Articles | Volume 14, issue 6
Geosci. Model Dev., 14, 3539–3551, 2021
https://doi.org/10.5194/gmd-14-3539-2021
Geosci. Model Dev., 14, 3539–3551, 2021
https://doi.org/10.5194/gmd-14-3539-2021

Development and technical paper 11 Jun 2021

Development and technical paper | 11 Jun 2021

A Markov chain method for weighting climate model ensembles

Max Kulinich et al.

Related authors

Robust historical evapotranspiration trends across climate regimes
Sanaa Hobeichi, Gab Abramowitz, and Jason P. Evans
Hydrol. Earth Syst. Sci., 25, 3855–3874, https://doi.org/10.5194/hess-25-3855-2021,https://doi.org/10.5194/hess-25-3855-2021, 2021
Short summary
Linear Optimal Runoff Aggregate (LORA): a global gridded synthesis runoff product
Sanaa Hobeichi, Gab Abramowitz, Jason Evans, and Hylke E. Beck
Hydrol. Earth Syst. Sci., 23, 851–870, https://doi.org/10.5194/hess-23-851-2019,https://doi.org/10.5194/hess-23-851-2019, 2019
The INTENSE project: using observations and models to understand the past, present and future of sub-daily rainfall extremes
Stephen Blenkinsop, Hayley J. Fowler, Renaud Barbero, Steven C. Chan, Selma B. Guerreiro, Elizabeth Kendon, Geert Lenderink, Elizabeth Lewis, Xiao-Feng Li, Seth Westra, Lisa Alexander, Richard P. Allan, Peter Berg, Robert J. H. Dunn, Marie Ekström, Jason P. Evans, Greg Holland, Richard Jones, Erik Kjellström, Albert Klein-Tank, Dennis Lettenmaier, Vimal Mishra, Andreas F. Prein, Justin Sheffield, and Mari R. Tye
Adv. Sci. Res., 15, 117–126, https://doi.org/10.5194/asr-15-117-2018,https://doi.org/10.5194/asr-15-117-2018, 2018
Short summary
Estimating grassland curing with remotely sensed data
Wasin Chaivaranont, Jason P. Evans, Yi Y. Liu, and Jason J. Sharples
Nat. Hazards Earth Syst. Sci., 18, 1535–1554, https://doi.org/10.5194/nhess-18-1535-2018,https://doi.org/10.5194/nhess-18-1535-2018, 2018
Short summary
Derived Optimal Linear Combination Evapotranspiration (DOLCE): a global gridded synthesis ET estimate
Sanaa Hobeichi, Gab Abramowitz, Jason Evans, and Anna Ukkola
Hydrol. Earth Syst. Sci., 22, 1317–1336, https://doi.org/10.5194/hess-22-1317-2018,https://doi.org/10.5194/hess-22-1317-2018, 2018
Short summary

Related subject area

Climate and Earth system modeling
Inclusion of a suite of weathering tracers in the cGENIE Earth system model – muffin release v.0.9.23
Markus Adloff, Andy Ridgwell, Fanny M. Monteiro, Ian J. Parkinson, Alexander J. Dickson, Philip A. E. Pogge von Strandmann, Matthew S. Fantle, and Sarah E. Greene
Geosci. Model Dev., 14, 4187–4223, https://doi.org/10.5194/gmd-14-4187-2021,https://doi.org/10.5194/gmd-14-4187-2021, 2021
Short summary
The ENEA-REG system (v1.0), a multi-component regional Earth system model: sensitivity to different atmospheric components over the Med-CORDEX (Coordinated Regional Climate Downscaling Experiment) region
Alessandro Anav, Adriana Carillo, Massimiliano Palma, Maria Vittoria Struglia, Ufuk Utku Turuncoglu, and Gianmaria Sannino
Geosci. Model Dev., 14, 4159–4185, https://doi.org/10.5194/gmd-14-4159-2021,https://doi.org/10.5194/gmd-14-4159-2021, 2021
Short summary
CM2Mc-LPJmL v1.0: biophysical coupling of a process-based dynamic vegetation model with managed land to a general circulation model
Markus Drüke, Werner von Bloh, Stefan Petri, Boris Sakschewski, Sibyll Schaphoff, Matthias Forkel, Willem Huiskamp, Georg Feulner, and Kirsten Thonicke
Geosci. Model Dev., 14, 4117–4141, https://doi.org/10.5194/gmd-14-4117-2021,https://doi.org/10.5194/gmd-14-4117-2021, 2021
Short summary
ESM-Tools version 5.0: a modular infrastructure for stand-alone and coupled Earth system modelling (ESM)
Dirk Barbi, Nadine Wieters, Paul Gierz, Miguel Andrés-Martínez, Deniz Ural, Fatemeh Chegini, Sara Khosravi, and Luisa Cristini
Geosci. Model Dev., 14, 4051–4067, https://doi.org/10.5194/gmd-14-4051-2021,https://doi.org/10.5194/gmd-14-4051-2021, 2021
Performance of the Adriatic Sea and Coast (AdriSC) climate component – a COAWST V3.3-based coupled atmosphere–ocean modelling suite: atmospheric dataset
Cléa Denamiel, Petra Pranić, Damir Ivanković, Iva Tojčić, and Ivica Vilibić
Geosci. Model Dev., 14, 3995–4017, https://doi.org/10.5194/gmd-14-3995-2021,https://doi.org/10.5194/gmd-14-3995-2021, 2021
Short summary

Cited articles

Abramowitz, G., Herger, N., Gutmann, E., Hammerling, D., Knutti, R., Leduc, M., Lorenz, R., Pincus, R., and Schmidt, G. A.: ESD Reviews: Model dependence in multi-model climate ensembles: weighting, sub-selection and out-of-sample testing, Earth Syst. Dynam., 10, 91–105, https://doi.org/10.5194/esd-10-91-2019, 2019. a, b
Bai, J. and Wang, P.: Conditional Markov chain and its application in economic time series analysis, J. Appl. Econ., 26, 715–734, https://doi.org/10.1002/jae.1140, 2011. a
Bishop, C. H. and Abramowitz, G.: Climate model dependence and the replicate Earth paradigm, Clim. Dynam., 41, 885–900, https://doi.org/10.1007/s00382-012-1610-y, 2013. a, b, c
Del Moral, P. and Penev, S.: Stochastic Processes. From Applications to Theory, p. 121, Taylor and Francis Group, Boca Raton, 2016. a
Evans, J. P., Ji, F., Lee, C., Smith, P., Argüeso, D., and Fita, L.: Design of a regional climate modelling projection ensemble experiment – NARCliM, Geosci. Model Dev., 7, 621–629, https://doi.org/10.5194/gmd-7-621-2014, 2014. a
Download
Short summary
We present a novel stochastic approach based on Markov chains to estimate climate model weights of multi-model ensemble means. This approach showed improved performance (better correlation with observations) over existing alternatives during cross-validation and model-as-truth tests. The results of this comparative analysis should serve to motivate further studies in applications of Markov chain and other nonlinear methods to find optimal model weights for constructing ensemble means.