Geosci. Model Dev., 14, 3539-3551, 2021
https://doi.org/10.5194/gmd-14-3539-2021

© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

A Markov chain method for weighting climate model ensembles

Max Kulinich!, Yanan Fan', Spiridon Penev', Jason P. Evans?, and Roman Olson?

1School of Mathematics and Statistics, UNSW Sydney, Australia

2Climate Change Research Centre and ARC Centre of Excellence for Climate Extremes, UNSW Sydney, Australia
3Irreversible Climate Change Research Center, Yonsei University, South Korea

Correspondence: Max Kulinich (m.kulinich@student.unsw.edu.au)

Received: 29 July 2020 — Discussion started: 1 October 2020

Revised: 7 April 2021 — Accepted: 2 May 2021 — Published: 11 June 2021

Abstract. Climate change is typically modeled using sophis-
ticated mathematical models (climate models) of physical
processes that range in temporal and spatial scales. Multi-
model ensemble means of climate models show better cor-
relation with the observations than any of the models sepa-
rately. Currently, an open research question is how climate
models can be combined to create an ensemble mean in an
optimal way. We present a novel stochastic approach based
on Markov chains to estimate model weights in order to ob-
tain ensemble means. The method was compared to existing
alternatives by measuring its performance on training and
validation data, as well as model-as-truth experiments. The
Markov chain method showed improved performance over
those methods when measured by the root mean squared er-
ror in validation and comparable performance in model-as-
truth experiments. The results of this comparative analysis
should serve to motivate further studies in applications of
Markov chain and other nonlinear methods that address the
issues of finding optimal model weight for constructing en-
semble means.

1 Introduction

Climate change is often modeled using sophisticated math-
ematical models of physical processes taking place over a
range of temporal and spatial scales. These models are in-
herently limited in their ability to represent all aspects of
the modeled physical processes. Simple averages of multi-
model ensembles of GCMs (global climate models) often
show better correlations with the observations than any of
the individual models separately (Kharin and Zweirs, 2002;
Feng et al., 2011). Knutti et al. (2010) point out that often the

equal-weighted averages (“one model, one vote”) approach is
used as a best-guess result, assuming that individual model
biases will at least partially cancel each other out. This ap-
proach assumes that all models are (a) reasonably indepen-
dent, (b) equally plausible, (c) distributed around reality and
(d) that the range of their projections is representative of
what we believe is the uncertainty in the projected quantity.
However, these assumptions are rarely fulfilled (Knutti et al.,
2017), and thus a better way of finding a weighted ensemble
mean is required (Herger et al., 2018; Sanderson et al., 2017).

Most studies attempting to define an optimal ensemble
weighting either employ linear optimization techniques (Kr-
ishnamurti et al., 2000; Majumder et al., 2018; Abramowitz
et al., 2019) or are based on a specification of likelihoods for
the model and observation data (Murphy et al., 2004; Fan et
al., 2017). Such methods are inevitably limited by the strong
assumptions used for their design. We seek to weaken those
assumptions and to complement the existing methods with
a more flexible nonlinear optimization approach. An unre-
solved issue in using weights for models is that models have
interdependence, due to the sharing of computer codes, pa-
rameterizations, etc. (Olson et al., 2019). Abramowitz et al.
(2019) points out that model dependence can play a cru-
cial role when assembling the models into an ensemble.
Mathematically, interdependence often results in closeness
of model outputs in model output space. If a large clus-
ter of highly dependent models is included in an ensemble
with equal weights, the overall ensemble mean will become
close to the dependent models’ cluster. Ignoring model de-
pendence can lead to bias and overconfidence in future cli-
mate model projections (Leduc et al., 2015; Steinschneider
etal., 2015).
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Hence, it is desirable that an ensemble weighting method
is robust against the dependency issue and has normalized
non-negative weights for interpretability. Finally, the meth-
ods should work well across a range of different climate vari-
ables, such as temperature, precipitation, etc.

In this paper, we propose a novel way to construct a
weighted ensemble mean using Markov chains, which we
call the Markov Chain Ensemble (MCE) method. Our pur-
pose is to demonstrate that going beyond linear optimiza-
tion on a vector space of climate models’ outputs allows
better-performing weighted ensembles to be built. We se-
lected Markov chains as a basis for such nonlinear optimiza-
tion as one of the most straightforward nonlinear structures.
It naturally produces non-negative weights that sum to one
and captures some of the nonlinear patterns in the ensemble
(here we refer to nonlinear patterns as time-dependent selec-
tions of model components rather than considering a com-
plete model output vector). It performs well on a range of
datasets when compared to the standard simple mean and lin-
ear optimization weighting methods as we demonstrate be-
low. We also examine how the method responds to the intro-
duction of interdependent models.

Although Markov chains have been used frequently in the
literature for the prediction of future time series (e.g., Bai and
Wang, 2011; Pesch et al., 2015), to the best of our knowl-
edge, this is the first time the method has been applied to
building weighted climate model ensemble means. In this pa-
per, we use the “memoryless” property of Markov chains at
each time step to capture the dynamic change in models’ fit
through the time series. This dynamic change, through time,
is represented by the transition matrix, which describes the
probability of each model being the best fit for the next ob-
servation at time ¢ + 1, given the best fit for the current time
t. The transition matrix is built based on the input data and
describes probable future states given the current state. The
stationary distribution of this transition matrix is used for
weighted ensemble creation and reflects the relative contri-
bution of each model to the total weighted ensemble mean
forecast.

We describe the datasets used in this study and the pro-
posed MCE method in Sect. 2. We compare the proposed
method (MCE) to the commonly used multi-model ensem-
ble average (AVE) method (Lambert and Boer, 2001) and
the convex optimization (COE) method proposed by Bishop
and Abramowitz (2013) and present the results in Sect. 3,
followed by a discussion in Sect. 4 and conclusion in Sect. 5.

2 Methods
2.1 Data
Here we first describe the datasets used in this study. We have

chosen three publicly available datasets with differing num-
bers of models, historical period lengths and model interde-

Geosci. Model Dev., 14, 3539-3551, 2021

M. Kulinich et al.: A Markov chain method for weighting climate model ensembles

pendence levels to evaluate and compare the performance of
the MCE method with alternative approaches.

2.1.1 CMIPS5 data

The first dataset we use is the temperature anomaly (°C)
data from Coupled Model Intercomparison Project (CMIP5)
with 39 different global climate model (GCM) outputs (one
ensemble member per model) and Hadley Centre/Climatic
Research Unit Temperature observations (HadCRUT4). The
data are obtained from https://climexp.knmi.nl (last access:
21 July 2020), and the period of 1900-2099 is selected for
the analysis. It contains temperature anomalies (monthly av-
erages) compared to the reference period of 1961-1990 (Tay-
lor et al., 2011). This dataset contains several clusters of de-
pendent models and has both positive and negative data val-
ues, a relatively low variability, and long time series.

2.1.2 NARCIiM data

The second dataset contains temperature output from the
New South Wales (NSW) and Australian Capital Territory
Regional Climate Modelling project (Evans et al., 2014).
It contains regional climate model (RCM) simulations over
southeastern Australia. Specifically, three RCM versions
were forced with 4 global climate models each, for a to-
tal of 12 ensemble members. The data contain annual time
series of mean summer temperature (°C) for the Far West
NSW state planning region as modeled by the NARCIiM do-
main RCMs for the periods 1990-2019 and 2030-2039 (Ol-
son et al., 2016). Corresponding temperature observations
are obtained from the Australian Water Availability Project
(AWAP) (Jones et al., 2009). The dataset has a high ratio of
the number of models to the number of observations. While
NARCIiM model choice explicitly considered model depen-
dence for both the RCMs as well as the driving GCMs, the
resulting ensemble demonstrates an apparent similarity be-
tween the simulations (i.e., model interdependence) in small
clusters.

2.1.3 KMA data

The third dataset contains yearly heatwave amplitudes
(HWAs) for the Korean Peninsula from 29 CMIP5 climate
models and observations between 1973 and 2005 (Shin et al.,
2017). In particular, HWA contains the difference between
the highest temperature during the heatwave events for the
corresponding year and the 95th percentile of daily maxi-
mum summer temperatures from 1973 to 2005. This frame-
work was discussed in detail in Fischer and Schir (2010).
Here a heatwave event occurs when the daily maximum tem-
perature is above the 95th percentile of daily maximum sum-
mer temperatures (32.82 °C) for two consecutive days. Daily
maximum temperature data used for the calculation of ob-
served HWAs are the mean of 59 weather stations operated
by the Korea Meteorological Administration (KMA). Shin et
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al. (2017) provides the list of CMIP5 models included in the
study. HWA data are non-negative and can be highly skewed
with long upper tails as they measure extreme events; there-
fore, the dataset is highly non-Gaussian. These properties al-
low us to test methods in more challenging scenarios, where
likelihood-based approaches are more difficult to apply.

These three datasets cover different scenarios, data struc-
tures, parameter distributions and scales (see Table 1). Such
coverage allows us to analyze the performance and the in-
herent limitations of the proposed method. In this pilot study
we use spatially averaged data, which limits physical inter-
pretability of the model weights, but the method can be ex-
tended to spatially distributed data.

2.2 Markov chain ensemble (MCE) method

Generally, a homogeneous Markov chain is a sequence of
random system states evolving through time, where each next
state is defined sequentially based on its predecessor and pre-
defined transition probabilities (Del Moral and Penev, 2016,
p- 121). Suppose that there is a finite number of probable
system states S = {s1,...,sn}; then this dependency can be
described through a transition matrix P (with P(x, y) € [0, 1]
and ZyP(x,y) =1,forany x,y € S):

Vx,y €S, Pr(Xuy+1 =y Xn=x)=P(x,y). (1)

In this study, we want to utilize the “fundamental limit the-
orem for regular chain,” which states that if P is a transi-
tion matrix for a regular Markov chain (where Vx,y € S,
P(x, y) > 0), then lim,,_, .o P" = P*°, where P*° is a matrix
with all rows being equal and having strictly positive entries.

This property allows us to construct a non-negative transi-
tion matrix P by distillation of input information (i.e., model
outputs and historical observations) and allows P to converge
to a unique vector of model weights w = (w1, wa, ..., wy),
where N is the total number of models in a given ensem-
ble. The vector w can be obtained by solving the equation
wP = w. The converged transition matrix represents a prob-
ability of selecting one of the models for any of the time steps
in the future when observations are not available. Hence, we
propose to use it as a weighting vector for constructing a
weighted ensemble mean forecast and test this proposition
using cross-validation in the following sections.

More precisely, we start by constructing a transition vector
v (based on the input data), which specifies a choice of the
optimal model at any given time step ¢. Using the vector v
we construct a transition matrix P and find its stationary dis-
tribution w. The resulting weighted ensemble mean is con-
structed by applying w on the given climate model outputs.
We call this process the Markov Chain Ensemble (MCE) al-
gorithm, and it uses historical observations and equivalent
climate model simulations as the input data to calculate a set
of weights for the future ensemble mean as an output. Table 2
gives a step-by-step description of the MCE algorithm.
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We provide some details of the algorithm as described in
Table 2 in the following paragraphs.

Initialization of transition matrix P°. In order for the
Markov chain to be regular we set pY (x,y) =X, Vx,y €S,
where A equals the lowest computationally possible positive
number A = 2.225074 x 10739 in the R software (R Core
Team, 2013).

Initialization of o interval. To avoid division by 0 in
Eq. (2) and to prevent Eq. (2) from converging to 1/N the
initial o interval is set to [0.1, 1].

Step 1. The MCE method proceeds by utilizing each model
output in an optimal way based on its ability to resemble ob-
servational data at each given time point. This resemblance
is measured by a distance-based probability matrix D of size
N x T, using a normalized exponential function.
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where 1 <k <T; <T, T indicates the length of the train-
ing period, and T is the length of the entire historical period
included in the study. Additionally, 1 < j < N, where N is
the number of models included, and ¢ is chosen randomly as
described above.

Step 2. Based on the matrix D a simulation is performed
at each time step 1 <k < 71 by randomly selecting one of
the models i with probability proportional to its value d; k.
In this way we construct a vector V = (v, v2,v3,...,v7y),
which represents the choice of models closest to observations
at each time step.

Step 3. Then the initial matrix P is updated step-wise

(Pl, P2, ..., PTl) to capture the transitions between models
present in vector V. Foreacht (1 <t <T;—1), P’Vi Vi =
P+l

Vi?te};l4. The resulting matrix is normalized by row P} =
P,.T‘/Z;L]PZ'/, foreach 1 <i < N.

Step 5. The stationary distribution w is obtained by solving
wP* = w. A standard R software package is used to find the
solution in this study.

Step 6. The ensemble mean is constructed based on
weights w and calculate its RMSETy.

Step 7. Steps 2—6 are repeated L times, where L is selected
based on the external requirements of precision of the results
and of computational power available.

Step 8. Select the set of weights w* with the best perfor-
mance on the training set (with the lowest RMSET,).

Step 9. Construct the Epcg ensemble using the selected

w*.

2.2.1 Parameter sensitivity

From Eq. (2) it is clear that having a small o will result in
distances d close to 1/N. Having a large o will result in all
the distances becoming marginal, with the exception of the
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Table 1. Summary of CMIP5, NARCLiM and KMA data properties.

M. Kulinich et al.: A Markov chain method for weighting climate model ensembles

Dataset Climate variable Minimum Maximum Variance Number of  Number of
observations models

CMIP5 Temperature (°C) —0.80 1.16 0.12 1440 39

NARCLiM  Temperature (°C) 9.38 31.64 36.61 240 12

KMA HWA (°C) 0 1.49 0.18 33 29

Table 2. The Markov chain ensemble (MCE) algorithm.
Input: — length of training period 77,
— historical observations Oy, attimest =1, ..., 11,
— climate model output M; ;, attimes t =1, ..., 71, fori =1,..., N models,

— an initialized number of simulations, L,

— an initialized o interval [oyyin, Omax], and

— an initialized transition matrix PO of N x N size.

Step 1. Randomly select o € [0yin, Omax] and compute the distance matrix D according to Eq. (2).

Step 2.  Construct a sequence vector v based on D using stochastic simulations.

Step 3. Update PO step-wise by increasing probability of transitions contained in v: P> Pl > . > Ph,

Step4.  Obtain normalized transition matrix P*, by normalizing P71 row-wise so that each row sums to 1.

Step 5. Find w by solving wP* = w and store its value.

Step 6.  Construct the ensemble mean based on weights w and calculate its RMSETy.

Step 7. Repeat Step 26 until L sets of weights w!, w2, ..., wl and respective RMSETrl, RMSETrz, e RMSETrL have been
obtained.

Step 8.  Select a set of weights w* corresponding to the minimal RMSET,*.

Step 9.  Construct the final Eyjcg using the selected w*.

largest one. To optimize the properties of the simulations we
control o by randomly choosing it from the [0.1, 1] interval.

As we select only one of the simulations, the MCE method
is not sensitive to the number of simulations L after a certain
threshold. This threshold is set based on the requirements for
precision of the results and on the calculation time. In Fig. 1
we illustrate the simulation performance dynamics (simula-
tion index and performance on training and validation NAR-
CLiM data) depending on the value of L € [1, 1000000].
The simulation index i* < L represents the index of the best-
performing simulation at each value of L (with w* vector of
weights and RMSES, as described in Step 8 of Table 2). The
cross-validation procedure and RMSE metrics are described
below in Sect. 2.5-2.6.

Though better RMSE results can be achieved with larger
L, the marginal improvement in RMSE has a high computa-
tional time cost. For demonstration purposes in this study we
select L = 3000 to accommodate for possible differences in
RMSE changes between different datasets. As we will show
below, even with a sub-optimal value of L, MCE method has
high performance and stable results.

Geosci. Model Dev., 14, 3539-3551, 2021

2.2.2 Model interdependence

While we do not claim that the proposed method explicitly
addresses the issue of model dependence, it is implicitly ad-
dressed to some degree at Step 3 in Table 2 of the MCE
method. If there are two or more highly correlated models
only one of them can be chosen at each step, and thus the
resulting sum of such models’ weights will be close to the
scenario when only one of those models is kept in the en-
semble.

We demonstrate this property of the MCE method on mod-
ified NARCIiM data by adding a copy of one of the models
with a small random error added and comparing the resulting
weights as shown in Fig. 2. To mitigate difference in weight
values between random simulations we repeat the calculation
100 times and compare the mean values of the weights.

As we can see from Fig. 2, adding a highly correlated en-
semble member does not significantly change the weight dis-
tribution significantly, and more pleasingly when a high per-
forming model is duplicated, the weights are shared between
the two copies (see Model 3 and Model 9). Consequently
the performance of Eyjcg remains approximately the same.
Though we can not guarantee this behavior in all types of

https://doi.org/10.5194/gmd-14-3539-2021
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Figure 1. Sensitivity of the ensemble properties to the value of L. Left panels (a) and (c¢) contain results from all the simulations. Right

panels (b) and (d) contain the results from the first 5000 simulations.
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Figure 2. Change of MCE weights after adding a copy of Model 1, 3, 8 and 9 (clockwise from panel a) to the NARCIiM ensemble. The
original MCE weights are in black. The weights of the modified ensemble are in blue, and the weights of the highly correlated models are in

red.
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data, we believe that the MCE method’s design helps to mit-
igate the model interdependence problem.

2.2.3 MCE method limitations

Though the MCE method can be used on any climate dataset
which contains the required inputs, its relative performance
differs depending on the properties of the dataset. We will
demonstrate that in the case of normally distributed data, its
performance is competitive with the simple averaging and
other more sophisticated methods. In more challenging sce-
narios, when data are not normally distributed, MCE per-
forms better than the common alternatives.

As the MCE method is based on a stochastic process, the
results between runs can vary. To mitigate this effect and to
have reproducible results we set the seed of R software’s ran-
dom number generator to a constant for all simulations. The
MCE method in its current implementation does not provide
an uncertainty quantification, and this limitation is a sub-
ject for future nonlinear ensemble weighting method devel-
opment.

Finally, as the MCE method does not consider spatial in-
formation, the resulting weights have limited physical inter-
pretability. Extending the MCE method to utilize such infor-
mation is a subject for future research.

2.3 Multi-model ensemble average (AVE) method

In order to evaluate the relative performance of the MCE
method we select two other popular approaches to construct-
ing ensemble weighted average. The first approach is the
widely used average of individual climate model outputs
(Lambert and Boer, 2001; Gleckler et al., 2008):

N
Eave, =1/NY_Mj,. 3)
j=1

for each 1 <t < T. If model differences from observations
are random and independent, they will cancel on averaging,
and the resulting ensemble average will perform better than
individual climate models (Lambert and Boer, 2001).

2.4 Convex optimization (COE) method

The second approach that has been selected for relative per-
formance evaluation in this study is a convex optimization as
proposed by Bishop and Abramowitz (2013). It represents a
family of other methods based on a linear optimization over
the vector space of individual climate model outputs.

The purpose of this method is to find a linear combination
of climate model outputs with wy, wa, ..., wy weights which
would minimize mean squared differences with respect to
observations:

N
Ecog, = ijMj,z, €]
j=1

Geosci. Model Dev., 14, 3539-3551, 2021

foreach1 <t < T, so that Zthl(ECOE, — 0[)2 is minimized
under restrictions Z?]:] wj=1landw; >0foreachl1 < j <
N.

This method and its implementation are discussed in detail
in Bishop and Abramowitz (2013), and we show that it has
relatively high performance on the chosen datasets. However,
like any other linear optimization technique, it naturally has
some limitations that nonlinear optimizations like the MCE
method do not. In particular, the COE method assumes there
is a large enough sample size to rule out spurious fluctuations
in the weights associated with a sample size that is too small.
Such an assumption is not required for the MCE method.
In addition, convex optimization tends to set a large portion
of weights equal to 0, as is shown in the examples below,
which results in a lower effective number of models used for
prediction.

2.5 Performance metrics
2.5.1 RMSE

The root mean squared error (RMSE, Eq. 5) is a frequently
used measure of the differences between values (sample or
population values) predicted by a model or an estimator and
the values observed. RMSE is positive, and a value of 0 indi-
cates a perfect fit to the data. In general, alower RMSE is bet-
ter than a higher one. However, comparisons across different
types of data would be invalid because the measure is depen-
dent on the scale of the numbers used. Minimizing RMSE is
commonly used for finding optimal ensemble weight vectors
(e.g., Herger et al., 2018; Krishnamurti et al., 2000).

1 T

N 2
RMSE = ?Z(;ijj‘t_ 0;) s )

t=1

with Z;V:le =landw; >O0for j =1,...,N.T is the total
number of time steps, M;; denotes the value of model j at
time step ¢ and O is the observed value at point 7.

2.5.2 Trend bias

The monthly trend bias is calculated as the difference be-
tween the inclination parameter a in weighted ensembles and
observations estimated using a linear function y = ax +b on
validation data for each month. The total weighted ensemble
trend bias metric is calculated as a mean of the monthly trend
biases.

2.5.3 Climatology monthly bias
The monthly bias is calculated as the difference between the
mean of the weighted ensemble and the observation for each

month on validation data. The total climatology monthly bias
metric is calculated as a mean of the monthly biases.

https://doi.org/10.5194/gmd-14-3539-2021
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2.5.4 Interannual variability

Interannual variability for each month is calculated as the
difference between the standard deviation of a detrended
weighted ensemble and the standard deviations of detrended
observations on validation data. The total interannual vari-
ability metric is calculated as the mean of interannual vari-
ability for each month.

2.5.5 Climatological monthly RMSE

Climatological RMSE is calculated according to Eq. (5) on
climatological monthly means of weighted ensemble values
and observations on validation data.

2.6 Cross-validation procedures
2.6.1 Holdout method

In this method the dataset, which contains the observations,
is split into a training (or calibration) set and a validation
(or testing) set. The goal of cross-validation is to examine
the model’s ability to predict new data that were not used in
estimating the required parameters.

We partition our data into two sets, with 70 % of data used
for training and 30 % for validation. This is a specific case of
the K-fold validation procedure (Refaeilzadeh et al., 2009,
p- 532-538), which is relatively simple to apply and discuss,
facilitating the sharing of our findings with other members of
the research and non-research communities.

2.6.2 Model-as-truth performance assessment

To evaluate each method’s performance on the future model
projections, we use the model-as-truth approach and analyze
the metrics described in Sect. 2.5. At each step of model-as-
truth performance assessment one model is selected as a true
model (pseudo-observations) and the remaining models are
used to build a weighted ensemble mean that best estimates
the true model over the historical period. This weighted en-
semble mean is then tested against the future projections of
the true model. For a given ensemble this is repeated as many
times as the number of the ensemble members with a differ-
ent member being chosen as the true model each time. The
median and spread of these results is reported.

3 Results
3.1 CMIP5 data

Though the selected monthly CMIP5 data contain annual
variation, it is not predominant due to the length and trend
of the dataset as shown in Fig. 3a. The CMIP5 model output
distribution is close to normal as shown in Fig. 3b.

Applying the MCE method on the selected CMIP5 data
with 7 =120 (1900-2019) and a training period 77 = 80

https://doi.org/10.5194/gmd-14-3539-2021
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(1900-1979), we obtain a weighted ensemble mean Encg
and compare it with outputs from other methods. We sum-
marize CMIPS5 data properties together with the resulting en-
semble’s weights in Fig. 3 and holdout cross-validation re-
sults in Table 3.

We can see that Eayg and Eycg perform at a similar
RMSE level, with Ecog performance decreasing compara-
tively more in validation, a possible indication of overfitting
to the training data. We can see from Fig. 3 that the COE
method tends to set zero weights to some models but builds
a weighted ensemble mean that performs best on the train-
ing period (1900-1979). Due to some models having zero
weights, some of the models’ diversity is lost, and this results
in worse performance on the validation period (RMSEy and
RMSEcym in Table 3). The MCE method, on the other hand,
produces model weights that vary around 1/N, where N is
the number of the models. The MCE method does not give
any model zero weighting and hence preserves the ensem-
bles’ diversity. The climatological biases Bt, Bcv and Bry
are nearly equal for all three methods.

The model-as-truth performance assessment is done on
T =200 (1900-2099) and a training period 77 = 120 (1900—
2019) as described in Sect. 2.6.2. The results are summarized
in Fig. 4 and Table 4 in the form of median, 25 % and 75 %
percentiles of the N = 39 (number of models) values.

All the methods perform similarly in model-as-truth as-
sessment, with Ecog having better RMSE M.

3.2 NARCIM data

The seasonal variation in NARCLiM data is larger than in
CMIPS5 data as shown in Fig. 5a. The NARCLiM models
output distribution is not normal as shown in Fig. 5b due to
summer time and winter time temperature peaks.

We apply the MCE method on the selected NARCIiM
data with 7 =20 (1990-2009) and a training period 71 = 14
(1990-2003), obtain a weighted ensemble mean Eyjcg, and
compare it with outputs from other methods. We summarize
NARCLiM data properties together with the resulting ensem-
ble’s weights in Fig. 5 and holdout cross-validation results in
Table 5.

As in CMIPS data analysis (Fig. 3), we see that the MCE
method maintains (i.e., assigns non-zero weights to) more
models in the final weighted ensemble than the COE method.
As the number of models is significantly smaller than in the
CMIPS case, the difference between the MCE output weights
and the equal weights is also considerably larger. The MCE
method shows itself to be capable of maintaining much of the
ensembles’ diversity during the optimization process. This
allows MCE to substantially improve performance over the
AVE method on both training and validation periods and per-
form at the same level as COE on the validation period even
with lower RMSET. Again, COE has a larger decline in per-
formance from training to validation periods, indicating pos-
sible overfitting.

Geosci. Model Dev., 14, 3539-3551, 2021
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Figure 3. CMIP5 data properties. (a) Model outputs and observations. (b) Model output distribution. (¢) AVE, COE and MCE weights.

Table 3. Performance comparison of different methods on CMIP5 data; RMSE on training (RMSET) and validation (RMSEy) data; and
trend bias (BT), climatological monthly bias (Bcyp), interannual variability bias (Bpy) and climatological monthly RMSE (RMSEcp) on

validation data.

Ensemble RMSEr RMSE, Br Bem Biv RMSEey
EAVE 0.22 017 001 —0.09 —0.05 0.10
EcoE 0.15 019 000 —0.12 —0.04 0.13
EMCE 0.18 017 001 —0.10 —0.05 0.10

Table 4. Model-as-truth performance comparison of different meth-
ods on CMIP5 data, median of trend bias (Bt), climatological
monthly bias (Bcy), interannual variability bias (Bry) and clima-
tological monthly RMSE (RMSE)\) on validation data.

Ensemble Bt  Bcm Bry  RMSEcm
EAvE 0.00 0.09 -0.09 0.25
Ecor 0.00 0.06 -0.07 0.17
EMCE 0.00 0.10 —-0.09 0.22

The model-as-truth performance assessment is done on
T =30 (1990-2019 and 2030-2039) and a training period
T1 =20 (1990-2019) as described in Sect. 2.6.2. The results
are summarized in Fig. 6 and Table 6 in form of median, 25 %
and 75 % percentiles of the N = 12 (number of models) val-
ues.

As in the CMIP5 results (Fig. 4 and Table 4) all the meth-
ods perform at the same level in Bt and Bcy metrics of
the model-as-truth assessment. In By and RMSEcy met-

Geosci. Model Dev., 14, 3539-3551, 2021

rics Ecog performs better, while Eayg performs worse than
EMCE-

3.3 KMA data

The KMA data are non-negative with a non-normal distribu-
tion of model outputs and observations as shown in Fig. 7a
and b.

Applying the MCE method on the selected data with T =
33 (1973-2005) and a training period 71 = 22 (1973-1994),
we obtain a weighted ensemble mean E)cg and compare it
with outputs from other methods. As KMA data contain only
summertime months, we analyze only RMSET and RMSEy,.
We summarize KMA data properties together with the result-
ing ensemble’s weights in Fig. 7 and holdout cross-validation
results in Table 7.

We can see that MCE has the lowest RMSE and maintains
the ensembles’ diversity with a few models receiving zero
weights. The COE method gives non-zero weights to only a
small subset of models, which results in its performance on
the validation period being lower compared to MCE.

https://doi.org/10.5194/gmd-14-3539-2021
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4 Discussion

The obtained results indicate that Markov chains can be used
to construct a better performing weighted ensemble mean
with lower RMSE on validation data than commonly used
methods like multi-model ensemble averaging and convex
optimization (Tables 3, 5 and 7). As the method’s perfor-
mance did not degrade from training to validation as much
as COE, we are confident that it is less prone to over-fitting
than linear optimization methods. We attribute this advantage
of the MCE method to its ability to maintain the ensemble’s
diversity while optimizing its weights on the training period
(Figs. 3, 5 and 7), to mitigate model interdependence and to
capture some of the nonlinear patterns in the data.

The MCE method also performs at the same level as other
methods in terms of climatological metrics and model-as-

https://doi.org/10.5194/gmd-14-3539-2021

truth performance assessment, which gives us confidence in
its ability to be used for future estimation of climate vari-
ables.

However, as previous studies show (e.g., Mason and
Knutti, 2011; Sanderson et al., 2017) and as discussed in
Sect. 2.2.3, extending the MCE method to include spatial in-
formation would improve our ability to interpret the physical
meaning of the resulting weights.

As the number of models increases, MCE tends to be-
come closer to AVE weights (Fig. 3), while being closer to
COE with a smaller number of models (Fig. 7). This phe-
nomenon can be explained by a higher effect of diversity on
performance in larger ensembles with normally distributed
data (observations and model outputs) than in smaller en-
sembles like NARCLiM. The KMA data have an intermedi-
ate number of models and MCE produces a hybrid response

Geosci. Model Dev., 14, 3539-3551, 2021



3548 M. Kulinich et al.: A Markov chain method for weighting climate model ensembles

Table 5. Performance comparison of different methods on NARCLiM data; RMSE on training (RMSET) and validation (RMSEy ) data; and
trend bias (BT), climatological monthly bias (Bcy), interannual variability bias (Bry) and climatological monthly RMSE (RMSEcyp) on
validation data.

Ensemble RMSEtr RMSEy Bt  Bewm Bry  RMSEcum
EAVE 1.6 185 004 —1.16 —0.73 1.19
Ecog 1.32 158 000 —049 —0.59 0.64
EMCE 1.4 158 0.04 —0.64 —0.69 0.70

NARCLiIM model-as-truth performance assessment
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Figure 6. NARCLiM model-as-truth performance assessment results. Median, 25 % and 75 % percentiles of the N = 12 models.

Table 6. Model-as-truth performance comparison of different meth-
ods on NARCLiM data, median of trend bias (Br), climatological
monthly bias (Bcyp), interannual variability bias (Bry) and clima-
tological monthly RMSE (RMSEc)) on validation data.

ture of the method, this limitation can be overcome in future
implementations. MCE performance can be further improved
by combining it with other types of optimization, e.g., linear.
In addition, other nonlinear optimization techniques, which
would include more complex structures than simple Markov

Ensemble Br Bewm Bry  RMSEcm chains, can be developed based on our demonstrated results.
EAVE —0.03 001 —042 0.96 Finally, the MCE method does not require some of the
ECoE 001 —0.01 —0.11 0.24 assumptions necessary for the multi-model ensemble aver-
EMCE —-0.02 -0.01 -0.36 0.50 age method (e.g., models being reasonably independent and

Table 7. Performance comparison of different methods on KMA
data, RMSE on training (RMSET) and validation (RMSEy) data.

equally plausible as discussed by Knutti et al., 2017), and it
does not produce as many zero weights as the convex op-
timization method, hence maintaining more of the models’
diversity. We attribute the tendency of the COE method to
set zero weights to some models to its property below.

Ensemble RMSET RMSEy Geometrically, the restrictions w; > 0, Z?;lw j=1 de-
EAVE 0.36 0.5 scribe a simplex in RV that is a subset of the hyperplane with
EcoE 0.23 0.52 the equation Z;V:le = 1. Denote w = (wy, wy,..., wWN).
EMCE 0.29 0.44 The potential choice of weights that only satisfy the con-

which maintains ensemble diversity (a few models with zero
weights) but does weight a small number of models more
highly.

The MCE method is computationally cheap and is limited
only by a software’s ability to handle extreme numerical val-
ues. One limitation of the MCE method is its current inability
to quantify the uncertainty of the resulting weighted ensem-
ble mean. However, we believe that given the stochastic na-

Geosci. Model Dev., 14, 3539-3551, 2021

straint Z?’:]w j =1 without the non-negativity restriction
represents any point in the hyperplane P = {w : Z]I.V:lw =
1}. This hyperplane contains the simplex S ={w € P : w; >
0}. In general, the optimal point w* for the unrestricted solu-
tion of the optimization problem

T /N 2
rrgnz wiMj;—0;| ,weP
j=l1

i=1

https://doi.org/10.5194/gmd-14-3539-2021
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(a) KMA yearly models and observations
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Figure 7. KMA data properties. (a) Model outputs and observations. (b) Model output distribution. (¢) AVE, COE and MCE weights.

will be outside the simplex. It is clear that the optimal point
for the constrained solution on the simplex:

mmZ(ZwJ i 0,) wesS

i=1

would be on the boundary of the simplex rather than in its
interior. Indeed, if we assume that the optimal point for the
constrained problem is a certain w in the interior of the sim-
plex, we immediately arrive at a contradiction. Take then the
point w = w* + A(W — w*) with A € (0, 1) chosen such that
w is on the intersection of the line connecting w* and w with
the boundary of the simplex. Because of the strict convexity
of the function

Fw) = z(zwj . )

i=1

we have
fa@) = fw*+a(w—w"))

= O+ 1 —1w*) < Af (D)

+A=0fW") < f(W),
in contradiction to the assumption that w delivers the mini-
mum over the simplex. Hence the optimization on the sim-
plex tends to deliver optimal points with some components

equal to zero because they tend to be on the boundary of the
simplex.

https://doi.org/10.5194/gmd-14-3539-2021

5 Conclusions

In this study, we presented a novel approach based on
Markov chains to estimate model weights in constructing
weighted climate model ensemble means. The complete
MCE method was applied to selected climate datasets, and
its performance was compared to two other common ap-
proaches (AVE and COE) using a cross-validation hold-
out method and model-as-truth performance assessment with
RMSE, trend bias, climatology monthly bias, interannual
variability and climatological monthly RMSE metrics. The
MCE method was discussed in detail, and its step-wise im-
plementation, including mathematical background, was pre-
sented (Table 2).

The results of this study indicate that applying nonlinear
ensemble weighting methods on climate datasets can im-
prove future climate projection in terms of accuracy. Even
a simple nonlinear structure such as Markov chains shows
good performance on different commonly used datasets com-
pared to linear optimization approaches. These results are
supported by using standard performance metrics, cross-
validation procedures and model-as-truth performance as-
sessment. The developed MCE method is objective in terms
of parameter selection, has a sound theoretical basis and has
a relatively low number of limitations. It maintains ensem-
ble diversity, mitigates model interdependence and captures
some of the nonlinear patterns in the data while optimizing
ensemble weights. It is also shown to perform well on non-

Geosci. Model Dev., 14, 3539-3551, 2021
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Gaussian datasets. Based on the above, we are confident in
suggesting its application on other datasets and its usage for
the future development of new nonlinear optimization meth-
ods for weighting climate model ensembles.
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