
Guohua Liu, Mirco Migliavacca, Christian Reimers, Basil Kraft, Markus Reichstein, Andrew D. Richardson, Lisa Wingate, Nicolas Delpierre, Hui Yang, and Alexander J. Winkler
Geosci. Model Dev., 17, 6683–6701, https://doi.org/10.5194/gmd-17-6683-2024, https://doi.org/10.5194/gmd-17-6683-2024, 2024
Short summary
Short summary
Our study employs long short-term memory (LSTM) networks to model canopy greenness and phenology, integrating meteorological memory effects. The LSTM model outperforms traditional methods, enhancing accuracy in predicting greenness dynamics and phenological transitions across plant functional types. Highlighting the importance of multi-variate meteorological memory effects, our research pioneers unlock the secrets of vegetation phenology responses to climate change with deep learning techniques.
Rongyun Tang, Mingzhou Jin, Jiafu Mao, Daniel M. Ricciuto, Anping Chen, and Yulong Zhang
Geosci. Model Dev., 17, 1525–1542, https://doi.org/10.5194/gmd-17-1525-2024, https://doi.org/10.5194/gmd-17-1525-2024, 2024
Short summary
Short summary
Carbon-rich boreal peatlands are at risk of burning. The reproducibility and predictability of rare peatland fire events are investigated by constructing a two-step error-correcting machine learning framework to tackle such complex systems. Fire occurrence and impacts are highly predictable with our approach. Factor-controlling simulations revealed that temperature, moisture, and freeze–thaw cycles control boreal peatland fires, indicating thermal impacts on causing peat fires.
Xianjin He, Laurent Augusto, Daniel S. Goll, Bruno Ringeval, Ying-Ping Wang, Julian Helfenstein, Yuanyuan Huang, and Enqing Hou
Biogeosciences, 20, 4147–4163, https://doi.org/10.5194/bg-20-4147-2023, https://doi.org/10.5194/bg-20-4147-2023, 2023
Short summary
Short summary
We identified total soil P concentration as the most important predictor of all soil P pool concentrations, except for primary mineral P concentration, which is primarily controlled by soil pH and only secondarily by total soil P concentration. We predicted soil P pools’ distributions in natural systems, which can inform assessments of the role of natural P availability for ecosystem productivity, climate change mitigation, and the functioning of the Earth system.
Xiaojuan Yang, Peter Thornton, Daniel Ricciuto, Yilong Wang, and Forrest Hoffman
Biogeosciences, 20, 2813–2836, https://doi.org/10.5194/bg-20-2813-2023, https://doi.org/10.5194/bg-20-2813-2023, 2023
Short summary
Short summary
We evaluated the performance of a land surface model (ELMv1-CNP) that includes both nitrogen (N) and phosphorus (P) limitation on carbon cycle processes. We show that ELMv1-CNP produces realistic estimates of present-day carbon pools and fluxes. We show that global C sources and sinks are significantly affected by P limitation. Our study suggests that introduction of P limitation in land surface models is likely to have substantial consequences for projections of future carbon uptake.
Kevin R. Wilcox, Scott L. Collins, Alan K. Knapp, William Pockman, Zheng Shi, Melinda D. Smith, and Yiqi Luo
Biogeosciences, 20, 2707–2725, https://doi.org/10.5194/bg-20-2707-2023, https://doi.org/10.5194/bg-20-2707-2023, 2023
Short summary
Short summary
The capacity for carbon storage (C capacity) is an attribute that determines how ecosystems store carbon in the future. Here, we employ novel data–model integration techniques to identify the carbon capacity of six grassland sites spanning the US Great Plains. Hot and dry sites had low C capacity due to less plant growth and high turnover of soil C, so they may be a C source in the future. Alternately, cooler and wetter ecosystems had high C capacity, so these systems may be a future C sink.
Jennifer A. Holm, David M. Medvigy, Benjamin Smith, Jeffrey S. Dukes, Claus Beier, Mikhail Mishurov, Xiangtao Xu, Jeremy W. Lichstein, Craig D. Allen, Klaus S. Larsen, Yiqi Luo, Cari Ficken, William T. Pockman, William R. L. Anderegg, and Anja Rammig
Biogeosciences, 20, 2117–2142, https://doi.org/10.5194/bg-20-2117-2023, https://doi.org/10.5194/bg-20-2117-2023, 2023
Short summary
Short summary
Unprecedented climate extremes (UCEs) are expected to have dramatic impacts on ecosystems. We present a road map of how dynamic vegetation models can explore extreme drought and climate change and assess ecological processes to measure and reduce model uncertainties. The models predict strong nonlinear responses to UCEs. Due to different model representations, the models differ in magnitude and trajectory of forest loss. Therefore, we explore specific plant responses that reflect knowledge gaps.
Ensheng Weng, Igor Aleinov, Ram Singh, Michael J. Puma, Sonali S. McDermid, Nancy Y. Kiang, Maxwell Kelley, Kevin Wilcox, Ray Dybzinski, Caroline E. Farrior, Stephen W. Pacala, and Benjamin I. Cook
Geosci. Model Dev., 15, 8153–8180, https://doi.org/10.5194/gmd-15-8153-2022, https://doi.org/10.5194/gmd-15-8153-2022, 2022
Short summary
Short summary
We develop a demographic vegetation model to improve the representation of terrestrial vegetation dynamics and ecosystem biogeochemical cycles in the Goddard Institute for Space Studies ModelE. The individual-based competition for light and soil resources makes the modeling of eco-evolutionary optimality possible. This model will enable ModelE to simulate long-term biogeophysical and biogeochemical feedbacks between the climate system and land ecosystems at decadal to centurial temporal scales.
G. Li, X. Gao, F. Hu, A. Guo, Z. Liu, J. Chen, C. Liu, S. Nie, and A. Fu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2022, 53–58, https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-53-2022, https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-53-2022, 2022
Shuang Ma, Lifen Jiang, Rachel M. Wilson, Jeff P. Chanton, Scott Bridgham, Shuli Niu, Colleen M. Iversen, Avni Malhotra, Jiang Jiang, Xingjie Lu, Yuanyuan Huang, Jason Keller, Xiaofeng Xu, Daniel M. Ricciuto, Paul J. Hanson, and Yiqi Luo
Biogeosciences, 19, 2245–2262, https://doi.org/10.5194/bg-19-2245-2022, https://doi.org/10.5194/bg-19-2245-2022, 2022
Short summary
Short summary
The relative ratio of wetland methane (CH4) emission pathways determines how much CH4 is oxidized before leaving the soil. We found an ebullition modeling approach that has a better performance in deep layer pore water CH4 concentration. We suggest using this approach in land surface models to accurately represent CH4 emission dynamics and response to climate change. Our results also highlight that both CH4 flux and belowground concentration data are important to constrain model parameters.
Xianjin He, Laurent Augusto, Daniel S. Goll, Bruno Ringeval, Yingping Wang, Julian Helfenstein, Yuanyuan Huang, Kailiang Yu, Zhiqiang Wang, Yongchuan Yang, and Enqing Hou
Earth Syst. Sci. Data, 13, 5831–5846, https://doi.org/10.5194/essd-13-5831-2021, https://doi.org/10.5194/essd-13-5831-2021, 2021
Short summary
Short summary
Our database of globally distributed natural soil total P (STP) concentration showed concentration ranged from 1.4 to 9630.0 (mean 570.0) mg kg−1. Global predictions of STP concentration increased with latitude. Global STP stocks (excluding Antarctica) were estimated to be 26.8 and 62.2 Pg in the topsoil and subsoil, respectively. Our global map of STP concentration can be used to constrain Earth system models representing the P cycle and to inform quantification of global soil P availability.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Eva Sinha, Kate Calvin, Ben Bond-Lamberty, Beth Drewniak, Dan Ricciuto, Khachik Sargsyan, Yanyan Cheng, Carl Bernacchi, and Caitlin Moore
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-244, https://doi.org/10.5194/gmd-2021-244, 2021
Preprint withdrawn
Short summary
Short summary
Perennial bioenergy crops are not well represented in global land models, despite projected increase in their production. Our study expands Energy Exascale Earth System Model (E3SM) Land Model (ELM) to include perennial bioenergy crops and calibrates the model for miscanthus and switchgrass. The calibrated model captures the seasonality and magnitude of carbon and energy fluxes. This study provides the foundation for future research examining the impact of perennial bioenergy crop expansion.
Daniel M. Ricciuto, Xiaojuan Yang, Dali Wang, and Peter E. Thornton
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-163, https://doi.org/10.5194/bg-2021-163, 2021
Publication in BG not foreseen
Short summary
Short summary
This paper uses a novel approach to quantify the impacts of the choice of decomposition model on carbon and nitrogen cycling. We compare the models to experimental data that examined litter decomposition over five different biomes. Despite widely differing assumptions, the models produce similar patterns of decomposition when nutrients are limiting. This differs from past analyses that did not consider the impacts of changing environmental conditions or nutrients.
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Fei Jiang, Hengmao Wang, Jing M. Chen, Weimin Ju, Xiangjun Tian, Shuzhuang Feng, Guicai Li, Zhuoqi Chen, Shupeng Zhang, Xuehe Lu, Jane Liu, Haikun Wang, Jun Wang, Wei He, and Mousong Wu
Atmos. Chem. Phys., 21, 1963–1985, https://doi.org/10.5194/acp-21-1963-2021, https://doi.org/10.5194/acp-21-1963-2021, 2021
Short summary
Short summary
We present a 6-year inversion from 2010 to 2015 for the global and regional carbon fluxes using only the GOSAT XCO2 retrievals. We find that the XCO2 retrievals could significantly improve the modeling of atmospheric CO2 concentrations and that the inferred interannual variations in the terrestrial carbon fluxes in most land regions have a better relationship with the changes in severe drought area or leaf area index, or are more consistent with the previous estimates about drought impact.
Xiaoying Shi, Daniel M. Ricciuto, Peter E. Thornton, Xiaofeng Xu, Fengming Yuan, Richard J. Norby, Anthony P. Walker, Jeffrey M. Warren, Jiafu Mao, Paul J. Hanson, Lin Meng, David Weston, and Natalie A. Griffiths
Biogeosciences, 18, 467–486, https://doi.org/10.5194/bg-18-467-2021, https://doi.org/10.5194/bg-18-467-2021, 2021
Short summary
Short summary
The Sphagnum mosses are the important species of a wetland ecosystem. To better represent the peatland ecosystem, we introduced the moss species to the land model component (ELM) of the Energy Exascale Earth System Model (E3SM) by developing water content dynamics and nonvascular photosynthetic processes for moss. We tested the model against field observations and used the model to make projections of the site's carbon cycle under warming and atmospheric CO2 concentration scenarios.
Erqian Cui, Chenyu Bian, Yiqi Luo, Shuli Niu, Yingping Wang, and Jianyang Xia
Biogeosciences, 17, 6237–6246, https://doi.org/10.5194/bg-17-6237-2020, https://doi.org/10.5194/bg-17-6237-2020, 2020
Short summary
Short summary
Mean annual net ecosystem productivity (NEP) is related to the magnitude of the carbon sink of a specific ecosystem, while its inter-annual variation (IAVNEP) characterizes the stability of such a carbon sink. Thus, a better understanding of the co-varying NEP and IAVNEP is critical for locating the major and stable carbon sinks on land. Based on daily NEP observations from eddy-covariance sites, we found local indicators for the spatially varying NEP and IAVNEP, respectively.
Rui Cheng, Troy S. Magney, Debsunder Dutta, David R. Bowling, Barry A. Logan, Sean P. Burns, Peter D. Blanken, Katja Grossmann, Sophia Lopez, Andrew D. Richardson, Jochen Stutz, and Christian Frankenberg
Biogeosciences, 17, 4523–4544, https://doi.org/10.5194/bg-17-4523-2020, https://doi.org/10.5194/bg-17-4523-2020, 2020
Short summary
Short summary
We measured reflected sunlight from an evergreen canopy for a year to detect changes in pigments that play an important role in regulating the seasonality of photosynthesis. Results show a strong mechanistic link between spectral reflectance features and pigment content, which is validated using a biophysical model. Our results show spectrally where, why, and when spectral features change over the course of the season and show promise for estimating photosynthesis remotely.
Cited articles
Allen, J. I., Eknes, M., and Evensen, G.: An Ensemble Kalman Filter with a complex marine ecosystem model: hindcasting phytoplankton in the Cretan Sea, Ann. Geophys., 21, 399–411, https://doi.org/10.5194/angeo-21-399-2003, 2003.
Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., and
Avellano, A.: The data assimilation research testbed a community facility,
B. Am. Meteorol. Soc., 90, 1283–1296, https://doi.org/10.1175/2009BAMS2618.1,
2009.
Bloom, A. A., Exbrayat, J. F., Van Der Velde, I. R., Feng, L., and Williams,
M.: The decadal state of the terrestrial carbon cycle: Global retrievals of
terrestrial carbon allocation, pools, and residence times, P. Natl. Acad. Sci. USA, 113, 1285–1290, https://doi.org/10.1073/pnas.1515160113, 2016.
Bonan, G.: Climate Change and Terrestrial Ecosystem Modeling, Cambridge
University Press, 2019.
Box, G. E. P. and Tiao, G. C.: Bayesian Inference in Statistical Analysis,
John Wiley & Sons, Inc., Hoboken, NJ, USA, 1992.
Ciais, P., Chris, S., Govindasamy, B., Bopp, L., Brovkin, V., Canadell, J.,
Chhabra, A., Defries, R., Galloway, J. and Heimann, M.: Carbon and other
biogeochemical cycles, in: Climate Change 2013: The Physical Science Basis,
Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin,
D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia,
Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, UK,
New York, NY, USA, 465–570, 2013.
Cline, M. P., Lomow, G., and Girou, M.: C FAQs, Pearson Education,
1998.
De Kauwe, M. G., Medlyn, B. E., Walker, A. P., Zaehle, S., Asao, S., Guenet,
B., Harper, A. B., Hickler, T., Jain, A. K., Luo, Y., Lu, X., Luus, K.,
Parton, W. J., Shu, S., Wang, Y. P., Werner, C., Xia, J., Pendall, E.,
Morgan, J. A., Ryan, E. M., Carrillo, Y., Dijkstra, F. A., Zelikova, T. J.,
and Norby, R. J.: Challenging terrestrial biosphere models with data from
the long-term multifactor Prairie Heating and CO2 Enrichment experiment,
Glob. Chang. Biol., 23, 3623–3645, https://doi.org/10.1111/gcb.13643, 2017.
Doherty J.: PEST model-independent parameter estimation user manual. Watermark Numerical Computing, Brisbane, Australia, 3338–3349, 2004.
Evensen, G.: The Ensemble Kalman Filter: Theoretical formulation and
practical implementation, Ocean Dynam., 53, 343–367,
https://doi.org/10.1007/s10236-003-0036-9, 2003.
Fer, I., Kelly, R., Moorcroft, P. R., Richardson, A. D., Cowdery, E. M., and Dietze, M. C.: Linking big models to big data: efficient ecosystem model calibration through Bayesian model emulation, Biogeosciences, 15, 5801–5830, https://doi.org/10.5194/bg-15-5801-2018, 2018.
Fox, A., Williams, M., Richardson, A. D., Cameron, D., Gove, J. H., Quaife,
T., Ricciuto, D., Reichstein, M., Tomelleri, E., Trudinger, C. M., and Van
Wijk, M. T.: The REFLEX project: Comparing different algorithms and
implementations for the inversion of a terrestrial ecosystem model against
eddy covariance data, Agr. For. Meteorol., 149, 1597–1615,
https://doi.org/10.1016/j.agrformet.2009.05.002, 2009.
Fox, A. M., Hoar, T. J., Anderson, J. L., Arellano, A. F., Smith, W. K.,
Litvak, M. E., MacBean, N., Schimel, D. S., and Moore, D. J. P.: Evaluation
of a Data Assimilation System for Land Surface Models Using CLM4.5, J. Adv.
Model. Earth Syst., 10, 2471–2494, https://doi.org/10.1029/2018MS001362, 2018.
Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W., Brovkin, V.,
Cadule, P., Doney, S., Eby, M., Fung, I., Bala, G., John, J., Jones, C.,
Joos, F., Kato, T., Kawamiya, M., Knorr, W., Lindsay, K., Matthews, H. D.,
Raddatz, T., Rayner, P., Reick, C., Roeckner, E., Schnitzler, K.-G., Schnur,
R., Strassmann, K., Weaver, A. J., Yoshikawa, C., and Zeng, N.:
Climate–Carbon Cycle Feedback Analysis: Results from the C4MIP Model
Intercomparison, J. Clim., 19, 3337–3353, https://doi.org/10.1175/JCLI3800.1, 2006.
Fu, Y. H., Campioli, M., Van Oijen, M., Deckmyn, G., and Janssens, I. A.:
Bayesian comparison of six different temperature-based budburst models for
four temperate tree species, Ecol. Modell., 230, 92–100,
https://doi.org/10.1016/j.ecolmodel.2012.01.010, 2012.
Gao, C., Wang, H., Weng, E., Lakshmivarahan, S., Zhang, Y., and Luo, Y.:
Assimilation of multiple data sets with the ensemble Kalman filter to
improve forecasts of forest carbon dynamics, Ecol. Appl., 21, 1461–1473,
https://doi.org/10.1890/09-1234.1, 2011.
Gelman, A. and Rubin, D. B.: Inference from Iterative Simulation Using
Multiple Sequences, Stat. Sci., 7, 457–472, https://doi.org/10.1214/SS/1177011136,
1992.
Hanson, P. J., Riggs, J. S., Nettles, W. R., Phillips, J. R., Krassovski, M. B., Hook, L. A., Gu, L., Richardson, A. D., Aubrecht, D. M., Ricciuto, D. M., Warren, J. M., and Barbier, C.: Attaining whole-ecosystem warming using air and deep-soil heating methods with an elevated CO2 atmosphere, Biogeosciences, 14, 861–883, https://doi.org/10.5194/bg-14-861-2017, 2017.
Hararuk, O., Xia, J., and Luo, Y.: Evaluation and improvement of a global
land model against soil carbon data using a Bayesian Markov chain Monte
Carlo method, J. Geophys. Res.-Biogeo., 119, 403–417,
https://doi.org/10.1002/2013JG002535, 2014.
Hararuk, O., Smith, M. J., and Luo, Y.: Microbial models with data-driven
parameters predict stronger soil carbon responses to climate change, Glob.
Change Biol., 21, 2439–2453, https://doi.org/10.1111/gcb.12827, 2015.
Hastings, W. K.: Monte carlo sampling methods using Markov chains and their
applications, Biometrika, 57, 97–109, https://doi.org/10.1093/biomet/57.1.97, 1970.
Hou, E., Lu, X., Jiang, L., Wen, D., and Luo, Y.: Quantifying Soil Phosphorus
Dynamics: A Data Assimilation Approach, J. Geophys. Res.-Biogeo.,
124, 2159–2173, https://doi.org/10.1029/2018JG004903, 2019.
Huang, X.: First release of MIDA software (v1.0.0), Zenodo, https://doi.org/10.5281/zenodo.4762725, 2021a.
Huang, X.: Dataset for four data assimilation studies with MIDA v1.0 [Data set], Zenodo, https://doi.org/10.5281/zenodo.4762779, 2021b.
Huang, X.: Comparison of the time cost using embedded DA algorithm and MIDA with the DALEC model (V1.0.0), Zenodo, https://doi.org/10.5281/zenodo.4891319, 2021c.
Ise, T. and Moorcroft, P. R.: The global-scale temperature and moisture
dependencies of soil organic carbon decomposition: An analysis using a
mechanistic decomposition model, Biogeochemistry, 80, 217–231,
https://doi.org/10.1007/s10533-006-9019-5, 2006.
Iversen, C. M., McCormack, M. L., Powell, A. S., Blackwood, C. B., Freschet,
G. T., Kattge, J., Roumet, C., Stover, D. B., Soudzilovskaia, N. A.,
Valverde-Barrantes, O. J., van Bodegom, P. M., and Violle, C.: A global
Fine-Root Ecology Database to address below-ground challenges in plant
ecology, New Phytol., 215, 15–26, https://doi.org/10.1111/nph.14486, 2017.
Jiang, J., Huang, Y., Ma, S., Stacy, M., Shi, Z., Ricciuto, D. M., Hanson,
P. J., and Luo, Y.: Forecasting Responses of a Northern Peatland Carbon Cycle
to Elevated CO2 and a Gradient of Experimental Warming, J. Geophys. Res.-Biogeo., 123, 1057–1071, https://doi.org/10.1002/2017JG004040, 2018.
Keenan, T. F., Davidson, E., Moffat, A. M., Munger, W., and Richardson, A.
D.: Using model-data fusion to interpret past trends, and quantify
uncertainties in future projections, of terrestrial ecosystem carbon
cycling, Glob. Chang. Biol., 18, 2555–2569,
https://doi.org/10.1111/j.1365-2486.2012.02684.x, 2012.
Keenan, T. F., Davidson, E. A., Munger, J. W., and Richardson, A. D.: Rate my
data: Quantifying the value of ecological data for the development of models
of the terrestrial carbon cycle, Ecol. Appl., 23, 273–286,
https://doi.org/10.1890/12-0747.1, 2013.
Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C.,
Bonan, G., Collier, N., Ghimire, B., van Kampenhout, L., Kennedy, D.,
Kluzek, E., Lawrence, P. J., Li, F., Li, H., Lombardozzi, D., Riley, W. J.,
Sacks, W. J., Shi, M., Vertenstein, M., Wieder, W. R., Xu, C., Ali, A. A.,
Badger, A. M., Bisht, G., van den Broeke, M., Brunke, M. A., Burns, S. P.,
Buzan, J., Clark, M., Craig, A., Dahlin, K., Drewniak, B., Fisher, J. B.,
Flanner, M., Fox, A. M., Gentine, P., Hoffman, F., Keppel-Aleks, G., Knox,
R., Kumar, S., Lenaerts, J., Leung, L. R., Lipscomb, W. H., Lu, Y., Pandey,
A., Pelletier, J. D., Perket, J., Randerson, J. T., Ricciuto, D. M.,
Sanderson, B. M., Slater, A., Subin, Z. M., Tang, J., Thomas, R. Q., Val
Martin, M., and Zeng, X.: The Community Land Model Version 5: Description of
New Features, Benchmarking, and Impact of Forcing Uncertainty, J. Adv.
Model. Earth Syst., 11, 4245–4287, https://doi.org/10.1029/2018MS001583, 2019.
LeBauer, D. S., Wang, D., Richter, K. T., Davidson, C. C., and Dietze, M. C.:
Facilitating feedbacks between field measurements and ecosystem models,
Ecol. Monogr., 83, 133–154, https://doi.org/10.1890/12-0137.1, 2013.
Levenberg, K.: A method for the solution of certain non-linear problems in
least squares, Q. Appl. Math., 2, 164–168, 1944.
Li, Q., Lu, X., Wang, Y., Huang, X., Cox, P. M., and Luo, Y.: Leaf area index identified as a major source of variability in modeled CO2 fertilization, Biogeosciences, 15, 6909–6925, https://doi.org/10.5194/bg-15-6909-2018, 2018.
Liang, J., Zhou, Z., Huo, C., Shi, Z., Cole, J. R., Huang, L.,
Konstantinidis, K. T., Li, X., Liu, B., Luo, Z., Penton, C. R., Schuur, E.
A. G., Tiedje, J. M., Wang, Y. P., Wu, L., Xia, J., Zhou, J., and Luo, Y.:
More replenishment than priming loss of soil organic carbon with additional
carbon input, Nat. Commun., 9, 1–9, https://doi.org/10.1038/s41467-018-05667-7,
2018a.
Liang, J., Zhou, Z., Huo, C., Shi, Z., Cole, J. R., Huang, L.,
Konstantinidis, K. T., Li, X., Liu, B., Luo, Z., Penton, C. R., Schuur, E.
A. G., Tiedje, J. M., Wang, Y., Wu, L., and Xia, J.: organic carbon with
additional carbon input, Nat. Commun., 9, 3175 , https://doi.org/10.1038/s41467-018-05667-7,
2018b.
Lu, D., Ricciuto, D., Walker, A., Safta, C., and Munger, W.: Bayesian calibration of terrestrial ecosystem models: a study of advanced Markov chain Monte Carlo methods, Biogeosciences, 14, 4295–4314, https://doi.org/10.5194/bg-14-4295-2017, 2017.
Lu, D., Ricciuto, D., Stoyanov, M., and Gu, L.: Calibration of the E3SM Land
Model Using Surrogate-Based Global Optimization, J. Adv. Model. Earth Syst.,
10, 1337–1356, https://doi.org/10.1002/2017MS001134, 2018.
Luo, Y. and Schuur, E. A. G.: Model parameterization to represent processes
at unresolved scales and changing properties of evolving systems, Glob.
Chang. Biol., 26, 1109–1117, https://doi.org/10.1111/gcb.14939, 2020.
Luo, Y., Wu, L., Andrews, J. A., White, L., Matamala, R., Schäfer, K. V.
R., and Schlesinger, W. H.: Elevated CO2 differentiates ecosystem carbon
processes: deconvolution analysis of duke forest face data, Ecol. Monogr.,
71, 357–376, https://doi.org/10.1890/0012-9615(2001)071[0357:ECDECP]2.0.CO;2, 2001.
Luo, Y., Ogle, K., Tucker, C., Fei, S., Gao, C., LaDeau, S., Clark, J. S.,
and Schimel, D. S.: Ecological forecasting and data assimilation in a
data-rich era, Ecol. Appl., 21, 1429–1442, https://doi.org/10.1890/09-1275.1, 2011.
Ma, S., Jiang, J., Huang, Y., Shi, Z., Wilson, R. M., Ricciuto, D.,
Sebestyen, S. D., Hanson, P. J., and Luo, Y.: Data-Constrained Projections of
Methane Fluxes in a Northern Minnesota Peatland in Response to Elevated
CO2 and Warming, J. Geophys. Res.-Biogeo., 122, 2841–2861,
https://doi.org/10.1002/2017JG003932, 2017.
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and
Teller, E.: Equation of state calculations by fast computing machines, J.
Chem. Phys., 21, 1087–1092, https://doi.org/10.1063/1.1699114, 1953.
Mitchell, J. C. and Apt, K.: Concepts in programming languages, Cambridge
University Press, 2003.
Nerger, L. and Hiller, W.: Software for ensemble-based data assimilation
systems-Implementation strategies and scalability, Comput. Geosci., 55,
110–118, https://doi.org/10.1016/j.cageo.2012.03.026, 2013.
Ono, S. and Konno, T.: Estimation of flowering date and temperature
characteristics of fruit trees by DTS method, Japan Agric. Res. Q., 33,
105–108, 1999.
Raeder, K., Anderson, J. L., Collins, N., Hoar, T. J., Kay, J. E.,
Lauritzen, P. H., and Pincus, R.: DART/CAM: An ensemble data assimilation
system for CESM atmospheric models, J. Clim., 25, 6304–6317,
https://doi.org/10.1175/JCLI-D-11-00395.1, 2012.
Raupach, M. R., Rayner, P. J., Barrett, D. J., Defries, R. S., Heimann, M.,
Ojima, D. S., Quegan, S., and Schmullius, C. C.: Model-data synthesis in
terrestrial carbon observation: Methods, data requirements and data
uncertainty specifications, Glob. Change Biol., 11, 378–397,
https://doi.org/10.1111/j.1365-2486.2005.00917.x, 2005.
R
ayner, P. J., Scholze, M., Knorr, W., Kaminski, T., Giering, R., and
Widmann, H.: Two decades of terrestrial carbon fluxes from a carbon cycle
data assimilation system (CCDAS), Global Biogeochem. Cy., 19, 19, GB2026,
https://doi.org/10.1029/2004GB002254, 2005.
Ricciuto, D., Sargsyan, K., and Thornton, P.: The Impact of Parametric
Uncertainties on Biogeochemistry in the E3SM Land Model, J. Adv. Model.
Earth Syst., 10, 297–319, https://doi.org/10.1002/2017MS000962, 2018.
Ricciuto, D. M., King, A. W., Dragoni, D., and Post, W. M.: Parameter and
prediction uncertainty in an optimized terrestrial carbon cycle model:
Effects of constraining variables and data record length, J. Geophys. Res.,
116, G01033, https://doi.org/10.1029/2010JG001400, 2011.
Richardson, A. D., Williams, M., Hollinger, D. Y., Moore, D. J. P., Dail, D.
B., Davidson, E. A., Scott, N. A., Evans, R. S., Hughes, H., Lee, J. T.,
Rodrigues, C., and Savage, K.: Estimating parameters of a forest ecosystem C
model with measurements of stocks and fluxes as joint constraints,
Oecologia, 164, 25–40, https://doi.org/10.1007/s00442-010-1628-y, 2010.
Richardson, A. D., Hufkens, K., Milliman, T., Aubrecht, D. M., Chen, M.,
Gray, J. M., Johnston, M. R., Keenan, T. F., Klosterman, S. T., Kosmala, M.,
Melaas, E. K., Friedl, M. A., and Frolking, S.: Tracking vegetation phenology
across diverse North American biomes using PhenoCam imagery, Sci. Data, 5,
180028, https://doi.org/10.1038/sdata.2018.28, 2018.
Ridler, M. E., Van Velzen, N., Hummel, S., Sandholt, I., Falk, A. K.,
Heemink, A., and Madsen, H.: Data assimilation framework: Linking an open
data assimilation library (OpenDA) to a widely adopted model interface
(OpenMI), Environ. Model. Softw., 57, 76–89,
https://doi.org/10.1016/j.envsoft.2014.02.008, 2014.
Robert, C. and Casella, G.: Monte Carlo statistical methods, Springer
Science & Business Media, 2013.
Roberts, G. O., Gelman, A., and Gilks, W. R.: Weak convergence and optimal
scaling of random walk Metropolis algorithms, Ann. Appl. Probab., 7,
110–120, https://doi.org/10.1214/AOAP/1034625254, 1997.
Safta, C., Ricciuto, D. M., Sargsyan, K., Debusschere, B., Najm, H. N., Williams, M., and Thornton, P. E.: Global sensitivity analysis, probabilistic calibration, and predictive assessment for the data assimilation linked ecosystem carbon model, Geosci. Model Dev., 8, 1899–1918, https://doi.org/10.5194/gmd-8-1899-2015, 2015.
Scholze, M., Kaminski, T., Rayner, P., Knorr, W., and Giering, R.:
Propagating uncertainty through prognostic carbon cycle data assimilation
system simulations, J. Geophys. Res., 112, D17305,
https://doi.org/10.1029/2007JD008642, 2007.
Shi, Z., Crowell, S., Luo, Y., and Moore, B.: Model structures amplify
uncertainty in predicted soil carbon responses to climate change, Nat.
Commun., 9, 2171, https://doi.org/10.1038/s41467-018-04526-9, 2018.
Smith, M. J., Purves, D. W., Vanderwel, M. C., Lyutsarev, V., and Emmott, S.: The climate dependence of the terrestrial carbon cycle, including parameter and structural uncertainties, Biogeosciences, 10, 583–606, https://doi.org/10.5194/bg-10-583-2013, 2013.
Strigul, N., Pristinski, D., Purves, D., Dushoff, J., and Pacala, S.: Scaling
from trees to forests: Tractable macroscopic equations for forest dynamics,
Ecol. Monogr., 78, 523–545, https://doi.org/10.1890/08-0082.1, 2008.
Tao, F., Zhou, Z., Huang, Y., Li, Q., Lu, X., Ma, S., Huang, X., Liang, Y.,
Hugelius, G., Jiang, L., Doughty, R., Ren, Z., and Luo, Y.: Deep Learning
Optimizes Data-Driven Representation of Soil Organic Carbon in Earth System
Model Over the Conterminous United States, Front. Big Data, 3, 17,
https://doi.org/10.3389/fdata.2020.00017, 2020.
Trudinger, C. M., Raupach, M. R., Rayner, P. J., Kattge, J., Liu, Q., Park,
B., Reichstein, M., Renzullo, L., Richardson, A. D., Roxburgh, S. H.,
Styles, J., Wang, Y. P., Briggs, P., Barrett, D., and Nikolova, S.: OptIC
project: An intercomparison of optimization techniques for parameter
estimation in terrestrial biogeochemical models, J. Geophys. Res.-Biogeo., 112, G02027, https://doi.org/10.1029/2006JG000367, 2007.
Van Oijen, M., Cameron, D. R., Butterbach-Bahl, K., Farahbakhshazad, N.,
Jansson, P. E., Kiese, R., Rahn, K. H., Werner, C., and Yeluripati, J. B.: A
Bayesian framework for model calibration, comparison and analysis:
Application to four models for the biogeochemistry of a Norway spruce
forest, Agr. For. Meteorol., 151, 1609–1621,
https://doi.org/10.1016/j.agrformet.2011.06.017, 2011.
Wang, Y. P., Trudinger, C. M., and Enting, I. G.: A review of applications of
model-data fusion to studies of terrestrial carbon fluxes at different
scales, Agr. For. Meteorol., 149, 1829–1842,
https://doi.org/10.1016/j.agrformet.2009.07.009, 2009.
Weng, E. and Luo, Y.: Relative information contributions of model vs. data
to short- and long-term forecasts of forest carbon dynamics, Ecol. Appl.,
21, 1490–1505, https://doi.org/10.1890/09-1394.1, 2011.
Weng, E., Dybzinski, R., Farrior, C. E., and Pacala, S. W.: Competition alters predicted forest carbon cycle responses to nitrogen availability and elevated CO2: simulations using an explicitly competitive, game-theoretic vegetation demographic model, Biogeosciences, 16, 4577–4599, https://doi.org/10.5194/bg-16-4577-2019, 2019.
Williams, M., Schwarz, P. A., Law, B. E., Irvine, J., and Kurpius, M. R.: An
improved analysis of forest carbon dynamics using data assimilation, Glob.
Chang. Biol., 11, 89–105, https://doi.org/10.1111/j.1365-2486.2004.00891.x, 2005.
Williams, M., Richardson, A. D., Reichstein, M., Stoy, P. C., Peylin, P., Verbeeck, H., Carvalhais, N., Jung, M., Hollinger, D. Y., Kattge, J., Leuning, R., Luo, Y., Tomelleri, E., Trudinger, C. M., and Wang, Y.-P.: Improving land surface models with FLUXNET data, Biogeosciences, 6, 1341–1359, https://doi.org/10.5194/bg-6-1341-2009, 2009.
Xu, T., White, L., Hui, D., and Luo, Y.: Probabilistic inversion of a
terrestrial ecosystem model: Analysis of uncertainty in parameter estimation
and model prediction, Global Biogeochem. Cy., 20, GB2007,
https://doi.org/10.1029/2005GB002468, 2006.
Yun, K., Hsiao, J., Jung, M. P., Choi, I. T., Glenn, D. M., Shim, K. M., and
Kim, S. H.: Can a multi-model ensemble improve phenology predictions for
climate change studies?, Ecol. Modell., 362, 54–64,
https://doi.org/10.1016/j.ecolmodel.2017.08.003, 2017.
Zobitz, J. M., Desai, A. R., Moore, D. J. P., and Chadwick, M. A.: A primer
for data assimilation with ecological models using Markov Chain Monte Carlo
(MCMC), Oecologia, 167, 599–611, https://doi.org/10.1007/s00442-011-2107-9, 2011.
Short summary
In the data-rich era, data assimilation is widely used to integrate abundant observations into models to reduce uncertainty in ecological forecasting. However, applications of data assimilation are restricted by highly technical requirements. To alleviate this technical burden, we developed a model-independent data assimilation (MIDA) module which is friendly to ecologists with limited programming skills. MIDA also supports a flexible switch of different models or observations in DA analysis.
In the data-rich era, data assimilation is widely used to integrate abundant observations into...