Articles | Volume 14, issue 8
https://doi.org/10.5194/gmd-14-5217-2021
https://doi.org/10.5194/gmd-14-5217-2021
Development and technical paper
 | 
20 Aug 2021
Development and technical paper |  | 20 Aug 2021

A model-independent data assimilation (MIDA) module and its applications in ecology

Xin Huang, Dan Lu, Daniel M. Ricciuto, Paul J. Hanson, Andrew D. Richardson, Xuehe Lu, Ensheng Weng, Sheng Nie, Lifen Jiang, Enqing Hou, Igor F. Steinmacher, and Yiqi Luo

Related authors

TECO-CNP Sv1.0: A coupled carbon-nitrogen-phosphorus model with data assimilation for subtropical forests
Fangxiu Wan, Chenyu Bian, Ensheng Weng, Yiqi Luo, and Jianyang Xia
EGUsphere, https://doi.org/10.5194/egusphere-2025-1243,https://doi.org/10.5194/egusphere-2025-1243, 2025
Short summary
Tracking vegetation phenology across diverse biomes using Version 3.0 of the PhenoCam Dataset
Adam M. Young, Thomas Milliman, Koen Hufkens, Keith Ballou, Christopher Coffey, Kai Begay, Michael Fell, Mostafa Javadian, Alison K. Post, Christina Schädel, Zakary Vladich, Oscar Zimmerman, Dawn M. Browning, Christopher R. Florian, Minkyu Moon, Michael D. SanClements, Bijan Seyednasrollah, Mark A. Friedl, and Andrew D. Richardson
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-120,https://doi.org/10.5194/essd-2025-120, 2025
Preprint under review for ESSD
Short summary
Microbial carbon use for incorporating biomass phosphorus drives CO2 emission in phosphorus-supplied subtropical forest soils
Jianghao Tan, Muhammed Mustapha Ibrahim, Huiying Lin, Zhaofeng Chang, Conghui Guo, Zhimin Li, Xianzhen Luo, Yongbiao Lin, and Enqing Hou
EGUsphere, https://doi.org/10.5194/egusphere-2025-310,https://doi.org/10.5194/egusphere-2025-310, 2025
Preprint archived
Short summary
DeepPhenoMem V1.0: deep learning modelling of canopy greenness dynamics accounting for multi-variate meteorological memory effects on vegetation phenology
Guohua Liu, Mirco Migliavacca, Christian Reimers, Basil Kraft, Markus Reichstein, Andrew D. Richardson, Lisa Wingate, Nicolas Delpierre, Hui Yang, and Alexander J. Winkler
Geosci. Model Dev., 17, 6683–6701, https://doi.org/10.5194/gmd-17-6683-2024,https://doi.org/10.5194/gmd-17-6683-2024, 2024
Short summary
Quantifying wildfire drivers and predictability in boreal peatlands using a two-step error-correcting machine learning framework in TeFire v1.0
Rongyun Tang, Mingzhou Jin, Jiafu Mao, Daniel M. Ricciuto, Anping Chen, and Yulong Zhang
Geosci. Model Dev., 17, 1525–1542, https://doi.org/10.5194/gmd-17-1525-2024,https://doi.org/10.5194/gmd-17-1525-2024, 2024
Short summary

Related subject area

Biogeosciences
Simulating the drought response of European tree species with the dynamic vegetation model LPJ-GUESS (v4.1, 97c552c5)
Benjamin F. Meyer, João P. Darela-Filho, Konstantin Gregor, Allan Buras, Qiao-Lin Gu, Andreas Krause, Daijun Liu, Phillip Papastefanou, Sijeh Asuk, Thorsten E. E. Grams, Christian S. Zang, and Anja Rammig
Geosci. Model Dev., 18, 4643–4666, https://doi.org/10.5194/gmd-18-4643-2025,https://doi.org/10.5194/gmd-18-4643-2025, 2025
Short summary
pyVPRM: a next-generation vegetation photosynthesis and respiration model for the post-MODIS era
Theo Glauch, Julia Marshall, Christoph Gerbig, Santiago Botía, Michał Gałkowski, Sanam N. Vardag, and André Butz
Geosci. Model Dev., 18, 4713–4742, https://doi.org/10.5194/gmd-18-4713-2025,https://doi.org/10.5194/gmd-18-4713-2025, 2025
Short summary
Emulating grid-based forest carbon dynamics using machine learning: an LPJ-GUESS v4.1.1 application
Carolina Natel, David Martín Belda, Peter Anthoni, Neele Haß, Sam Rabin, and Almut Arneth
Geosci. Model Dev., 18, 4317–4333, https://doi.org/10.5194/gmd-18-4317-2025,https://doi.org/10.5194/gmd-18-4317-2025, 2025
Short summary
ELM2.1-XGBfire1.0: improving wildfire prediction by integrating a machine learning fire model in a land surface model
Ye Liu, Huilin Huang, Sing-Chun Wang, Tao Zhang, Donghui Xu, and Yang Chen
Geosci. Model Dev., 18, 4103–4117, https://doi.org/10.5194/gmd-18-4103-2025,https://doi.org/10.5194/gmd-18-4103-2025, 2025
Short summary
Development and assessment of the physical–biogeochemical ocean regional model in the Northwest Pacific: NPRT v1.0 (ROMS v3.9–TOPAZ v2.0)
Daehyuk Kim, Hyun-Chae Jung, Jae-Hong Moon, and Na-Hyeon Lee
Geosci. Model Dev., 18, 3941–3964, https://doi.org/10.5194/gmd-18-3941-2025,https://doi.org/10.5194/gmd-18-3941-2025, 2025
Short summary

Cited articles

Allen, J. I., Eknes, M., and Evensen, G.: An Ensemble Kalman Filter with a complex marine ecosystem model: hindcasting phytoplankton in the Cretan Sea, Ann. Geophys., 21, 399–411, https://doi.org/10.5194/angeo-21-399-2003, 2003. 
Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., and Avellano, A.: The data assimilation research testbed a community facility, B. Am. Meteorol. Soc., 90, 1283–1296, https://doi.org/10.1175/2009BAMS2618.1, 2009. 
Bloom, A. A., Exbrayat, J. F., Van Der Velde, I. R., Feng, L., and Williams, M.: The decadal state of the terrestrial carbon cycle: Global retrievals of terrestrial carbon allocation, pools, and residence times, P. Natl. Acad. Sci. USA, 113, 1285–1290, https://doi.org/10.1073/pnas.1515160113, 2016. 
Bonan, G.: Climate Change and Terrestrial Ecosystem Modeling, Cambridge University Press, 2019. 
Box, G. E. P. and Tiao, G. C.: Bayesian Inference in Statistical Analysis, John Wiley & Sons, Inc., Hoboken, NJ, USA, 1992. 
Download
Short summary
In the data-rich era, data assimilation is widely used to integrate abundant observations into models to reduce uncertainty in ecological forecasting. However, applications of data assimilation are restricted by highly technical requirements. To alleviate this technical burden, we developed a model-independent data assimilation (MIDA) module which is friendly to ecologists with limited programming skills. MIDA also supports a flexible switch of different models or observations in DA analysis.
Share