Articles | Volume 14, issue 1
https://doi.org/10.5194/gmd-14-223-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-223-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Numerical study of the effects of initial conditions and emissions on PM2.5 concentration simulations with CAMx v6.1: a Xi'an case study
Han Xiao
College of Global Change and Earth System Science, Beijing Normal
University, Beijing 100875, China
College of Global Change and Earth System Science, Beijing Normal
University, Beijing 100875, China
Xiaochun Yang
College of Global Change and Earth System Science, Beijing Normal
University, Beijing 100875, China
Xi'an Meteorological Bureau, Shaanxi Province, Xi'an 710016, China
Lanning Wang
College of Global Change and Earth System Science, Beijing Normal
University, Beijing 100875, China
Huaqiong Cheng
College of Global Change and Earth System Science, Beijing Normal
University, Beijing 100875, China
Related authors
No articles found.
Kai Cao, Qizhong Wu, Xiao Tang, Jinxi Li, Xueshun Chen, Huansheng Chen, Wending Wang, Huangjian Wu, Lei Kong, Jie Li, Jiang Zhu, and Zifa Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2918, https://doi.org/10.5194/egusphere-2025-2918, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This study achieves significant acceleration by developing an optimized advection module for Emission and atmospheric Processes Integrated and Coupled Community Model on GPU-like accelerators. Through implementing thread-block coordinated indexing, minimizing CPU-GPU communication, and an hybrid parallelization framework, we demonstrate prominent speedups: 556.5× faster offline performance for the Heterogeneous Interface PPM solver and 20.5× acceleration in coupled simulations.
Jiayi Lai, Lanning Wang, Qizhong Wu, Yizhou Yang, and Fang Wang
Geosci. Model Dev., 18, 1089–1102, https://doi.org/10.5194/gmd-18-1089-2025, https://doi.org/10.5194/gmd-18-1089-2025, 2025
Short summary
Short summary
High-performance computing limitations often hinder numerical model development. Traditional models use double precision for accuracy, which is computationally expensive. Lower precision reduces costs but can introduce errors. The quasi-double-precision (QDP) algorithm helps mitigate these errors. This study applies the QDP algorithm to the Model for Prediction Across Scales – Atmosphere, showing reduced errors and computational time, making it an efficient solution for large-scale simulations.
Zichen Wu, Xueshun Chen, Zifa Wang, Huansheng Chen, Zhe Wang, Qing Mu, Lin Wu, Wending Wang, Xiao Tang, Jie Li, Ying Li, Qizhong Wu, Yang Wang, Zhiyin Zou, and Zijian Jiang
Geosci. Model Dev., 17, 8885–8907, https://doi.org/10.5194/gmd-17-8885-2024, https://doi.org/10.5194/gmd-17-8885-2024, 2024
Short summary
Short summary
We developed a model to simulate polycyclic aromatic hydrocarbons (PAHs) from global to regional scales. The model can reproduce PAH distribution well. The concentration of BaP (indicator species for PAHs) could exceed the target values of 1 ng m-3 over some areas (e.g., in central Europe, India, and eastern China). The change in BaP is lower than that in PM2.5 from 2013 to 2018. China still faces significant potential health risks posed by BaP although the Action Plan has been implemented.
Lei Kong, Xiao Tang, Zifa Wang, Jiang Zhu, Jianjun Li, Huangjian Wu, Qizhong Wu, Huansheng Chen, Lili Zhu, Wei Wang, Bing Liu, Qian Wang, Duohong Chen, Yuepeng Pan, Jie Li, Lin Wu, and Gregory R. Carmichael
Earth Syst. Sci. Data, 16, 4351–4387, https://doi.org/10.5194/essd-16-4351-2024, https://doi.org/10.5194/essd-16-4351-2024, 2024
Short summary
Short summary
A new long-term inversed emission inventory for Chinese air quality (CAQIEI) is developed in this study, which contains constrained monthly emissions of NOx, SO2, CO, PM2.5, PM10, and NMVOCs in China from 2013 to 2020 with a horizontal resolution of 15 km. Emissions of different air pollutants and their changes during 2013–2020 were investigated and compared with previous emission inventories, which sheds new light on the complex variations of air pollutant emissions in China.
Kai Cao, Qizhong Wu, Lingling Wang, Hengliang Guo, Nan Wang, Huaqiong Cheng, Xiao Tang, Dongxing Li, Lina Liu, Dongqing Li, Hao Wu, and Lanning Wang
Geosci. Model Dev., 17, 6887–6901, https://doi.org/10.5194/gmd-17-6887-2024, https://doi.org/10.5194/gmd-17-6887-2024, 2024
Short summary
Short summary
AMD’s heterogeneous-compute interface for portability was implemented to port the piecewise parabolic method solver from NVIDIA GPUs to China's GPU-like accelerators. The results show that the larger the model scale, the more acceleration effect on the GPU-like accelerator, up to 28.9 times. The multi-level parallelism achieves a speedup of 32.7 times on the heterogeneous cluster. By comparing the results, the GPU-like accelerators have more accuracy for the geoscience numerical models.
Zehua Bai, Qizhong Wu, Kai Cao, Yiming Sun, and Huaqiong Cheng
Geosci. Model Dev., 17, 4383–4399, https://doi.org/10.5194/gmd-17-4383-2024, https://doi.org/10.5194/gmd-17-4383-2024, 2024
Short summary
Short summary
There is relatively limited research on the application of scientific computing on RISC CPU platforms. The MIPS architecture CPUs, a type of RISC CPUs, have distinct advantages in energy efficiency and scalability. The air quality modeling system can run stably on the MIPS and LoongArch platforms, and the experiment results verify the stability of scientific computing on the platforms. The work provides a technical foundation for the scientific application based on MIPS and LoongArch.
Jiaxu Guo, Juepeng Zheng, Yidan Xu, Haohuan Fu, Wei Xue, Lanning Wang, Lin Gan, Ping Gao, Wubing Wan, Xianwei Wu, Zhitao Zhang, Liang Hu, Gaochao Xu, and Xilong Che
Geosci. Model Dev., 17, 3975–3992, https://doi.org/10.5194/gmd-17-3975-2024, https://doi.org/10.5194/gmd-17-3975-2024, 2024
Short summary
Short summary
To enhance the efficiency of experiments using SCAM, we train a learning-based surrogate model to facilitate large-scale sensitivity analysis and tuning of combinations of multiple parameters. Employing a hybrid method, we investigate the joint sensitivity of multi-parameter combinations across typical cases, identifying the most sensitive three-parameter combination out of 11. Subsequently, we conduct a tuning process aimed at reducing output errors in these cases.
Yaqi Wang, Lanning Wang, Juan Feng, Zhenya Song, Qizhong Wu, and Huaqiong Cheng
Geosci. Model Dev., 16, 6857–6873, https://doi.org/10.5194/gmd-16-6857-2023, https://doi.org/10.5194/gmd-16-6857-2023, 2023
Short summary
Short summary
In this study, to noticeably improve precipitation simulation in steep mountains, we propose a sub-grid parameterization scheme for the topographic vertical motion in CAM5-SE to revise the original vertical velocity by adding the topographic vertical motion. The dynamic lifting effect of topography is extended from the lowest layer to multiple layers, thus improving the positive deviations of precipitation simulation in high-altitude regions and negative deviations in low-altitude regions.
Xianwei Wu, Liang Hu, Lanning Wang, Haitian Lu, and Juepeng Zheng
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-164, https://doi.org/10.5194/gmd-2023-164, 2023
Revised manuscript not accepted
Short summary
Short summary
In order to build an effective surrogate model for the community atmospheric model (CAM). We present a surrogate model-based parameter tuning framework for the CAM and apply it to improve the CAM5 precipitation performance and propose a multilevel surrogate model-based optimization method. We design a nonuniform parameter parameterization scheme and integrate the parameters using a parameter smoothing scheme, and the experimental results improve in four regions.
Kai Cao, Qizhong Wu, Lingling Wang, Nan Wang, Huaqiong Cheng, Xiao Tang, Dongqing Li, and Lanning Wang
Geosci. Model Dev., 16, 4367–4383, https://doi.org/10.5194/gmd-16-4367-2023, https://doi.org/10.5194/gmd-16-4367-2023, 2023
Short summary
Short summary
Offline performance experiment results show that the GPU-HADVPPM on a V100 GPU can achieve up to 1113.6 × speedups to its original version on an E5-2682 v4 CPU. A series of optimization measures are taken, and the CAMx-CUDA model improves the computing efficiency by 128.4 × on a single V100 GPU card. A parallel architecture with an MPI plus CUDA hybrid paradigm is presented, and it can achieve up to 4.5 × speedup when launching eight CPU cores and eight GPU cards.
Jinming Feng, Meng Luo, Jun Wang, Yuan Qiu, Qizhong Wu, and Ke Wang
EGUsphere, https://doi.org/10.5194/egusphere-2023-867, https://doi.org/10.5194/egusphere-2023-867, 2023
Preprint withdrawn
Short summary
Short summary
We modified the code of the Weather Research and Forecasting Model (WRF) v3.8.1 to include the forcing components more than the Greenhouse Gases and evaluate the impact of forcing configurations on the climate simulation results in China. It showed that different external forcing configurations in WRF could result in considerable impact on the annual temperature and precipitation trend, which was stronger than parameterization schemes but was weaker than spectral nudging.
Yuejin Ye, Zhenya Song, Shengchang Zhou, Yao Liu, Qi Shu, Bingzhuo Wang, Weiguo Liu, Fangli Qiao, and Lanning Wang
Geosci. Model Dev., 15, 5739–5756, https://doi.org/10.5194/gmd-15-5739-2022, https://doi.org/10.5194/gmd-15-5739-2022, 2022
Short summary
Short summary
The swNEMO_v4.0 is developed with ultrahigh scalability through the concepts of hardware–software co-design based on the characteristics of the new Sunway supercomputer and NEMO4. Three breakthroughs, including an adaptive four-level parallelization design, many-core optimization and mixed-precision optimization, are designed. The simulations achieve 71.48 %, 83.40 % and 99.29 % parallel efficiency with resolutions of 2 km, 1 km and 500 m using 27 988 480 cores, respectively.
Qian Ma, Kaicun Wang, Yanyi He, Liangyuan Su, Qizhong Wu, Han Liu, and Youren Zhang
Earth Syst. Sci. Data, 14, 463–477, https://doi.org/10.5194/essd-14-463-2022, https://doi.org/10.5194/essd-14-463-2022, 2022
Short summary
Short summary
Surface incident solar radiation plays a key role in atmospheric circulation, the water cycle, and ecological equilibrium on Earth. A homogenized century-long surface incident solar radiation dataset was obtained over Japan.
Ying Wei, Xueshun Chen, Huansheng Chen, Yele Sun, Wenyi Yang, Huiyun Du, Qizhong Wu, Dan Chen, Xiujuan Zhao, Jie Li, and Zifa Wang
Geosci. Model Dev., 14, 4411–4428, https://doi.org/10.5194/gmd-14-4411-2021, https://doi.org/10.5194/gmd-14-4411-2021, 2021
Short summary
Short summary
The sub-grid particle formation (SGPF) in plumes plays an important role in air pollution and climate. We coupled an SGPF scheme to a chemical transport model with an aerosol microphysics module and applied it to investigate the SGPF impact over China. The scheme clearly improved the model performance in simulating aerosol components and particle number at typical sites influenced by point sources. The results indicate the significant effects of SGPF on aerosol particles in industrial areas.
Xueshun Chen, Fangqun Yu, Wenyi Yang, Yele Sun, Huansheng Chen, Wei Du, Jian Zhao, Ying Wei, Lianfang Wei, Huiyun Du, Zhe Wang, Qizhong Wu, Jie Li, Junling An, and Zifa Wang
Atmos. Chem. Phys., 21, 9343–9366, https://doi.org/10.5194/acp-21-9343-2021, https://doi.org/10.5194/acp-21-9343-2021, 2021
Short summary
Short summary
Atmospheric aerosol particles have significant climate and health effects that depend on aerosol size, composition, and mixing state. A new global-regional nested aerosol model with an advanced particle microphysics module and a volatility basis set organic aerosol module was developed to simulate aerosol microphysical processes. Simulations strongly suggest the important role of anthropogenic organic species in particle formation over the areas influenced by anthropogenic sources.
Hui Wang, Qizhong Wu, Alex B. Guenther, Xiaochun Yang, Lanning Wang, Tang Xiao, Jie Li, Jinming Feng, Qi Xu, and Huaqiong Cheng
Atmos. Chem. Phys., 21, 4825–4848, https://doi.org/10.5194/acp-21-4825-2021, https://doi.org/10.5194/acp-21-4825-2021, 2021
Short summary
Short summary
We assessed the influence of the greening trend on BVOC emission in China. The comparison among different scenarios showed that vegetation changes resulting from land cover management are the main driver of BVOC emission change in China. Climate variability contributed significantly to interannual variations but not much to the long-term trend during the study period.
Lei Kong, Xiao Tang, Jiang Zhu, Zifa Wang, Jianjun Li, Huangjian Wu, Qizhong Wu, Huansheng Chen, Lili Zhu, Wei Wang, Bing Liu, Qian Wang, Duohong Chen, Yuepeng Pan, Tao Song, Fei Li, Haitao Zheng, Guanglin Jia, Miaomiao Lu, Lin Wu, and Gregory R. Carmichael
Earth Syst. Sci. Data, 13, 529–570, https://doi.org/10.5194/essd-13-529-2021, https://doi.org/10.5194/essd-13-529-2021, 2021
Short summary
Short summary
China's air pollution has changed substantially since 2013. Here we have developed a 6-year-long high-resolution air quality reanalysis dataset over China from 2013 to 2018 to illustrate such changes and to provide a basic dataset for relevant studies. Surface fields of PM2.5, PM10, SO2, NO2, CO, and O3 concentrations are provided, and the evaluation results indicate that the reanalysis dataset has excellent performance in reproducing the magnitude and variation of air pollution in China.
Shaoqing Zhang, Haohuan Fu, Lixin Wu, Yuxuan Li, Hong Wang, Yunhui Zeng, Xiaohui Duan, Wubing Wan, Li Wang, Yuan Zhuang, Hongsong Meng, Kai Xu, Ping Xu, Lin Gan, Zhao Liu, Sihai Wu, Yuhu Chen, Haining Yu, Shupeng Shi, Lanning Wang, Shiming Xu, Wei Xue, Weiguo Liu, Qiang Guo, Jie Zhang, Guanghui Zhu, Yang Tu, Jim Edwards, Allison Baker, Jianlin Yong, Man Yuan, Yangyang Yu, Qiuying Zhang, Zedong Liu, Mingkui Li, Dongning Jia, Guangwen Yang, Zhiqiang Wei, Jingshan Pan, Ping Chang, Gokhan Danabasoglu, Stephen Yeager, Nan Rosenbloom, and Ying Guo
Geosci. Model Dev., 13, 4809–4829, https://doi.org/10.5194/gmd-13-4809-2020, https://doi.org/10.5194/gmd-13-4809-2020, 2020
Short summary
Short summary
Science advancement and societal needs require Earth system modelling with higher resolutions that demand tremendous computing power. We successfully scale the 10 km ocean and 25 km atmosphere high-resolution Earth system model to a new leading-edge heterogeneous supercomputer using state-of-the-art optimizing methods, promising the solution of high spatial resolution and time-varying frequency. Corresponding technical breakthroughs are of significance in modelling and HPC design communities.
Cited articles
Appel, K. W., Napelenok, S. L., Foley, K. M., Pye, H. O. T., Hogrefe, C., Luecken, D. J., Bash, J. O., Roselle, S. J., Pleim, J. E., Foroutan, H., Hutzell, W. T., Pouliot, G. A., Sarwar, G., Fahey, K. M., Gantt, B., Gilliam, R. C., Heath, N. K., Kang, D., Mathur, R., Schwede, D. B., Spero, T. L., Wong, D. C., and Young, J. O.: Description and evaluation of the Community Multiscale Air Quality (CMAQ) modeling system version 5.1, Geosci. Model Dev., 10, 1703–1732, https://doi.org/10.5194/gmd-10-1703-2017, 2017.
Briggs, G.: Discussions on chimney plumes in neutral and stable
surroundings, Atmos. Environ., 6, 507–510, 1972.
Briggs, G. A.: Plume rise and buoyancy effects. Atmospheric Science and Power Production. Dept. of Energy, U.S., 327–366, 1984.
Cao, G., Zhang, X., Gong, S., An, X., and Wang, Y.: Emission inventories of
primary particles and pollutant gases for China, Chinese Sci. Bull., 56,
781–788, https://doi.org/10.1007/s11434-011-4373-7, 2011.
Cao, J. J., Shen, Z. X., Chow, J. C., Watson, J. G., Lee, S. C., Tie, X. X., Ho,
K. F., Wang, G. H., and Han, Y. M.: Winter and summer PM2.5 chemical
compositions in fourteen Chinese cities, J. Air Waste Manage., 62,
1214–1226, https://doi.org/10.1080/10962247.2012.701193, 2012.
CCCPSC: The Pollution Source Census Data Set (Statistic), Collected Works
about the First China Pollution Source Survey Data (V), Compilation
Committee of China Pollution Source Census I, China Environment Science
Press, Beijing, 228–245, 2011.
Chang, J. and Hanna, S.: Air quality model performance evaluation,
Meteorol. Atmos. Phys., 87, 167–196,
https://doi.org/10.1007/s00703-003-0070-7, 2004.
Chang, J. S., Brost, R. A., Isaksen, I. S. A., Madronich, S., Middleton, P.,
Stockwell, W. R., and Walcek, C. J.: A three-dimensional eulerian acid
deposition model: physical concepts and formulation, J. Geophys.
Res.-Atmos., 92, 14681–14700, https://doi.org/10.1029/JD092iD12p14681, 1987.
Chen, H. S., Wang, Z. F., Li, J., Tang, X., Ge, B. Z., Wu, X. L., Wild, O., and Carmichael, G. R.: GNAQPMS-Hg v1.0, a global nested atmospheric mercury transport model: model description, evaluation and application to trans-boundary transport of Chinese anthropogenic emissions, Geosci. Model Dev., 8, 2857–2876, https://doi.org/10.5194/gmd-8-2857-2015, 2015.
CMAS: SMOKE version 2.4, available at: https://www.cmascenter.org/smoke/,
last access: 4 June 2020.
Colella, P. and Woodward, P. R.: The Piecewise Parabolic Method (PPM) for
Gas-dynamical Simulations, J. Comput. Phys., 54, 174–201,
https://doi.org/10.1016/0021-9991(84)90143-8, 1984.
Dobson, J. E., Bright, E. A., Coleman, P. R., Durfee, R. C., and Worley, B. A.:
Landscan: a global population database for estimating populations at risk,
Photogramm. Eng. Rem. S., 66, 849–857, 2000.
Dudhia, J.: Numerical study of convection observed during the winter monsoon
experiment using a mesoscale two-dimensional model, J. Atmos. Sci., 46,
3077–3107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2, 1989.
Dudhia, J.: A multi-layer soil temperature model for MM5, The Sixth PSU/NCAR
Mesoscale Model Users' Workshop, July 1996, Boulder, Colorado, 1996.
Eder, B. and Yu, S.: A performance evaluation of the 2004 release of
Models-3 CMAQ, Atmos. Environ., 40, 4811–4824,
https://doi.org/10.1016/j.atmosenv.2005.08.045, 2006.
ENVIRON: User Guide for Comprehensive Air Quality Model with Extensions
Version 6.0, available at:
http://www.camx.com/files/camxusersguide_v6-00.pdf (last access: 19 December 2020), 2013.
ENVIRON: CAMx version 6.1, available at:
http://www.camx.com/download/default.aspx, last access: 4 June 2020.
Gates, W., Boyle, J., Covey, C., Dease, C., Doutriaux, C., Drach, R.,
Fiorino, M., Gleckler, P., Hnilo, J., Marlais, S., Phillips, T., Potter, G.,
Santer, B., Sperber, K., Taylor, K., and Williams, D.: An overview of the
results of the atmospheric model inter-comparison project, B. Am. Meteorol.
Soc., 80, 29–55, https://doi.org/10.1175/1520-0477(1999)080<0029:AOOTRO>2.0.CO;2, 1999.
Gilliam, R. C., Hogrefe, C., Godowitch, J. M., Napelenok, S., Mathur, R.,
and Rao, S. T.: Impact of inherent meteorology uncertainty on air quality
model predictions, J. Geophys. Res.-Atmos., 120, 12259–12280,
https://doi.org/10.1002/2015JD023674, 2015.
Grell, G. A., Peckham, S. E., Schmitz, R., Mckeen, S. A., Frost, G.,
Skamarock, W. C., and Eder, B.: Fully coupled “online” chemistry within
the WRF model, Atmos. Environ., 39, 6957–6975,
https://doi.org/10.1016/j.atmosenv.2005.04.027, 2005.
Hertel O., Berkowics, R., Christensen, J., and Hov, Ø.: Test of two
numerical schemes for use in atmospheric transport-chemistry models, Atmos.
Environ., 27, 2591–2611, https://doi.org/10.1016/0960-1686(93)90032-T, 1993.
Hong, S. Y., Dudhia, J., and Chen, S. H.: A revised approach to ice
microphysical processes for the bulk parameterization of clouds and
precipitation, Mon. Weather Rev., 132, 103–120,
https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2, 2004.
Hong, S. Y., Noh, Y., and Dudhia, J.: A new vertical diffusion package with
an explicit treatment of entrainment processes, Mon. Weather Rev., 134,
2318–2341, https://doi.org/10.1175/MWR3199.1, 2006.
Houyoux, M. R. and Vukovich, J. M.: Updates to the Sparse Matrix Operator
Kernel Emissions (SMOKE) modeling system and integration with Models-3, The
Emission Inventory: Regional Strategies for the Future, Air Waste Management
Association, Raleigh, N. C., 1461, 1999.
Huang, R. J., Zhang, Y., Bozzetti, C., Ho, K. F., Cao, J., Han, Y.,
Daellenbach, K., Slowik, J., Platt, S., Canonaco, F., Zotter, P., Wolf, R.,
Pieber, S., Bruns, E., Crippa, M., Ciarelli, G., Piazzalunga, A.,
Schwikowski, M., Abbaszade, G., and Prevot, A.: High secondary aerosol
contribution to particulate pollution during haze events in China, Nature,
514, 218–222, https://doi.org/10.1038/nature13774, 2014.
Kain, J. S.: The Kain–Fritsch convective parameterization: An update, J.
Appl. Meteorol., 43, 170–181,
https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2, 2004.
Kato, N. and Akimoto, H.: Anthropogenic emission of SO2 and NOx in Asia:
Emission inventories, Atmos. Environ., 26, 2997–3017,
https://doi.org/10.1016/0960-1686(92)90291-R, 1992.
Li, L., Chen, C. H., Fu, J. S., Huang, C., Streets, D. G., Huang, H. Y., Zhang, G. F., Wang, Y. J., Jang, C. J., Wang, H. L., Chen, Y. R., and Fu, J. M.: Air quality and emissions in the Yangtze River Delta, China, Atmos. Chem. Phys., 11, 1621–1639, https://doi.org/10.5194/acp-11-1621-2011, 2011.
Li, L., Cheng, S. Y., Li, J. B., Lang, J. L., and Chen, D. S.: Application
of MM5-CAMx- PSAT modeling approach for investigating emission source
contribution to atmospheric SO2 pollution in Tangshan, Northern China,
Math. Probl. Eng., 2013, 1–12, https://doi.org/10.1155/2013/136453, 2013.
Li, C., Mclinden, C., Fioletov, V., Krotkov, N., Carn, S., Joiner, J., Streets, D., He, H., Ren, X., Li, Z., and Dickerson, R.: India Is Overtaking China as the
World's Largest Emitter of Anthropogenic Sulfur Dioxide, Sci. Rep.-UK,
7, 14304, https://doi.org/10.1038/s41598-017-14639-8, 2017.
Li, X., Zhang, Q., Zhang, Y., Zhang, L., Wang, Y., Zhang, Q., Li, M., Zheng,
Y., Geng, G., Wallington, T., Han, W., Shen, W., and He, K.: Attribution of
PM2.5 exposure in Beijing–Tianjin–Hebei region to emissions:
implication to control strategies, Sci. Bull., 62, 957–964,
https://doi.org/10.1016/j.scib.2017.06.005, 2017.
Li, X. B., Liu, H. B., Zhang, Z. Y., and Liu, J. J.: Numerical simulation of
an extreme haze pollution event over the North China Plain based on initial
and boundary condition ensembles, Atmospheric and Oceanic Science Letters,
12, 434–443, https://doi.org/10.1080/16742834.2019.1671136, 2019.
Long, X., Li, N., Tie, X., Cao, J., Zhao, S., Huang, R., Zhao, M., Li, G.,
and Feng, T.: Urban dust in the Guanzhong Basin of China, part I: A regional
distribution of dust sources retrieved using satellite data, Sci. Total
Environ., 541, 1603–1613, https://doi.org/10.1016/j.scitotenv.2015.10.063,
2016.
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough,
S.A.: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated
correlated-k model for the longwave. J. Geophys. Res.-Atmos., 102,
16663–16682, https://doi.org/10.1029/97JD00237, 1997.
National Centers for Environmental Prediction/National Weather
Service/NOAA/U.S. Department of Commerce: NCEP FNL
Operational Model Global Tropospheric Analyses, continuing from July 1999, updated daily,
Research Data Archive at the National Center for Atmospheric Research,
Computational and Information Systems Laboratory,
https://doi.org/10.5065/D6M043C6, last access: 4 June 2020.
NCAR: WRF model, available at:
https://www2.mmm.ucar.edu/wrf/users/download/get_source.html,
last access: 4 June 2020.
Nenes, A., Pandis, S. N., and Pilinis, C.: Continued development and testing
of a new thermodynamic aerosol module for urban and regional air quality
models, Atmos. Environ., 33, 1553–1560,
https://doi.org/10.1016/S1352-2310(98)00352-5, 1999.
Ni, T. R., Han, B., and Bai, Z. P.: Source Apportionment of PM10 in
Four Cities of Northeastern China, Aerosol Air Qual. Res., 12, 571–582,
https://doi.org/10.4209/aaqr.2011.12.0243, 2012.
Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X., and Hayasaka, T.: An Asian emission inventory of anthropogenic emission sources for the period 1980–2020, Atmos. Chem. Phys., 7, 4419–4444, https://doi.org/10.5194/acp-7-4419-2007, 2007.
Panagiotopoulou, A., Charalampidis, P., Fountoukis, C., Pilinis, C., and Pandis, S. N.: Comparison of PMCAMx aerosol optical depth predictions over Europe with AERONET and MODIS measurements, Geosci. Model Dev., 9, 4257–4272, https://doi.org/10.5194/gmd-9-4257-2016, 2016.
Seaman, N. L.: Meteorological modeling for air-quality assessments, Atmos.
Environ., 34, 2231–2259, https://doi.org/10.1016/S1352-2310(99)00466-5,
2000.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics, From
Air Pollution to Climate Change, John Wiley and Sons, Inc., New York, 1998.
Sistla, G., Zhou, N., Hao, W., Ku, J.-Y., Rao, S. T., Bornstein, R.,
Freedman, F., and Thunis, P.: Effects of uncertainties in meteorological
inputs on Urban Airshed Model predictions and ozone control strategies,
Atmos. Environ., 30, 2011–2025,
https://doi.org/10.1016/1352-2310(95)00268-5, 1996.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda,
M. G., Huang, X. Y., Wang, W., and Powers, J. G.: A Description of the
Advanced Research WRF Version3 (No. NCAR/TN-475+STR), University
Corporation for Atmospheric Research, https://doi.org/10.5065/D68S4MVH,
NCAR, 2008.
Streets, D. G., Bond, T. C., Carmichael, G. R., Fernandes, S. D., Fu, Q.,
He, D., Klimont, Z., Nelson, S. M., Tsai, N. Y., Wang, M. Q., Woo, J. H.,
and Yarber, K. F.: An inventory of gaseous and primary aerosol emissions in
Asia in the year 2000, J. Geophys. Res.-Atmos., 108, 8809–8831,
https://doi.org/10.1029/2002JD003093, 2003.
Tang, X., Wang, Z. F., Zhu, J., Gbaguidi, A., and Wu, Q. Z.: Ensemble-Based
Surface O3 Forecast over Beijing, Climatic and Environmental Research, 15,
677–684, 2010 (in Chinese).
Taylor, K.: Summarizing multiple aspects of model performance in a single
diagram, J. Geophys. Res.-Atmos., 106, 7183–7192,
https://doi.org/10.1029/2000JD900719, 2001.
Wang, H., Chen, H., Wu, Q., Lin, J., Chen, X., Xie, X., Wang, R., Tang, X., and Wang, Z.: GNAQPMS v1.1: accelerating the Global Nested Air Quality Prediction Modeling System (GNAQPMS) on Intel Xeon Phi processors, Geosci. Model Dev., 10, 2891–2904, https://doi.org/10.5194/gmd-10-2891-2017, 2017.
Wang, L. T., Zhang, Q., Hao, J. M., and He, K. B.: Anthropogenic CO emission
inventory of Mainland China, Acta Scientiae Circumstantiae, 25, 1580–1585,
https://doi.org/10.13671/j.hjkxxb.2005.12.002, 2005 (in Chinese).
Wang, P., Cao, J. J., Shen, Z., Han, Y., Lee, S. C., Huang, Y., Zhu, C. S.,
Wang, Q., Xu, H., and Huang, R. J.: Spatial and seasonal variations of PM2.5
mass and species during 2010 in Xi'an, China, Sci. Total Environ., 508,
477–487, https://doi.org/10.1016/j.scitotenv.2014.11.007, 2015.
Wang, Z., Xie, F., Wang, X., An, J., and Zhu, J.: Development and
application of nested air quality prediction modeling system, Chinese
J. Atmos. Sci., 30, 778–790,
https://doi.org/10.3878/j.issn.1006-9895.2006.05.07, 2006 (in Chinese).
Wu, D., Fung, J. C. H., Yao, T., and Lau, A. K. H.: A study of control
policy in the Pearl River Delta region by using the particulate matter
source apportionment method, Atmos. Environ., 76, 147–161,
https://doi.org/10.1016/j.atmosenv.2012.11.069, 2013.
Wu, Q., Wang, Z., Gbaguidi, A., Tang, X., and Zhou, W.: Numerical study of
the effect of traffic restriction on air quality in Beijing, Sola, 6, 17–20, https://doi.org/10.2151/sola.6A-005, 2010.
Wu, Q. Z., Xu, W. S., Shi, A. J., Li, Y. T., Zhao, X. J., Wang, Z. F., Li, J. X., and Wang, L. N.: Air quality forecast of PM10 in Beijing with Community Multi-scale Air Quality Modeling (CMAQ) system: emission and improvement, Geosci. Model Dev., 7, 2243–2259, https://doi.org/10.5194/gmd-7-2243-2014, 2014.
Xiao, H., Yang, X. C., Wu, Q. Z., Bai, Q. M., Cheng, H. Q., Chen, X. S.,
Xue, R., Du, M. M., Huang, L., Wang, R. R., and Wang, H.: Estimate emissions
of construction fugitive dust in Xi'an, Acta Scientiae Circumstantiae, 39,
222–228, https://doi.org/10.13671/j.hjkxxb.2018.0377, 2019 (in Chinese).
Xiao, H., Wu, Q., Yang, X., Wang, L., and Cheng, H.: The dataset of the
manuscript “Numerical study of the initial condition and emission on
simulating PM2.5 concentrations in Comprehensive Air Quality Model with
extensions version 6.1 (CAMx v6.1): Taking Xi'an as example”, Zenodo,
https://doi.org/10.5281/zenodo.3824676, 2020.
Yang, X., Wu, Q., Zhao, R., Cheng, H., He, H., Ma, Q., Wang, L., and Luo,
H.: New method for evaluating winter air quality: PM2.5 assessment
using Community Multi-Scale Air Quality Modeling (CMAQ) in Xi'an, Atmos.
Environ., 211, 18–28, https://doi.org/10.1016/j.atmosenv.2019.04.019, 2019.
Yang, X., Xiao, H., Wu, Q., Wang, L., Guo, Q., Cheng, H., Wang, R., and
Tang, Z.: Numerical study of air pollution over a typical basin topography:
Source appointment of fine particulate matter during one severe haze in the
megacity Xi'an, Sci. Total Environ., 708, 135213,
https://doi.org/10.1016/j.scitotenv.2019.135213, 2020.
Yarwood. G., Rao, S., Yocke, M., and Whitten, G. Z.: Updates to the Carbon
Bond chemical mechanism: CB05, Final Report prepared for US EPA, available
at: http://www.camx.com/publ/pdfs/CB05_Final_Report_120805.pdf (last access: 19 December 2020), 2005.
Zhang, L., Gong, S., Padro, J., and Barrie, L.: A size-segregated particle dry
deposition scheme for an atmospheric aerosol module, Atmos. Environ., 35,
549–560, https://doi.org/10.1016/S1352-2310(00)00326-5, 2001.
Zhang, L., Brook, J. R., and Vet, R.: A revised parameterization for gaseous dry deposition in air-quality models, Atmos. Chem. Phys., 3, 2067–2082, https://doi.org/10.5194/acp-3-2067-2003, 2003.
Zhang, Q., Klimont, Z., Streets, D. Huo, H., and He, H.: An anthropogenic PM
emission model for China and emission inventory for the year 2001, Progress
in Natural Science, 16, 223–231, 2006 (in Chinese).
Zhang, Q., Streets, D. G., Carmichael, G. R., He, K. B., Huo, H., Kannari, A., Klimont, Z., Park, I. S., Reddy, S., Fu, J. S., Chen, D., Duan, L., Lei, Y., Wang, L. T., and Yao, Z. L.: Asian emissions in 2006 for the NASA INTEX-B mission, Atmos. Chem. Phys., 9, 5131–5153, https://doi.org/10.5194/acp-9-5131-2009, 2009.
Zhang, X. Y., Cao, J. J., Li, L. M., Arimoto, R., Cheng, Y., Huebert, B.,
and Wang, D.: Characterization of atmospheric aerosol over Xi'an in the
south margin of the Loess Plateau, China, Atmos. Environ., 36, 4189–4199,
https://doi.org/10.1016/S1352-2310(02)00347-3, 2002.
Zhang, Y., Bocquet, M., Mallet, V., Seigneur, C., and Baklanov, A.:
Real-Time Air Quality Forecasting, Part I: History, techniques, and current
status, Atmos. Environ., 60, 632–655,
https://doi.org/10.1016/j.atmosenv.2012.06.031, 2012.
Zhang, Y. P., Li, X., Nie, T., Qi, J., Chen, J., and Wu, Q.: Source
apportionment of PM2.5, pollution in the central six districts of
Beijing, China, J. Clean. Prod., 174, 661–669,
https://doi.org/10.1016/j.jclepro.2017.10.332, 2018.
Short summary
Few studies have investigated the effects of initial conditions on the simulation or prediction of PM2.5 concentrations. Here, sensitivity experiments are used to explore the effects of three initial mechanisms (clean, restart, and continuous) and emissions in Xi’an in December 2016. According to this work, if the restart mechanism cannot be used due to computing resource and storage space limitations when forecasting PM2.5 concentrations, a spin-up time of at least 27 h is needed.
Few studies have investigated the effects of initial conditions on the simulation or prediction...