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Abstract. Models are an important tool to predict Earth sys-
tem dynamics. An accurate prediction of future states of
ecosystems depends on not only model structures but also
parameterizations. Model parameters can be constrained by
data assimilation. However, applications of data assimilation
to ecology are restricted by highly technical requirements
such as model-dependent coding. To alleviate this techni-
cal burden, we developed a model-independent data assim-
ilation (MIDA) module. MIDA works in three steps includ-
ing data preparation, execution of data assimilation, and vi-
sualization. The first step prepares prior ranges of parameter
values, a defined number of iterations, and directory paths
to access files of observations and models. The execution
step calibrates parameter values to best fit the observations
and estimates the parameter posterior distributions. The fi-
nal step automatically visualizes the calibration performance
and posterior distributions. MIDA is model independent, and
modelers can use MIDA for an accurate and efficient data as-
similation in a simple and interactive way without modifica-
tion of their original models. We applied MIDA to four types
of ecological models: the data assimilation linked ecosystem

carbon (DALEC) model, a surrogate-based energy exascale
earth system model: the land component (ELM), nine pheno-
logical models and a stand-alone biome ecological strategy
simulator (BiomeE). The applications indicate that MIDA
can effectively solve data assimilation problems for differ-
ent ecological models. Additionally, the easy implementation
and model-independent feature of MIDA breaks the techni-
cal barrier of applications of data–model fusion in ecology.
MIDA facilitates the assimilation of various observations
into models for uncertainty reduction in ecological modeling
and forecasting.

1 Introduction

Ecological models require a large number of parameters to
simulate biogeophysical and biogeochemical processes (Bo-
nan, 2019; Ciais et al., 2013; Friedlingstein et al., 2006) and
specify model behaviors (Luo et al., 2016; Luo and Schuur,
2020). Parameter values in ecological models are mostly de-
termined in some ad hoc fashions (Luo et al., 2001), lead-
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ing to considerable biases in predictions (Tao et al., 2020).
The situation becomes even worse when more detailed pro-
cesses are incorporated into models (De Kauwe et al., 2017;
Lawrence et al., 2019). Data assimilation (DA), a statisti-
cally rigorous method to integrate observations and mod-
els, is gaining increasing attention for parameter estimation
and uncertainty evaluation. It has been successfully applied
to many ecological models (Fox et al., 2009; Keenan et al.,
2012; Richardson et al., 2010; Safta et al., 2015; Wang et al.,
2009; Williams et al., 2005; Zobitz et al., 2011). However, al-
most all those DA studies require model-dependent, invasive
coding (Walls et al., 2005). This requires a DA algorithm to
be programmed for a specific model. Such model-dependent
coding creates a large technical barrier for ecologists to use
DA to solve prediction and uncertainty quantification prob-
lems in ecology. Thus a model-independent DA toolkit is re-
quired to facilitate the use of DA technique in ecology.

DA is a powerful approach to combine models with ob-
servations and can be used to improve ecological research
in several ways (Luo et al., 2011). First, DA can be used
for parameter estimation (Bloom et al., 2016; Hararuk et al.,
2015; Hou et al., 2019; Ise and Moorcroft, 2006; Ma et al.,
2017; Ricciuto et al., 2011; Scholze et al., 2007). It enables
the optimization of parameter values across sites, time and
treatments (Li et al., 2018; Luo and Schuur, 2020). For ex-
ample, Hararuk and his colleagues applied DA to a global
land model and substantially improved the explainability of
the global variation in soil organic carbon (SOC) from 27 %
to 41 % (Hararuk et al., 2014). When DA was combined with
deep learning to improve spatial distributions of estimated
parameter values, for example, the Community Land Model
version 5 (CLM5) predicted the SOC distribution in the US
continent with much higher R2 of 0.62 than CLM5 with de-
fault parameters (R2

= 0.32) (Tao et al., 2020). Second, DA
can be used to select alternative model structures to better
represent ecological processes (Liang et al., 2018; Van Oijen
et al., 2011; Shi et al., 2018; Smith et al., 2013; Williams et
al., 2009). In the study by Liang et al. (2018), DA was used
to evaluate four models. And a two-pool interactive model
was selected after DA to best represent SOC decomposition
with priming. Additionally, DA can be applied to locate the
most informative data to reduce uncertainty, thus guiding the
sensor network design (Keenan et al., 2013; Raupach et al.,
2005; Shi et al., 2018; Williams et al., 2005). One DA study
at Harvard Forest (Keenan et al., 2013) indicated that only
a few data sources contributed to the significant reduction
in parameter uncertainty. In spite of powerful applications
of DA to ecological research, computational cost is a major
hurdle, especially with complex models. Fer et al. (2018) de-
veloped a Bayesian model emulation to reduce the time cost
of DA from 112 to 6 h with the simplified Photosynthesis and
Evapotranspiration model. Overall, DA is essential for eco-
logical modeling and forecasting (Jiang et al., 2018) and is
helpful for evaluation of different inversion methods (Fox et
al., 2009).

Applications of traditional DA to ecological research re-
quire highly technical skills of users. A successful DA appli-
cation usually involves model-dependent coding to integrate
observations into models. This requires users to have knowl-
edge about model programming. For example, if a complex
model (e.g., the community land model) is used in DA, users
need to know the programming language (e.g., Fortran) of
the model and its internal content to write DA algorithm into
the model source code before DA can be conducted. The
learning curve for model programming is steep for general
ecologists. Furthermore, users often need to update the pro-
gramming knowledge when a different model is used in DA.
For example, scientists who implemented the DA algorithm
coded in MATLAB (Xu et al., 2006) to an ecosystem car-
bon cycle model programmed in Fortran (e.g., TECO) need
to understand both MATLAB and Fortran (Ma et al., 2017).
Moreover, DA often involves reading observation files about
a specific study site. As a result, users usually have to update
the codes of model-dependent DA to read new observations
from every new study site.

A number of tools have been developed to facilitate DA
applications (Table 1) but many of them are model depen-
dent, such as the Carbon Cycle Data Assimilation Systems
(CCDAS) (Rayner et al., 2005; Scholze et al., 2007), the Car-
bon Data Model Framework (CARDAMOM) (Bloom et al.,
2016), the Ecological Platform for Assimilating Data (Eco-
PAD) into model (Huang et al. 2019) and Predictive Ecosys-
tem Analyzer (PEcAn) (LeBauer et al., 2013). These tools
combine DA algorithms with a specific model. For example,
CCDAS specified the DA algorithm to the Biosphere Energy
Transfer Hydrology (BETHY) model (Rayner et al., 2005).
The hardcoding feature of aforementioned tools make them
inflexible to be applied to different models.

There are some model independent DA tools that are not
tailored to a specific model, such as Data Assimilation Re-
search Testbed (DART) (Anderson et al., 2009), the open
Data Assimilation library (openDA) (Ridler et al., 2014), the
Parallel Data Assimilation Framework (PDAF) (Nerger and
Hiller, 2013) and Parameter Estimation & Uncertainty Anal-
ysis software suit (PEST) (Doherty, 2004).

However, these model-independent tools suffer from some
limitations for a general and flexible DA application. For
example, openDA requires users to code three functions to
initialize a Java class (Ridler et al., 2014) (Table 1). DART
enables incorporating a new model through a range of in-
terfaces (Anderson et al., 2009). It has been successfully
applied to atmospheric and oceanic models with currently
available interfaces (Anderson et al., 2009; Raeder et al.,
2012) and recently to the community land model (Fox et al.,
2018). It is likely that users may need to prepare new inter-
faces for new ecological models to use DART. DART and
PDAF adopted the Ensemble Kalman Filter (EnKF) method
(Evensen, 2003), which may makes it difficult to obey mass
conservation for biogeochemical models. This is because the
parameter values estimated by EnKF change each time when
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Table 1. Comparison among MIDA and available DA tools.

Global Posterior
DA tool Agnostic DA algorithms optima distribution Visualization

CCDAS No Automatic differentiation from Transformation No No No
of Algorithms in Fortran (TAF)

CARDAMOM No Markov chain Monte Carlo Yes Yes No

EcoPAD No Markov chain Monte Carlo Yes Yes Yes

OpenDA No EnKF, ensemble square-root filter, particle filter Yes Yes No

DART Yes EnKF Yes Yes No

PDAF Yes EnKF Yes Yes No

PEST Yes Levenberg–Marquardt method Rely on initial No No
parameter values

MIDA Yes Markov chain Monte Carlo Yes Yes Yes

new data sets are assimilated (Allen et al., 2003; Gao et al.,
2011; Trudinger et al., 2007). The sudden changes in esti-
mated parameter values at time points when data are assimi-
lated by EnKF usually do not reflect reality of biogeochem-
ical cycles in the real world. PEST utilizes the Levenberg–
Marquardt method (Levenberg, 1944), which is a local opti-
mization method for parameter estimation. If the relationship
between simulation outputs and parameters is highly nonlin-
ear, which is common in ecological models, this method may
trap into a locally optimization solution (Doherty, 2004).

In this work, we developed a model-independent DA mod-
ule (MIDA) to enable a general and flexible application of
DA in ecology. MIDA was designed as a highly modular tool,
independent of specific models, and friendly to users with
limited programming skills and/or technical knowledge of
DA algorithms. Additionally, MIDA implemented advanced
Markov chain Monte Carlo (MCMC) algorithms for DA
analysis which can accurately quantify the parameter uncer-
tainty with informative posterior distribution. The anticipated
user community in this initial phase of MIDA development is
the biogeochemical modelers who are looking for appropri-
ate parameter estimation methods. In the following Sect. 2,
we first introduce the development details of MIDA and its
usage. In Sect. 3, we demonstrate the application of MIDA
to four different types of ecological models. In Sect. 4, we
discuss the strengths and weaknesses of MIDA in ecologi-
cal modeling, and lastly we give our concluding remarks in
Sect. 5.

2 Model-independent data assimilation (MIDA)

2.1 Bayes’ theorem and DA

Based on Bayes’ theorem, DA is a statistical approach to con-
strain parameter values and estimate their posterior density

distributions through assimilating observations into a model.
The posterior density distributions p(C|Z) of parameters C
for a given observation Z can be obtained from prior density
distributions p(C) and the likelihood function p(Z|C):

p(C|Z)∝ p(Z|C)p(C). (1)

The prior density distribution p(C) is assumed as a uniform
distribution over the parameter range. And the likelihood
function is negatively proportional to a cost function, J , as

p(Z|C)∝ exp(−J ). (2)

The cost function measures the misfit between simulation
outputs and observations and is described in more detail in
Sect. 2.4. The posterior density distribution p(C|Z) is es-
timated from sampling parameter values to maximize the
likelihood function p(Z|C) or minimize the cost function
J . DA usually uses a sampling technique, such as Markov
chain Monte Carlo (MCMC) in this MIDA. The MCMC al-
gorithm successively generates a new set of parameter val-
ues from the prior parameter ranges and requires a model
run with these new parameter values. Then the cost function
is calculated to determine whether this new set of parameter
values will be accepted or not according to the Metropolis–
Hastings criterion (see more description in Sect. 2.4). All ac-
cepted parameter values are used to generate posterior dis-
tributions where the distinctive mode indicates the parameter
uncertainty is well constrained. Meanwhile, we derive max-
imum likelihood estimates (MLEs) of parameters from the
posterior density distributions.

MIDA realizes model-independent Bayesian-based DA to
estimate posterior density distributions and MLEs of param-
eters via data exchanges between a given model and DA al-
gorithm.
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Figure 1. The three-step workflow of the Model Independent Data Assimilation (MIDA) module. The workflow includes data preparation,
execution of data assimilation (DA), and visualization. The data preparation step is to provide all the formatted essential data for DA via user
input. The execution step is to calibrate parameter values towards a constrained posterior distribution with the fusion of observations. The
visualization step is to diagnose the effects of DA. The rhombus in orange represents user-input data. The rectangle represents procedures,
and document/multidocument shape is for data files in computers. Dashed lines indicate locations of data. Solids lines indicate data flow
pathways. With the three-step workflow, DA is agnostic to specific models, and users will be released from technical burdens.

2.2 An overview of MIDA

MIDA is a module that allows for automatic im-
plementation of data assimilation without intru-
sive modification or coding of the original model
(https://doi.org/10.5281/zenodo.4762725, Huang, 2021). Its
workflow includes three steps: data preparation, execution
of data assimilation, and visualization (Fig. 1). Step 1
(data preparation) is to establish the standardized data
exchange between the DA algorithm and the model. Step
2 (execution of data assimilation) is to run DA as a black
box independent of the model. Step 3 (visualization) is to
diagnose parameter uncertainty after DA. The modularity
of the three-step workflow is designed to enable MIDA for
a rapid DA application and adaption to a new model. In the
following, we introduce the three-step workflows of MIDA,
its technical implementation, and its usage in detail.

2.3 Step 1: data preparation

Step 1 is designed to initialize data exchange to transfer pa-
rameter values, model outputs, observations, and their vari-
ances between the DA algorithm and the model to be used.
Four types of information are required either from interac-
tive input or by modifying the “namelist.txt” file (Fig. 1). The
first type is about DA configuration, including the number of
sampling series in DA and the working path where the out-
puts of DA will be saved. The number of a sampling series
is essential in a DA task to define how many times parame-
ter values are sampled to run the model. The second type of
information is about parameter ranges and their covariance.
The third is the model executable file. Finally, the fourth type

is an output configuration file which contains the file paths of
model outputs, observations, and their variance. This file also
instructs how to read model outputs and compare each output
with corresponding observations.

Traditional DA requires users to modify the code of the
model to incorporate the process of data exchange between
the DA algorithm and the model. Therefore, the program of
data exchange in traditional DA is model-specific, and users
need to repeat such a program when a new model comes.
In MIDA, the process of data exchange calls a model exe-
cutable file which hides the details of the model code. When
applied to a new model, MIDA only requires users to provide
a different model executable file in the namelist.txt file and
does not involve any additional coding in either the model or
MIDA. Thus, MIDA lowers the technical barrier for general
ecologists to conduct DA.

Traditional DA usually presets the number of parameters
and the model outputs according to a specific model be-
fore initializing the data exchange. This is because data ex-
change between the DA algorithm and model uses memory
to transfer items such as parameter values. Instead, MIDA
organizes items in data exchange using different files. Items
in data exchange are decided by the data file loaded when
MIDA is running. The number of parameter values, for ex-
ample, will be decided after the file of parameter range is
read in MIDA. Through modifying files, MIDA allows effi-
cient choices about the model-related items in data exchange
to be made. Thus, MIDA is highly flexible and modular for
DA with different models.

Traditional DA also presets observation types in the data
exchange according to a specific study before the data ex-
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change. For example, if the traditional DA uses carbon flux
observation, it cannot switch to satellite remote sensing prod-
ucts without additional coding. MIDA uses the concepts of
object-orient programming (Mitchell and Apt, 2003) and dy-
namic initialization (Cline et al., 1998) in computer science
to provide a homogenous way to create various observation
types from a unified prototype class. A prototype class in-
cludes variables to store observations and their variance and
functions (e.g., read from observation files). The values in
variables are dynamically decided after the observation files
are loaded when MIDA is running. Different observation
types derive from the prototype class with a high degree of
reusability of most functions. In such a way, MIDA only re-
quires users to provide different filenames of the observations
to be integrated in DA. Therefore, MIDA is highly flexible
and modular for DA to assimilate various observations.

2.4 Step 2: execution of data assimilation

After the establishment of the standardized data exchange
(step 1), step 2 is to run DA as a black box for users with-
out knowledge of DA itself. Notwithstanding the black-box
goal, this section provides a general description of DA below.

Data assimilation as a process integrates observations into
a model to constrain parameters and estimate parameter un-
certainties. Data assimilation usually uses some types of
sampling algorithms, such as Markov chain Monte Carlo
(MCMC), to generate posterior parameter distribution un-
der a Bayesian inference framework (Box and Tiao, 1992).
As mentioned in Sect. 2.1, DA with a MCMC algorithm
estimates the posterior density distributions through sam-
pling to maximize likelihood function p(Z|C) or minimize
the misfit J between simulation outputs and observations.
This version of MIDA uses the MCMC algorithm imple-
mented by the Metropolis–Hastings (MH) sampling method
(Hastings, 1970; Metropolis et al., 1953). The future ver-
sion of MIDA could incorporate other data assimilation algo-
rithms. Each iteration in the Metropolis–Hastings sampling
includes a proposing phase and a moving phase. The propos-
ing phase generates a new set of parameter values based on
the starting point for the first iteration or current accepted
parameter values in the following iterations. If parameter co-
variance (covparam) is specified in step 1 on data prepara-
tion, this proposing phase will draw new parameter values
(Cnew) within the prior ranges from a Gaussian distribution
N(Cold,covparam), where Cold is the predecessor set of pa-
rameter values. Without parameter covariance, a new set of
parameter values will be generated from a uniform distribu-
tion within the prior ranges (Xu et al., 2006).

The moving phase first calculates mismatches between ob-
servations and the model simulation with the new set of pa-
rameter values as a cost function (Jnew in Eq. 3) (Xu et al.,

2006):

Jnew =

n∑
i=1

∑
t ∈ obs(Zi )

[Zi(t)−Xi(t)]2

2σ 2
i

, (3)

where n is the number of observations, Zi(t) is the ith obser-
vation at time t , Xi(t) is the corresponding simulation, and
σ 2
i is the variance of the observation. The error is assumed to

independently follow a Gaussian distribution. This new set of
parameter values will be accepted if Jnew is smaller than Jold,
the cost function with the previous set of accepted parame-
ter values, or the value, exp

(
−
Jnew
Jold

)
, is larger than a random

number selected from a uniform distribution from 0 to 1 ac-
cording to the Metropolis criterion (Liang et al., 2018; Luo et
al., 2011; Shi et al., 2018; Xu et al., 2006). Once the new set
of parameter values is accepted, Jnew becomes Jold. Those
two phases of sampling will be iteratively executed until the
number of sampling series set in step 1 on preparation of DA
is reached. Finally, the posterior density distributions can be
generated from all the accepted parameter values.

MIDA realizes the execution of data assimilation accord-
ing to the procedure described above. First, MIDA uses a
“call” function to execute model simulations to get values
of Xi(t). Observations Zi(t) and their variance σ 2

i are al-
ready provided via the standardized data exchange as de-
scribed in step 1. Then, MIDA calculates Jnew according to
Eq. (3) to decide the acceptance of the current parameter val-
ues used in this simulation. If accepted, MIDA saves this set
of parameter values and associated Jnew values in Caccepted
and Jaccepted array, respectively, and triggers a new proposing
phrase based on this set of accepted parameter values. If not,
MIDA discards this set of parameter values and generates an-
other new set of parameter values. MIDA saves the new pa-
rameter values generated in the proposing phrase to “Param-
eterValue.txt”, from which the model reads before execution
of the next model simulation. MIDA repeats the proposing
and moving phases until the number of sampling series is
reached. At the end, MIDA selects the best parameter values
through maximum likelihood estimation and runs the model
again using this set of values to get optimized simulation
outputs Xi(t). Then MIDA saves the arrays of accepted pa-
rameters, associated errors, maximum likelihood estimates
(MLEs), and optimized state variables Xi(t) to four files,
“parameter_accepted.txt”, “J_accepted.txt”, “MLE.txt”, and
“OptimizedSimu.txt”, respectively.

This execution of the DA algorithm in MIDA enables users
to conduct DA as a black box and is independent of any par-
ticular model.

2.5 Step 3: visualization

Step 3 is to visualize the results of DA in step 2. The end
products of DA are accepted parameter values, their associ-
ated Jnew values, the maximum likelihood estimates, and op-
timized simulation results as saved in the output files. MIDA
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enables visualization of parameter posterior density distri-
butions with a Python script. In the script, MIDA first read
accepted parameter values from the parameter_accepted.txt
file. Then, MIDA generates a posterior probabilistic density
function (PPDF) for each parameter via the “kdeplot” func-
tion in the “seaborn” package. The maximum likelihood es-
timates of parameters correspond to the peaks of PPDF. The
distinctive mode of PPDF indicates how well the parame-
ter uncertainty is constrained. Finally, MIDA visualizes the
PPDF for all parameters in a figure using the “matplotlib”
package.

2.6 Implementation and architecture of MIDA

MIDA is equipped with a graphical user interface (GUI), and
users can easily execute it through an interactive window.
Users can also run MIDA as a script program without the
GUI. MIDA is written in Python (version 3.7). For the GUI-
version, all relevant Python packages used in MIDA are com-
piled together; thus users do not need to install them by them-
selves. For the non-GUI version, users need to install Python
3.7 and relevant packages (i.e., numpy, pandas, shutil, sub-
process, matplotlib, math, os, and seaborn). MIDA is com-
patible with model source codes written in multiple program-
ming languages (e.g., Fortran, C/C++, C#, MATLAB, R, or
Python). It is also independent of multiple operation systems
(e.g., Windows, Linux, MacOS). In addition, MIDA is also
able to run on high-performance computing (HPC) platforms
via task management systems (e.g., Slurm).

The architecture of MIDA is class-based, and each class
is designed to describe an object (e.g., parameter, observa-
tions) with variables and operations. Five classes are defined
in MIDA: parameter, observation, initialization, MCMC al-
gorithm, and the main program. The main program is the start
of MIDA execution. It calls functions from all other classes
to finish a three-step workflow. As described in Sect. 2.2, pa-
rameter and observation classes contain variables to be trans-
ferred in data exchanges via file I/O operations. These op-
erations are implemented using the “numpy” package. The
initialization class is to read namelist.txt in step 1 on data
preparation and to assign values for the variables in all other
classes. Then the class of MCMC algorithm conducts DA as
described in step 2. In this step, the simulation operation uses
a call function in the “subprocess” package to call the model
executable file. At the start of model simulation, MIDA
writes new parameter values to the “ParameterValue.txt” file
in the “working path” directory specified in step 1 on data
preparation. Then model executable reads parameter values
from the ParameterValue.txt file and run. After model simu-
lation, the DA algorithm can read the model outputs by the
output filenames indicated in the output configuration file.
After DA, step 3 executes an additional Python script to read
accepted parameter values and plot the posterior density dis-
tributions of parameters. The plotting operations use the mat-
plotlib and seaborn packages. The implementation of GUI

uses the pyQt5 toolkit to support interactive usage of MIDA.
Users can also run MIDA in a non-interactive way with a
“main.py” script to trigger the three-step workflows.

2.7 User information of MIDA

In order to use MIDA, users need to prepare data and a
model. The data to be used in MIDA are prior ranges and
default values of parameters, parameter covariances, output
configuration file, observations, and their variances. They
are organized in different files. Before running MIDA, users
need to specify their filenames as suggested in step 1. When
users want to use different data sets in DA, they can simply
change filenames with the new data sets via GUI or in the
namelist.txt file. Figure C1 is an example of the namelist.txt
file for a data assimilation study with the DALEC model. The
model to be used in MIDA should have those to-be-estimated
parameter values not fixed in model source code rather than
changeable through ParameterValue.txt file. MIDA writes
new parameter values in each proposing phase during DA
to the ParameterValue.txt file, from which the model reads
the parameter values to run the simulation.

To calculate the cost function, J , we have to have a one-
to-one match between observations and model outputs. For
example, phenology models in one of the application cases
of MIDA below generate discrete dates of leaf onset, which
is a one-to-one match to the observations of spring leaf onset.
In this case, observation Zi(t) and model output Xi(t) to be
used in calculation of J are straightforward. In the applica-
tion case for dynamic vegetation, the data to be used are leaf
area in six layers in a forest 302 years old, whereas the model
simulates leaf areas in eight layers from 0 to 800 years. To
match observation, the model generates outputs of leaf areas
in six layers when simulated forest age reaches 302 years.
This requires users to prepare an output configuration file to
instruct MIDA to read model outputs and re-organize their
outputs to match observation. The output configuration file
starts with a single line listing an observation filename and
its corresponding output filenames. Content after the direc-
tories in the output configuration file are instructions to map
model outputs with the observation signified in the first line.
Each instruction is to match one or continuous elements in
observation with elements in outputs with the same length.
A blank line means there are no further instructions. Then a
new matching between another observation and model out-
puts starts. An example of output configure file is available
in Appendix B.

Once MIDA finishes the execution of data assimilation,
users may need basic knowledge to assess the performance
of DA. For example, the acceptance rate, which is given by
MIDA, is the fraction of proposed parameter values that is
accepted. Ideally, the acceptance rate should be about 20 %–
50 % (Xu et al., 2006). A very low acceptance rate indicates
that many new proposed parameter values (Cnew) are rejected
because Cnew jumps too far away from the previously ac-
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cepted parameter values (Robert and Casella, 2013; Roberts
et al., 1997). In this case, users are suggested to reduce a
jump scale in the proposing phase. On the other hand, a very
high acceptance rate is likely because Cnew moves slowly
from the previously accepted parameter values. Users may
increase the jump scale.

In addition, DA usually requires a convergence test to ex-
amine whether posterior distributions from different sam-
pling series converge or not. A convergence test requires run-
ning DA parallelly or multiple times with different initial pa-
rameter values. MIDA provides a Gelman–Rubin (G–R) test
(Gelman and Rubin, 1992) for this purpose. To use the G–R
test, users need to prepare a file containing initial parameters
values in different sampling series and indicate its filename in
the namelist.txt file as described in step 1. If the G–R statis-
tics approaches 1, the sampling series in DA is converged.
When the sampling series is converged, all accepted param-
eter values are used to generate the posterior distributions.

There are three types of posterior distributions: bell shape,
edge hitting, and flat. The bell-shaped posterior distributions
indicate that these parameters are well constrained. Their
peak values are the maximum likelihood estimates of param-
eter values. The flat posterior distributions suggest that the
parameters are not constrained due to the lack of relevant
information in data. The edge-hitting posterior distributions
result from complex reasons, such as improper prior param-
eter range. Users may change the prior ranges to examine
whether those posterior distributions can be improved or ex-
amine correlations among estimated parameters.

3 Applications of MIDA

We applied MIDA to four groups of models, which are an
ecosystem carbon cycle model, a surrogate-based land sur-
face model, nine phenology models, and a dynamic vegeta-
tion model. These four cases demonstrate that MIDA is ef-
fective for stand-alone DA, flexible to be applied to different
models, and efficient for multiple model comparison.

3.1 Case 1: independent data assimilation with DALEC

The first case study is to demonstrate that MIDA can be ef-
fective for independent data assimilation with the data assim-
ilation linked ecosystem carbon (DALEC) model (Lu et al.,
2017). DALEC has been used for data assimilation in sev-
eral studies (Bloom et al., 2016; Lu et al., 2017; Richardson
et al., 2010; Safta et al., 2015; Williams et al., 2005). Previ-
ous studies all incorporated data assimilation algorithms into
DALEC, which requires invasive coding. This case study is
focused on reproducing the data assimilation results as in the
study by Lu et al. (2017) but with MIDA.

The version of DALEC used in this study is composed of
six submodels (i.e., photosynthesis, phenology, autotrophic
respiration, allocation, litterfall, and decomposition) to sim-

ulate the carbon exchanges among five carbon pools (i.e.,
leaf, stem, root, soil organic matter, and litter) (Ricciuto et
al., 2011). There are 21 parameters in DALEC, of which 17
parameters are derived from the six submodels and four pa-
rameters serve to initialize the carbon pools. Table 2 sum-
marizes the names, prior ranges, and nominal values of these
21 parameters. The observation is the Harvard Forest daily
net ecosystem exchange (NEE) from the years 1992 to 2006.
DALEC is coded in Fortran. In a Windows system, a gfortran
compiler converts the model code to an executable file (i.e.,
DALEC.exe).

Figure 2 is the GUI window of MIDA. We first set up
a DA task as described in step 1 using the upper panel.
In this application, the number of sampling series is set as
20 000. Once users click the “choose a directory” or “choose
a file” button, a new dialog window will pop up and users
are able to choose the directory or load files interactively.
As describe in step 1 on preparation of DA, the working
path is where the outputs of DA and ParameterValue.txt are
saved (e.g., C:/workingPath). After the output configuration
file is loaded, the filenames of model outputs, observations,
and their variance will be displayed in the window automati-
cally. This application only uses a “NEE.txt” observation file.
Similarly, after users load the parameter range file (e.g., a
file named “ParamRange.txt” contains three rows which are
minimum, maximum, and default values of parameters), the
content in this file is displayed as well. To replace the cur-
rent parameter range file loaded, users can simply upload
another file. In this application, the executive model file is
“DALEC.exe” with a Fortran compiler in a Windows sys-
tem. Because we do not have parameter covariance informa-
tion, this input is left blank. After “save to namelist file” is
clicked, a namelist.txt file containing all the inputs will be
generated in the working path.

After the DA task setup, we load the namelist.txt file and
click the “run data assimilation” button in the lower panel to
trigger step 2 on execution of DA. A new dialog will pop up
to show the acceptance rate information and notify the termi-
nation of DA. Then we will click the “generate plots” button
to visualize the posterior distributions of 21 parameters as
described in step 3.

Figure 3 shows that the simulation outputs using the opti-
mized parameter values from MIDA better fit with the ob-
servations than those using default parameter values. Fig-
ure 4 depicts posterior distributions of the 21 parameters es-
timated from MIDA. More than half of the parameters are
constrained well with a unimodal shape. Xsteminit and Xrootinit

have a wide occupation of the prior range, indicating that the
observation data do not provide useful information for them.
The constrained posterior distributions in this study are simi-
lar to those from Lu et al. (2017). Note that MCMC estimates
have a large variance and a low convergence rate, especially
in high-dimensional problems; with a finite number of sam-
ples it is not expected that two simulations would give ex-
actly the same results.
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Figure 2. The GUI-MIDA window includes two panels. The upper panel is to set up a data assimilation task. Inputs can be loaded and
applied to step 1 on data preparation for DA. The lower panel is to run DA as described in step 2 and visualize the posterior distributions of
parameters in step 3.

Figure 3. Comparison between the simulated daily net ecosystem
exchange (NEE) by DALEC and the observed NEE at Harvard For-
est from 1992 to 2006. Red circles represent modeled NEE with the
optimized parameter values, and green circles represent simulated
NEE with the original parameter values. Simulations of DALEC are
substantially improved after data assimilation in comparison with
those before data assimilation.

3.2 Case 2: application of MIDA to a surrogate land
surface model

This case study is to examine the applicability of MIDA to
a surrogate-based land surface model. The original model is
Energy Exascale Earth System Model: the Land Component
(ELM) (Ricciuto et al., 2018). As ELM is computationally
expensive (one forward model simulation takes more than
1 d), a sparse-grid (SG) surrogate system was developed to
reduce the computational time (Lu et al., 2018). The forcing
data for the surrogate model is half-hourly meteorological
measurements at the Missouri Ozark flux site from 2006 to
2014. The observations that were used for optimization are
annual sums of net ecosystem exchange (NEE), annual aver-
ages of total leaf area index, and latent heat fluxes from 2006
to 2010. The eight parameters selected (Table 3) are the most
important parameters for the variations in outputs (Ricciuto
et al., 2018). The model is written in Python. A “pyinstaller”
library packages the model code into an executable file. The
iteration number in MIDA is 20 000.

Figure 5 shows posterior distributions of calibrated pa-
rameters. croot, SLAtop, tleaffall, and GDDonset are constrained
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Table 2. A summary of 21 parameters to be calibrated in the DALEC model. The default parameter value and prior parameter range are
shown.

Parameter Description Unit Default Range

GDDmin Growing degree day threshold for leaf out ◦C d 100 [10, 250]
GDDmax Growing degree day threshold for maximum LAI ◦C d 200 [50, 500]
LAImax Seasonal maximum leaf area index – 4 [2, 7]
Tleaffall Temperature for leaf fall ◦C 5 [0, 10]
Kleaf Rate of leaf fall d−1 0.1 [0.03 0.95]
NUE N use efficiency – 7 [1, 20]
Resgrowth Growth respiration fraction – 0.2 [0.05, 0.5]
Resm Base rate for maintenance respiration ×10−4 µmol m−2 d−1 1 [0.1,100]
Q10mr Temperature sensitivity for maintenance respiration – 2 [1, 4]
Astem Allocation to plant stem pool – 0.7 [0.1, 0.95]
τroot Root turnover time ×10−4 d−1 5.48 [1.1,27.4]
τstem Stem turnover time ×10−5 d−1 5.48 [1.1,27.4]
Q10hr Temperature sensitivity for heterotrophic respiration – 2 [1, 4]
τlitter Base turnover for litter ×10−3 µmol m−2 d−1 1.37 [0.548,5.48]
τsom Base turnover for soil organic matter ×10−4 µmol m−2 d−1 9.13 [0.274,2.74]
Kdecomp Decomposition rate ×10−3 d−1 1 [0.1,10]
LMA Leaf mass per area g C m−2 80 [20, 150]
Xsteminit Initial value for stem C pool ×103 g C 5 [1,15]
Xrootinit Initial value for root C pool g C 500 [100, 3000]
Xlitterinit Initial value for litter C pool g C 600 [50, 1000]
Xsominit Initial value for soil organic C pool ×103 g C 7 [1, 25]

Table 3. A summary of eight parameters to be calibrated in the surrogate-based ELM model. The default parameter value and prior parameter
range are shown.

Parameter Description Unit Default Range

croot Rooting depth distribution parameter m−1 2.0 [0.5,4]
SLAtop Specific leaf area at canopy top m2 g C−1 0.03 [0.01,0.05]
Nleaf Fraction of leaf N in RuBisCO – 0.1007 [0.1,0.4]
CNroot Fine root C : N ratio – 42 [25,60]
Ar2l Allocation ratio of fine root to leaf – 1.0 [0.3,1.5]
Resm Base rate for maintenance respiration ×10−6 µmol m−2 s−1 2.525 [1.5,4]
tleaffall Critical day length for senescence ×104 s 3.93 [3.5,4.5]
GDDonset Accumulated growing degree days for leaf out ◦C d 800 [600,1000]

well with a unimodal distribution. However, the distribu-
tion of the other four parameters (i.e., Nleaf, CNroot, Ar2l ,
and Resm) clusters near the edge. These results match well
with the study by Lu et al. (2018). As shown in Fig. 6, the
calibrated parameters induce a performance improvement in
simulating total leaf area index and NEE. For latent heat,
both the default and optimized simulation obtain good agree-
ment with the observation. These conclusions are also similar
to those in Lu et al. (2018).

MIDA hides the detailed differences between models.
For example, the DALEC model in case 1 is a process-
based model to simulate the ecosystem carbon cycle while
surrogate-based ELM in case 2 is an approximation of a land
surface model. They are also different in programming lan-
guage, simulation time, forcing data, etc. MIDA is able to

deal with models with so many different characteristics and
hides these differences from users. Users only need to in-
dicate the filenames of the model to be used, its parameter
range, the output configuration file, etc. in the namelist.txt
file. Thus, MIDA simplified the DA applications using dif-
ferent models.

3.3 Case 3: evaluation of multiple phenological models

This study case uses nine phenological models (Yun et al.,
2017) to demonstrate the applicability of MIDA in model
comparison. Five out of the nine models predict phenolog-
ical events, such as the day of leaf onset, using growing de-
gree days, which are calculated as temperature accumulation
above a base temperature. The other four models consider
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Figure 4. Comparison between posterior distributions (red line) and default values (gray dash line) of the 21 parameters in DALEC. The peak
in posterior distribution is the constrained parameter value from the maximum likelihood estimation. This distinctive mode and its divergence
from the default value indicates the effects of DA. Most parameters are well constrained, and some are far different from the original values.

Figure 5. Comparison between posterior distributions (red line) and
default values (gray dash line) of the eight parameters in surrogate-
based ELM. The peak in posterior distribution is the constrained
parameter value from maximum likelihood estimation. This distinc-
tive mode and its divergence from the default value indicate the ef-
fects of DA. Most parameters are well constrained, and some are far
different from the original values.

two processes: chilling effects of cold temperature on dor-
mancy before budburst and forcing effects of warm temper-
ature on plant development. Each model uses different re-
sponse functions to represent chilling and forcing effects.
The detailed model descriptions and associated parameter in-
formation are in the Supplement table.

Data are from the Spruce and Peatland Responses Under
Climatic and Environmental Change experiment (SPRUCE)
(Hanson et al., 2017) located in northern Minnesota, USA.
The experiment consists of five-level whole-ecosystem
warming (i.e., +0, +2.25, +4.5, +6.75, +9 ◦C) and two-
level elevated CO2 concentrations (i.e., +0, +500 ppm).
Dates of leaf onset were observed with PhenoCam (Richard-
son et al., 2018) for tree species Picea mariana and Larix

laricina. For the sake of demonstration of MIDA applica-
tion, we only show DA results for Larix laricina with +9 ◦C
warming treatment and +0 ppm CO2 treatment from 2016 to
2018.

MIDA was used to compare performances of the nine
models in reference to the same observations of leaf onset
dates after DA. We as users changed filenames of model
executable files (i.e., PhenoModels.exe), defined parameter
ranges, and assigned the directory of working path for each
model. MIDA then estimated the optimized parameters and
saved the corresponding best simulation outputs to the work-
ing path for each of the nine models. Figure 7 shows the best
simulation output of these nine models. The simulation out-
put of the sixth, seventh, eighth, and ninth models better fits
the observation than the other models. It demonstrates that
models that consider both chilling and heating effects can
achieve good simulations of the leaf onset dates.

3.4 Case 4: supporting data assimilation with a
dynamic vegetation model

This case study is to examine the efficiency of MIDA to inte-
grate remote sensing data into a dynamic vegetation model.
The model used in this study is Biome Ecological strat-
egy simulator (BiomeE) (Weng et al., 2019). This model
simulates vegetation demographic processes with individual-
based competition for light, soil water, and nutrients. Individ-
ual trees in BiomeE model are represented by cohorts of trees
with similar sizes. The light competition among cohorts is
based on their heights and crown areas according to the rule
of perfect plasticity approximation (PPA) model (Strigul et
al., 2008). Each cohort has seven pools: leaves, roots, sap-
wood, heartwood, seeds, nonstructural carbon, and nitrogen.
After carbon is assimilated into plants via photosynthesis, the
assimilated carbon enters the nonstructural carbon pool and
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Figure 6. Comparison between the simulated NEE, total leaf area index, latent heat flux by surrogate-based ELM, and the observed ones at
Missouri Ozark flux site from 2006 to 2014. The blue lines indicate the observations, and their 95 % confidence interval is in the shaded area.
The green and red lines indicate the simulations with default parameter values and optimized values, respectively. Simulations are generally
improved after DA for all three variables.

Figure 7. Comparison between the simulated growth date by nine
phenology models after DA and the observed growth date for Larix
laricina with+9◦ treatment at the SPRUCE site from 2016 to 2018.
The colored number indicates different models, and shape repre-
sents different year. Overall, models 6, 7, 8, and 9 achieve better
performance after DA.

is used for plant growth (i.e., diameter, height, crown area)
and reproduction according to empirical allomeric equations
(Weng et al., 2019). In this application, two parameters to be
constrained (Table 4) are annual productivity rate and annual
mortality rate of trees.

Observations to be used in DA are leaf area indexes in six
vertical heights (i.e., 0–5, 6–10, 11–15, 16–20, 21–25, and
26–30 m) at the Willow Creek study site, Wisconsin, USA.
The forest at the site is an upland deciduous broadleaf forest
around 302 years old. The observations were from Global
Ecosystem Dynamics Investigation (GEDI) acquired by a
light detection and ranging (lidar) laser system, which is de-
ployed on the International Space Station (ISS) by NASA in
2018 (Dubayah et al., 2020). The observations were first av-
eraged from three footprints, and then leaf area indexes in the
six canopy layers were standardized to be summed up as 1.

To use MIDA, we reorganized the simulation outputs to
match observations as suggested in Sect. 2.6. The BiomeE
model simulates leaf areas in eight layers (i.e., 0–5, 6–10,
11–15, 16–20, 21–25, 26–30, 31–35, and 36–40 m) from 0
to 800 years. An output configuration file was provided to

post-process model outputs of leaf area indexes in six lay-
ers to match observations at the forest age of 302 years.
These simulated leaf area indexes in the six canopy layers
were also standardized to match standardized observations of
leaf area indexes. The observations and post-processed sim-
ulation outputs were saved to “LAI.txt” and “simu_LAI.txt”
files, respectively. The two files are used in MIDA for data
assimilation to generate posterior distributions of the two es-
timated parameters as shown in Fig. 8. The optimized param-
eter values through maximum likelihood estimation are dif-
ferent from their default values. Figure 9 compares the simu-
lation outputs with optimized parameters estimated by MIDA
to those with default parameter values. After DA with GEDI
data in MIDA, the simulation accuracy of leaf area index is
substantially improved, especially in middle (16–20 m) and
highest (26–30 m) layers.

4 Discussion

This study introduced MIDA as a model-independent tool
to facilitate the application of data assimilation in ecology
and biogeochemistry. The potential user community is ecol-
ogists with limited knowledge of model programming and
technical implementation of DA algorithms. Several model-
independent DA tools have already been developed, such as
DART (Anderson et al., 2009), openDA (Ridler et al., 2014),
PDAF (Nerger and Hiller, 2013), and PEST (Doherty, 2004),
mainly for applications in the research areas of hydrology, at-
mosphere, and remote sensing. These DA tools either use the
gradient descent method, such as the Levenberg–Marquardt
algorithm in PEST, or Kalman filter methods, such as EnKF
in DART, openDA, and PDAF. The Levenberg–Marquardt al-
gorithm is a local search method, for which it is hard to find
a global optimization solution for highly nonlinear models.
EnKF updates state variables and parameter values each time
when observations are sequentially assimilated, resulting in
discrete values of estimated parameters. Jumps in estimated
parameter values by EnKF make it very difficult to obey mass
conservation in biogeochemical models (Gao et al., 2011). In
this study, we used the MCMC method in MIDA to generate

https://doi.org/10.5194/gmd-14-5217-2021 Geosci. Model Dev., 14, 5217–5238, 2021



5228 X. Huang et al.: MIDA module and its applications in ecology

Table 4. A summary of two parameters to be calibrated in the BiomE model. The default parameter value and prior parameter range are
shown.

Parameter Description Unit Default Range

Vannual Annual productivity per unit leaf area kg C yr−1 m2 0.4 [0.2,2]
Mcanopy Annual mortality rate in canopy layer yr−1 0.02 [0.01,0.08]

Figure 8. Comparison between posterior distributions (red line) and
default values (gray dash line) of the two parameters in BiomeE.
The peak in posterior distribution is the constrained parameter value
from maximum likelihood estimation. This distinctive mode and its
divergence from the default value indicate the effects of DA. All
parameters are well constrained and different from their original
values.

parameter values and their posterior distributions. MCMC is
a widely used method in many DA studies with biogeochem-
ical models but has been applied to individual models with
invasive coding (Bloom et al., 2016; Hararuk et al., 2015;
Liang et al., 2018; Luo and Schuur, 2020; Ricciuto et al.,
2011). Compared to the other model-independent DA tools
mentioned above, MIDA is the first tool that uses the MCMC
method for DA.

Biogeochemical models are incorporating more detailed
processes related to carbon and nitrogen cycles (Lawrence
et al., 2020). Complex biogeochemical models yield pre-
dictions with great uncertainty (Frienlingstein et al., 2009,
2014). Data assimilation has been increasingly used to esti-
mate parameter values against observations and reduce un-
certainty in model prediction (Luo et al., 2016; Luo and
Schuur, 2020). However, current applications of DA are al-
most all model dependent. This requires ecologists to write
code to integrate the DA algorithm into models. The coding
practice is a big technical challenge for ecologists with lim-
ited programming ability. The distinct advantage of MIDA
is to enable ecologists to conduct model-independent DA.
MIDA streamlines workflow of the three-step procedure for
DA to enable users to conduct DA without extensive cod-
ing. Users mainly need to provide numerical and character
values for data exchanges to transfer data (i.e., parameter
values, simulation outputs, observations) between the model
and MIDA by a file named namelist.txt or by interactive in-
puts via a GUI window (Fig. 2).

Figure 9. Comparison between the simulated leaf area index (LAI)
by BiomeE and the observed NEE at Willow Creek. Circles repre-
sent modeled NEE with the optimized parameter values, and trian-
gles represent simulated NEE with the original parameter values.
Simulations of LAI are substantially improved after data assimila-
tion in comparison with those before data assimilation.

We tested MIDA in four cases for its applicability to
ecological models. The first case is applied to the DALEC
model, which has been used in several data assimilation stud-
ies (Bloom et al., 2016; Lu et al., 2017; Safta et al., 2015;
Williams et al., 2005). The previous DA studies all used in-
vasive coding to incorporate the DA algorithm into mod-
els. As demonstrated in this study, MIDA was applied to
DALEC without invasive coding but by providing the direc-
tory to save DA results and filenames of DALEC model exe-
cutable file, parameter prior range, and output configuration
files through the namelist.txt file or interactive inputs in the
first preparation step of the workflow. Then, MIDA runs DA
as a black box with DALEC before visualizing the DA re-
sults. Next, we tested the applicability of MIDA, a surrogate-
based ELM model, and a dynamic vegetation model BiomeE.
To switch the test case from DALEC to the surrogate-based
ELM model and the BiomeE model, we changed the file-
names of the model executable file, parameter prior range,
and output configuration file in the namelist.txt file for
MIDA. This flexibility of MIDA in switching models for DA
makes it much easier for model comparisons. We tested this
capability of MIDA with nine phenological models to com-
pare alternative model structures. Similarly, MIDA enables
efficient switches of observations to be assimilated into mod-
els. Users only need to change filenames of observations in
the output configuration file. This feature of MIDA makes
it easier to utilize abundant trait databases such as TRY
(Kattge et al., 2020), FRED (Iversen et al., 2017), etc. More-
over, this feature of MIDA also helps evaluate the relative
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information content of different observations for constrain-
ing model parameters and prediction (Weng and Luo, 2011).
Consequently, MIDA can facilitate selection of the most in-
formative observations and then better guide data collections
in field experiments. Ultimately, MIDA can aid ecological
forecasting and help reduce uncertainty in model predictions
(Huang et al., 2018; Jiang et al., 2018).

Although MIDA helps users to get rid of model detail,
users may still need basic knowledge about the model out-
puts to prepare the output configuration file which is to match
model outputs to observations one by one (see Sect. 2.6).
This effort of preparing the correspondence between model
outputs and observations for MIDA is not that difficult be-
cause users are reading or writing a text file, and most model
developers will provide reference to help understand obser-
vations or model output files.

Generally, MIDA requires longer time to run DA than the
embedded DA algorithm, because MIDA calls model sim-
ulation as an external executable file rather than a function
embedded. Thus, we recommend MIDA for beginners of DA
users with models that are less complex. Besides, the current
version of MIDA only incorporates the Metropolis–Hastings
sampling approach. More MCMC methods (e.g., Hamilto-
nian Monte Carlo) may be incorporated into MIDA in the
future.

5 Conclusions

We developed MIDA to facilitate data assimilation for bio-
geochemical models. Traditional DA studies require ecolo-
gists to program codes to integrate DA algorithms into model
source codes. The easy-to-use MIDA module enables ecol-
ogists to conduct model-independent DA without extensive
coding, thus advancing the application of DA for ecological
modeling and forecasting. We demonstrated the capability of
MIDA in four cases with a total of 12 ecological models.
These cases showed that MIDA is easy to perform for a va-
riety of models and can efficiently produce accurate param-
eter posterior distributions. Moreover, MIDA supports flex-
ible usage of different models and different observations in
the DA analysis and allows a quick switch from one model
to another. This capability enables MIDA to serve as an effi-
cient tool for model intercomparison projects and enhancing
ecological forecasting.
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Appendix A: Nine phenological models

A1 Growing degree (GD)

The growing degree (GD) model is one of the most
widespread phenological models to simulate the date of leaf
onset (D̂). In this study, the timescale is limited to daily based
on observation records. The kernel of GD is to calculate the

growing degree days (GDD,
D̂−1∑
d =Ds

1d), which is the heat ac-

cumulation above a base temperature (Tb). For simplicity, the
daily temperature (Td) can be approximated by the average
of daily maximum and minimum temperatures. The heat ac-
cumulation starts at day Ds, which is empirically estimated,
and ends when GDD reaches a forcing requirement threshold
(Rd). Two parameters to be constrained are base temperature
(Tb) and the forcing requirement (Rd). Their default values
and prior range are listed in Table A1.

1d =

{
Td− Tb if Td > Tb
0 otherwise (A1)

D̂−1∑
d =Ds

1d < Rd ≤

D̂∑
d =Ds

1d (A2)

A2 Sigmoid function (SF)

Compared to the linear response function of GDD in the
GD model, the sigmoid function (SF) model provides a non-
linear function to better represent the non-linearity of the
growth response to heat accumulation. Three parameters to
be constrained in DA are base temperature (Tb), the forcing
requirement (Rd), and temperature sensitivity (St). Their de-
fault values and prior range are listed in Table A1.

1d =
1

1+ eSt(Td−Tb)
(A3)

D̂−1∑
d =Ds

1d < Rd ≤

D̂∑
d =Ds

1d (A4)

A3 Beta function (BF)

In reality, the plant growth rate, as described with 1d, grad-
ually increases up to a specific temperature and then rapidly
declines to a supra-optimal level. Such a response can be
well described by a beta function with uni-modality and non-
symmetrical shape. Three parameters are involved in DA:
minimum temperature (Tn), optimal temperature (To), and
forcing requirement (Rd). The other parameter values are
fixed with empirical values. For example, maximum growth
rate (Rx) is set to 1, and maximum temperature (Tx) is as-

sumed to be 45.

rd = Rx

(
Tx − Td

Tx − To

)(
Td− Tn

To− Tn

) To−Tn
Tx−To

(A5)

1d =

{
rd if rd > 0
0 otherwise (A6)

D̂−1∑
d =Ds

1d < Rd ≤

D̂∑
d =Ds

1d (A7)

A4 Days transferred to standard temperature (DTS)

According to Arrhenius law, the relationship between growth
rate and daily temperature Td can be interpolated by Eq. (A8)
(Ono and Konno, 1999). With a factor weighted by standard
temperature, the equation for DTS (Eq. A9) can better rep-
resent growth rate dependent on temperatures. Three param-
eters considered in DA are temperature sensitivity rate (Ea),
standard temperature (Ts), and forcing requirement (Rd).

k = e
−Ea
R · Td (A8)

1d = e
Ea(Td−Ts)
R·Td·Ts (A9)

D̂−1∑
d =Ds

1d < Rd ≤

D̂∑
d =Ds

1d (A10)

A5 Thermal period fixed model (TP)

The difference between GD and TP models is that heat accu-
mulation occurs in a fixed time period (Dn). The day of leaf
onset is the last day (D̂s+Dn) when the accumulated heat
reaches the forcing requirement. The start day (D̂s) of heat
accumulation begins on day one and moves 1 d forward each
time to estimate Eq. (A12). Three parameters are involved in
DA: the base temperature (Tb), the period length (Dn), and
the forcing requirement (Rd).

1d =

{
Td− Tb if Td > Tb
0 otherwise (A11)

Rd ≤

D̂s+Dn∑
d = D̂s

1d (A12)

A6 Chilling and forcing (CF)

Compared to GD, there is another distinctive chilling pe-
riod for dormancy. The CF model sequentially calculates two
accumulations in opposite directions: chilling accumulation
and anti-chilling accumulation. The start day of chilling ac-
cumulation (Ds) is implicitly set as 273.0, which is 1 Oc-
tober. The end day of chilling accumulation (D0) is the be-
ginning of anti-chilling accumulation. Three parameters are
considered in DA: the chilling requirement (RC

d ), the forcing
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requirement (RF
d ), and the temperature threshold (Tc).

1d =

{
Td− Tc if Td ≥ 0
−Tc otherwise (A13)

1C
d =

{
1d if 1d < 0
0 otherwise (A14)

1F
d =

{
1d if 1d > 0
0 otherwise (A15)

D0−1∑
d =Ds

1C
d >R

C
d ≥

D0∑
d =Ds

1C
d (A16)

D̂−1∑
d =D0

1F
d <R

F
d ≤

D̂∑
d =D0

1F
d (A17)

A7 Sequential model (SM)

The difference between CF and SM models is that SM used
a beta function (Eq. A18) for the calculation of chilling accu-
mulation and adopted a sigmoid function (Eq. A20) for anti-
chilling accumulation. The detailed descriptions of these two
functions can be referred to in the introductions of the BF
model and CF model. The maximum temperature is empiri-
cally set as 13.7695. Six parameters are constrained in DA:
minimum temperature (Tn), optimal temperature (To), tem-
perature sensitivity (St), forcing base temperature (Tb), chill-
ing requirement (RC

d ), and forcing requirement (RF
d ).

rd =

(
Tx − Td

Tx − To

)(
Td− Tn

To− Tn

) To−Tn
Tx−To

(A18)

1C
d =

{
rd if rd < 0
0 otherwise (A19)

1F
d =

1
1+ eSt(Td−Tb)

(A20)

D0−1∑
d =Ds

1C
d >R

C
d ≥

D0∑
d =Ds

1C
d (A21)

D̂−1∑
d =D0

1F
d <R

F
d ≤

D̂∑
d =D0

1F
d (A22)

A8 Parallel model (PM)

The critical difference between PM and the above two-step
models is that the chilling and anti-chilling accumulations
happen simultaneously (Fu et al., 2012). In the earlier dates
during the chilling period, only a small fraction (Kd) of forc-
ing (Eq. A25) will be accumulated. The maximum temper-
ature is empirically set as 15.3. Seven parameters will be
considered in DA: minimum temperature (Tn), optimal tem-
perature (To), temperature sensitivity (St), forcing base tem-
perature (Tb), chilling requirement (RC

d ), forcing requirement

(RF
d ), and a forcing weight coefficient (Km).

rd =

(
Tx − Td

Tx − To

)(
Td− Tn

To− Tn

) To−Tn
Tx−To

(A23)

1C
d =

{
rd if rd < 0
0 otherwise (A24)

Kd =

 Km+ (1−Km)

∑d
i=Ds1

C
i

RC
d

if
D0−1∑
d =Ds

1C
d >R

C
d

1 otherwise
(A25)

1F
d =

Kd

1+ eSt(Td−Tb)
(A26)

D0−1∑
d =Ds

1C
d >R

C
d ≥

D0∑
d =Ds

1C
d (A27)

D̂−1∑
d =D0

1F
d <R

F
d ≤

D̂∑
d =D0

1F
d (A28)

A9 Alternating model (AM)

The AM fixes the start date of the chilling period (DC
s ) as

1 November and the start date of anti-chilling period (DF
s )

as 1 January. The difference between the AM and the other
models above is that the forcing requirement is not a pa-
rameter value but is decided by the length of chilling days
(Fu et al., 2012). Five parameters to be constrained in DA
are chilling temperature (Tc), forcing base temperature (Tb),
and three coefficients (a,b,c) in calculation of the forcing
requirement.

1C
d =

{
1 if Td ≤ Tc
0 otherwise (A29)

1F
d =

{
Td− Tb if Td > Tb
0 otherwise (A30)

RC
d =

d∑
i=DC

s

1C
i (A31)

RF
d = a+ b · e

−c ·RC
d (A32)

D̂−1∑
d =DF

s

1F
d <R

F
d ≤

D̂∑
d =DF

s

1F
d (A33)
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Table A1. A summary of parameters to be calibrated in nine phenological models. Their default parameter value and prior parameter range
are shown.

Model Parameter Description Unit Default Range

GD Tb Base temperature ◦C 10 [−5, 25]
Rd Forcing requirement ◦C d 35 [0, 200]

SF Tb Base temperature ◦C −1.5 [−10, 25]
Rd Forcing requirement ◦C 50 [0, 500]

BF To Optimal temperature ◦C 15 [10, 35]
Tn Minimum temperature ◦C 0 [−10, 5]
Rd Forcing requirement ◦C d 11 [0, 50]

DTS Ea Temperature sensitivity rate – 250 [1, 1500]
Ts Standard temperature ◦C 10 [−30, 40]
Rd Forcing requirement ◦C d 50 [1, 200]

TP Tb Base temperature ◦C 12.5 [0, 30]
Dn Period length d 25 [0, 50]
Rd Forcing requirement ◦C d 20 [0, 150]

CF RC
d Chilling requirement ◦C d −124 [−300, 0]

RF
d Forcing requirement ◦C d 120 [0, 300]
Tc Chilling base temperature ◦C 5 [0, 30]

SM Tn Minimum temperature ◦C −20 [−80, 0]
To Optimal temperature ◦C 0 [−26, 10]
St Temperature sensitivity – −1.8 [−5, 0]
Tb Forcing base temperature ◦C 5 [−5, 35]
RC

d Chilling requirement ◦C d 20 [0, 80]
RF

d Forcing requirement ◦C d 20 [0, 80]

PM Tn Minimum temperature ◦C −20 [−80, 0]
To Optimal temperature ◦C 0 [−26, 10]
St Temperature sensitivity – −0.6 [−1, 0]
Tb Forcing base temperature ◦C 5 [−5, 35]
RC

d Chilling requirement ◦C d 11.35 [0, 80]
RF

d Forcing requirement ◦C d 44.01 [0, 80]
Km Forcing weight coefficient – 0.2 [0, 1]

AM Tc Chilling base temperature ◦C 4.6 [−10, 10]
Tb Forcing base temperature ◦C 5 [−5, 35]
a Coefficient for forcing adjustment – 11.51 [0.01, 15]
b Coefficient for forcing adjustment – 88 [0, 200]
c Coefficient for forcing adjustment – -0.01 [−1, −10−4]
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Appendix B: An example of the output configuration file

The output configuration file (e.g., config.txt) is to indicate
the directories of observations and simulation output files as
well as how they map to each other. Figure B1 is an exam-
ple of the output configuration file. There are three blocks of
functions to map simulation outputs to observed gross pri-
mary production (GPP), respiration (RE), and net ecosystem
exchange (NEE). The blocks of mapping functions are sep-
arated by a blank line. Each mapping block starts with the
directories of one observation, its observation variance, and
model outputs, which are separated by a hash key. If there
is no observation variance available, users can ignore this di-
rectory. If multiple simulation outputs are used to correspond
to one observation, the directories of simulation outputs are
separated by a comma. The rest of the mapping block de-
scribes how to map simulation outputs to observations. The
simu_map variable is simulation output after mapping. The
simuList variable saves the simulation outputs specified in
the first line. Taking the third mapping block in Fig. B1 as an
example, simuList[0] saves contents in simuNEE_1.txt, and
simuList[0][0:365] saves the first 365 elements in this file.

Figure B1. An example of the output configuration file.
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Appendix C: An example of the namelist.txt file

Figure C1 shows an example of the namelist.txt for the first
study case with the DALEC model. Users need to prepare
the namelist.txt before execution of data assimilation (DA)
either manually or via GUI. Below describes the content in
the namelist.txt. Detailed explanation and tutorials are avail-
able in the Zenodo repositories at the end of the appendixes.

“workpath” is the directory where the MIDA executable
files are saved. “nsimu” is the number of iterations in execu-
tion of data assimilation. “J_default” is the default mismatch
(i.e., cost function) to be compared in the first moving phase
of data assimilation. “ProposingStepSize” controls the jump
scale in the proposing phase of data assimilation. Users can
increase or decrease this value to adjust the acceptance rate
to be in a range from 0.2 to 0.5. “paramFile” is the direc-
tory of a csv file saving parameter-related information such
as parameter range. “obsList” saves the directories of obser-
vations. Multiple observations are separated by semicolon.
Similarly, “obsVarList” saves the directories of observation
variance in the same order as that of obsList. “simuList”
saves the directories of simulation outputs corresponding to
the observations. With GUI, MIDA reads directories in the
output configuration file (e.g., config.txt), which users pro-
vide and assign values for obsList, obsVarList, and simuList
in the namelist.txt automatically. In this case, if the directo-
ries of observations change, users only need to modify the
output configuration file and generate the namelist.txt again
with GUI-based MIDA.

“paramValue” is the directory of a txt file where MIDA
writes out a new set of parameter values for model ex-
ecution in each iteration of data assimilation. Its default
value is ParameterValue.txt under the workpath specified in
the first line of the namelist.txt. “model” saves the direc-
tory of model executable files. “nChains_convergeTest” in-
dicates whether to conduct a Gelman–Rubin (G–R) conver-
gence test or not. If the G–R test is used, its values are the
number of multiple MCMC chains. If not, its value is zero.
“convergeTest_startsFile” is the directory of a csv file sav-
ing default parameter values as the start points in multiple
MCMC chains. “outConvergenceTest” saves the results of
the G–R test. If “nChains_ConvergeTest” is zero, both val-
ues of “convergeTest_startsFile” and “outConvergenceTest”
are empty. “DAresultsPath” is the directory saving the re-
sults of DA whose directories are also listed in the follow-
ing six lines: “outJ” for the accepted mismatches, “outC”
for the accepted parameter values, “outRecordNum” for the
number of accepted parameter values, “outBestSimu” for the
best simulation outputs with the optimal parameter values,
and “outBestC” for the optimal parameter values. For MIDA
without GUI, “display_plot” indicates whether or not to vi-
sualize the posterior distributions after DA.

Figure C1. An example of the namelist.txt file. In order to use
MIDA, users need to prepare data and a model and specify their
file names and directories in the namelist.txt file.
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Code and data availability. The code of MIDA is available at the
Zenodo repository https://doi.org/10.5281/zenodo.4762725
(Huang, 2021a). Data used in this study are available at
https://doi.org/10.5281/zenodo.4762779 (Huang, 2021b). A
comparison of the time cost using the embedded DA al-
gorithm and MIDA is available at the Zenodo repository
https://doi.org/10.5281/zenodo.4891319 (Huang, 2021c).

Video supplement. Tutorial videos of how to use MIDA are avail-
able at https://doi.org/10.5281/zenodo.4762777.
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