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Abstract. A series of model sensitivity experiments was de-
signed to explore the effects of different initial conditions and
emissions in Xi’an in December 2016; Xi’an is a major city
in the Fenwei Plain, which is a key area with respect to air
pollution control in China. Three methods were applied for
the initial condition tests: a clean initial simulation, a restart
simulation, and a continuous simulation. In the clean initial
simulation test, the C00, C06, C12, C18, and C24 sensitivity
experiments were conducted to explore the effect of the in-
tercepted time periods used. The results of these experiments
showed that the fine particulate matter (PM2.5) model perfor-
mance was better when the start time of the intercepted time
periods was delayed. For experiments C00 to C24, the abso-
lute mean bias (MB) decreased from 51.07 to 3.72 µgm−3,
and the index of agreement (IOA) increased from 0.49 to
0.86, which illustrates that the model performance of C24 is
much better than that of C00. The R1120 and R1124 sensi-
tivity experiments were used to explore the restart simulation
and, in turn, the effect of the date of the first day of the model
simulation. While the start times of the simulations were dif-
ferent, the simulation results with different start times were
nearly consistent after a spin-up time period, and the results
revealed that the spin-up time was approximately 27 h. For
the continuous simulation test, the CT12 and CT24 sensitiv-
ity experiments were conducted. The start times of the in-
tercepted time periods for CT12 and R1120 were the same,
and the simulation results were almost identical. Based on
the simulation results, CT24 showed the best performance of
all of the sensitivity experiments, with the correlation coeffi-
cient (R), MB, and IOA reaching 0.81, 6.29 µgm−3, and 0.90

respectively. For the emission tests, an updated local emis-
sion inventory with construction fugitive dust emissions was
added and was compared with the simulation results from
the original emission inventory. The simulation with the up-
dated local emissions showed much better performance for
PM2.5 modelling. Therefore, combining the CT24 method
and the updated local emission inventory can satisfactorily
improve the PM2.5 model performance in Xi’an: the abso-
lute MB decreased from 35.16 to 6.29 µgm−3, and the IOA
reached 0.90.

1 Introduction

In recent years, severe air pollution has gradually become a
major challenge in China and other developing countries (Wu
et al., 2014; X. Li et al., 2017). China released a 3-year action
plan for cleaner air in 2018, with efforts focused on areas in-
cluding the Beijing–Tianjin–Hebei region, the Yangtze River
Delta, and the Fenwei Plain. As a major city of the Fenwei
Plain area, Xi’an is located in the Guanzhong Basin. The city
is surrounded by the Qinling Mountains to the south, and the
Loess Plateau extends to the north and west, which is not
conducive to the dispersion of air pollutants. Xi’an has suf-
fered severe air pollution in recent years because of its partic-
ular topography and rapid economic development (Zhang et
al., 2002; Cao et al., 2012). Unfortunately, Xi’an is undergo-
ing rapid development including urban construction activities
that cause large construction fugitive dust emissions (Long et
al., 2016).
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Air quality modelling systems are an important tool for
air pollution assessment and have evolved over three gener-
ations since the 1970s, driven by crucial regulations, soci-
etal and economic needs, and increasing high-performance
computing capacity (Zhang et al., 2012). Various air qual-
ity models are widely used in the simulation and forecasting
of pollutants, such as the Community Multiscale Air Qual-
ity (CMAQ) modelling system (Eder and Yu, 2006; Appel et
al., 2017), the Comprehensive Air Quality Model with exten-
sions (CAMx; ENVIRON, 2013), the Weather Research and
Forecasting (WRF) model coupled with Chemistry (WRF-
Chem; Grell et al., 2005), and the Nested Air Quality Predic-
tion Modeling System (GNAQPMS/NAQPMS; Wang et al.,
2006; Chen et al., 2015; Wang et al., 2017). To accurately
analyse the apportionment of emission categories and con-
tributions from different source regions for atmospheric pol-
lution, many researchers have used the CAMx model with
particulate matter source apportionment technology (PSAT)
in different areas of China, including Beijing (Zhang et al.,
2018), Tangshan (Li et al., 2013), the Pearl River Delta re-
gion (Wu et al., 2013), and the Yangtze River Delta region
(Li et al., 2011). CAMx has shown satisfactory model perfor-
mance for air pollution simulation (Panagiotopoulou et al.,
2016).

The input files for the CAMx model include initial and
boundary conditions, gridded and elevated point source
emissions, and meteorological files (ENVIRON, 2013). Me-
teorology and emission inputs can cause high uncertainty in
air quality models (Tang et al., 2010; Gilliam et al., 2015).
Many studies have reduced the uncertainty of meteorology
through refined physical parameterisations or other tech-
niques, such as data assimilation (Sistla et al., 1996; Sea-
man, 2000; Gilliam et al., 2015; Li et al., 2019). A reason-
able emission inventory is very important for the simula-
tion accuracy of the air quality model. Numerous researchers
have studied East Asian emissions (Kato and Akimoto, 1992;
Streets et al., 2003; Ohara et al., 2007; Zhang et al., 2009)
and have tried to construct emission inventories of particulate
matter (PM) in China (Wang et al., 2005; Zhang et al., 2006).
However, the absence of detailed information on China intro-
duces uncertainty into these inventories (Cao et al., 2011). In
recent years, an increasing number of researchers have fo-
cused on constructing and updating regional local emission
inventories to improve model performance. Wu et al. (2014)
improved model performance by adding more regional point
source emissions and updating the area source emissions
in villages and surrounding cities in Beijing. Based on that
work, Yang et al. (2019) added local datasets to the emis-
sion inventory of the Guanzhong Plain (China), which was
applied to simulate fine particulate matter (PM2.5) concen-
trations using the CMAQ model in Xi’an. Numerous studies
have indicated that construction dust emissions play an im-
portant role in air pollution, especially in urban areas (Ni et
al., 2012; Huang et al., 2014; Wang et al., 2015). In our pre-
vious study, we created a particulate matter emission inven-

tory from construction activities at the county level in Xi’an,
which was based on an extensive survey of construction ac-
tivities and was combined with two sets of dust emission fac-
tors for a typical city in northern China (Xiao et al., 2019).

However, few studies have investigated the effects of ini-
tial conditions on the simulation or prediction of PM2.5 con-
centrations. Therefore, this study aimed to explore the effects
of different initial conditions and emissions on model per-
formance with respect to the simulation of PM2.5 concentra-
tions using the CAMx model. A series of model sensitivity
experiments were designed using different initial conditions
and emissions to find a suitable method for simulating PM2.5
concentrations with a reasonable initial condition and emis-
sion inventory. In addition to Xi’an, other cities may apply a
similar research method for simulating PM2.5 concentrations
in the future.

The remainder of this paper is organised as follows.
Section 2 provides the model descriptions of the Weather
Research and Forecasting–Sparse Matrix Operator Kernel
Emissions–Comprehensive Air Quality Model with exten-
sions (WRF-SMOKE-CAMx) model system, including me-
teorological fields, air quality model descriptions, the model
domain, the emission inventory, and the processes. Section 3
presents the design of the sensitivity experiments for the dif-
ferent initial conditions and emissions. Section 4 discusses
the model performance of the initial condition tests and emis-
sion tests with respect to simulating the PM2.5 concentration
in Xi’an. The conclusions are presented in Sect. 5.

2 WRF-SMOKE-CAMx model descriptions

In this study, the National Center for Atmospheric Research
(NCAR) Weather Research and Forecasting (WRF v3.9.1.1)
model (Skamarock et al., 2008), the Center for Environmen-
tal Modeling for Policy Development (CEMPD) Sparse Ma-
trix Operator Kernel Emissions (SMOKE v2.4; Houyoux and
Vukovich, 1999), and the Ramboll Environmental Compre-
hensive Air Quality Model with Extensions (CAMx v6.1;
ENVIRON, 2013) were used to construct the air quality mod-
elling system, as shown in Fig. 1. The WRF model provided
the meteorological conditions for the SMOKE and CAMx
models. The SMOKE model was used to process the emis-
sions data and provide 4-D, model-ready gridded emissions
for the CAMx air quality model.

2.1 Meteorological fields

For the WRF model configuration, we chose the Rapid Ra-
diative Transfer Model (RRTM; Mlawer et al., 1997) and
Dudhia scheme for long-wave and short-wave radiation op-
tions (Dudhia, 1989), WSM3 cloud microphysics (Hong et
al., 2004), the Yonsei University (YSU) scheme (Hong et
al., 2006), the Kain–Fritsch (new Eta) cloud parameterisa-
tion (Kain, 2004), and a five-layer thermal diffusion scheme
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Figure 1. Framework of the WRF-SMOKE-CAMx model system
in Xi’an. The Ozone Monitoring Instrument (OMI) O3 map pre-
pares ozone column input files for CAMx in order to improve the
photolysis rate calculation. CAMx forecasted the air pollutant for
the next 48 h.

(Dudhia, 1996). The meteorological initial and boundary
conditions were derived from the National Centers for En-
vironmental Prediction (NCEP) Final Analysis (FNL) Oper-
ational Global Analysis data, with a 1◦× 1◦ spatial resolu-
tion and 6 h temporal resolution (National Centers for Envi-
ronmental Prediction/National Weather Service/NOAA/U.S.
Department of Commerce, 2000). The simulation was con-
ducted between 20 November 2016 and 20 January 2017.

The simulated effect of daily average temperature (T2) and
relative humidity (RH2) simulated by the WRF model in do-
main 3 were primarily validated by the observation data at
seven monitoring stations in Xi’an; the station map is shown
in Fig. 2. Some of the statistical parameters given in Ap-
pendix A were used to evaluate the model performance and
are shown in Table 1; the time series is shown in Fig. 3. The
mean error (ME), R, and root mean square error (RMSE) of
the daily average T2 are 1.37 ◦C, 0.80, and 1.65 ◦C respec-
tively, and the simulation shows a cooling bias of −0.95 ◦C.
The ME and RMSE of the daily average RH2 are 6.77 % and
8.30 % respectively. The correlation coefficient of the rela-
tive humidity is 0.71, which is reasonable. RH2 was slightly
overestimated when the MB was 6.22 %.

In previous studies, Yang et al. (2019) used WRF to
drive the CMAQ model for winter air quality in Xi’an, and
the model evaluations for winter in 2016 showed that the
MB, ME, R, and RMSE of T2 were −2.83 ◦C, 2.83 ◦C,
0.89, and 3.29 ◦C respectively. The MB, ME, R, and RMSE
of RH2 were 9.59 %, 10.63 %, 0.71, and 13.43 % respec-
tively. Wu et al. (2010) used the fifth-generation NCAR/Penn
State Mesoscale Model (MM5) as a meteorological driver
for the Nested Air Quality Prediction Modelling System
(NAQPMS). The statistical results showed that the MB andR
of T2 were 2.1 ◦C and 0.84, and those of RH2 were−15.8 %
and 0.65 respectively. Using the same model configuration
and monitoring sites, Yang et al. (2020) compared the simu-
lated and observed wind speeds at an altitude of 10 m (W10)

Table 1. Verification statistics of daily temperature at a height of
2 m (T2), and relatively humidity at a height of 2 m (RH2). “Obs.”
denotes observations, and “Sim.” denotes simulated values.

Variable Mean ME MB R RMSE

Obs. Sim.

T2 (◦C) 3.68 2.73 1.37 −0.95 0.80 1.65
RH2 (%) 69.65 75.88 6.77 6.22 0.71 8.30

at Xi’an station from 20 November 2016 to 20 January 2017.
As the results show, the W10 is underestimated. The MB of
W10 is−0.14 ms−1. TheR of W10 is 0.63, indicating a good
agreement between the observations and the model results.

Compared with previous studies, T2 and RH2 have lower
MB, ME, and RMSE values. The R of T2 is slightly lower
than in previous studies, whereas the R of RH2 is higher.
Thus, the meteorological simulation in this study is reason-
able.

2.2 Air quality model descriptions

CAMx is a state-of-the-art air quality model developed by
Ramboll Environ (http://www.camx.com, last access: 19 De-
cember 2020). In this study, the piecewise parabolic method
(PPM) advection scheme (Colella and Woodward, 1984) was
used for horizontal diffusion, and the K-theory was selected
for vertical diffusion. The Regional Acid Deposition Model
(RADM-AQ; Chang et al., 1987) scheme was chosen as the
aqueous-phase oxidation, ISORROPIA (Nenes et al., 1999)
was selected as the inorganic aerosol thermodynamic equi-
librium, CB05 (Yarwood et al., 2005) was chosen as the gas-
phase chemical mechanism, and the Euler backward iterative
(EBI) solver with Hertel’s solutions (Hertel et al., 1993) was
used in the model system. The resistance model for gases
(Zhang et al., 2003) and aerosols (Zhang et al., 2001) in the
dry deposition module and the scavenging model for gases
and aerosols (Seinfeld and Pandis, 1998) in the wet deposi-
tion module were utilised in this study. The CAMx model
forecasted the next 48 h of PM2.5 concentrations in the clean
initial simulation test, and this is described in Sect. 3.1. On
the first day, CAMx used the results from ICBCPREP, which
can prepare a simple, static CAMx initial condition (IC) and
boundary condition (BC). On the following days, it used the
various initial conditions of the sensitivity experiments.

2.3 Model domain

Three nested domains were designed for the WRF model
(Fig. 4), with respective horizontal resolutions of 27km×
27km (D1), 9km× 9km (D2), and 3km× 3km (D3). The
largest domain (D1) covers most parts of China, and the
second domain (D2) includes Shaanxi Province, Shanxi
Province, Henan Province, and the inner domain (D3), which
focuses on the 11 cities in the Fenwei Plain, including Xi’an.
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Figure 2. Map of the meteorological and air quality monitoring network in Xi’an. The triangles are the meteorological monitoring stations.
The square with a dot in it is the city background station, and the black squares are the National Standard Air Quality (NSAQ) observation
stations: Gaoyachang (GYC), Xingqing (XQ), Fangzhicheng (FZC), Xiaozhai (XZ), Tiyuchang (TYC), Gaoxinxiqu (GXXQ), Jingkaiqu
(JKQ), Qujiang (QJ), Gaoyuntan (GYT), Changanqu (CAQ), Yanliangqu (YLQ), Lintongqu (LTQ), and Caotan (CT).

Figure 3. Time series plots of (a) daily average simulated and in situ 2 m temperature (T2) and (b) simulated and in situ 2 m relative humidity
(RH2) at the Xi’an station.

CAMx only has one domain, and the settings are the same
as those in the D3 domain when focusing on Xi’an as one
sensitivity test area for initial conditions and emissions. To
reduce the boundary effects, the CAMx model cuts down the
outermost grid of the WRF model and uses the variable of
the centre grid in the WRFCAMx module. Thus, the CAMx
model had three grid cells smaller than the WRF model in
the D3 domain. The vertical resolution of WRF was 37 lay-
ers from the ground to 5 hPa at the top, and 14 layers were
extracted by the WRFCAMx module, which can convert the
WRF output files into the CAMx model data format.

2.4 Emission inventory and processes

SMOKE version 2.4 (Houyoux and Vukovich, 1999) was
used to improve the Fenwei emissions, especially Xi’an local
emissions, and to provide gridded emissions for the CAMx
model in this study. Based on the emission inventories of a
previous study (Yang et al., 2019), this study updated the lo-
cal emission inventories by adding the emission contribution
of PM2.5 from construction fugitive dust in Xi’an. Thus, the
emission inventories in this study include the following:

1. The regional emissions in East Asia and the local emis-
sions in the Guanzhong Plain were obtained from Wu
et al. (2014) and Yang et al. (2019). Major industrial
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Figure 4. The three nested model domains with respective horizontal resolutions of 27km×27km (D1), 9km×9km (D2), and 3km×3km
(D3) in the WRF-CAMx modelling system. D1 covers most parts of China, with 148× 121 grids, and D2 includes Shaanxi, Shanxi, and
Henan provinces. The inner domain covers Fenwei Plain, including Xi’an.

emissions were slightly adjusted according to the an-
nual report in this study. The emission inventory at the
city level is presented in Table 2.

2. Construction fugitive dust emissions in Xi’an, based
on survey data from the construction projects shown
in Fig. 5, were collected in a previous study (Xiao et
al., 2019) and were indicated as a “local area source”.
This is a new dataset at the county level and was
updated in 2017. The basic data include the location
and area of each construction project. We also replen-
ished the missing construction data and corrected erro-
neous information using Google Earth and other geo-
graphic information tools in order to obtain more accu-
rate location information. According to statistics, there
were 1595 construction projects in Xi’an in 2017, com-
prising 86.1 km2 of total construction area. The con-
struction area in the main urban region (Xincheng,
Beilin, Lianhu, Yanqiao, Weiyang, and Yanta) was
about 62.2 km2, comprising 7.5 % of the total main ur-
ban area. The distribution of the construction fugitive
dust emissions in Xi’an is shown in Fig. 6.

We employed the statistical allocation approach to generate
gridded area source emissions, which were used to allocate
the total emissions to each horizontal model grid according
to the related spatial factors. In this study, the LandScan 2015
Global Population Database (Dobson et al., 2000) was used
as a population spatial factor to allocate the emissions. For
the construction fugitive dust emissions, we used the area
of each construction project as the weight in the surrogate
calculation and allocated the input construction project data
to the target polygons (map of the administrative division

in Xi’an at the county level) based on the weighted spatial
overlap of the input data and target polygons. The spatial
results provide the SMOKE model as a spatially allocated
factor. The horizontal and vertical allocation of point source
emissions were assigned from their longitude–latitude coor-
dinates and the Briggs algorithm (Briggs, 1972, 1984) re-
spectively. The temporal variation and chemical species allo-
cation were based on profile files in the SMOKE model.

As shown in Table 2, the NOx emissions ranged from
352.0 to 758.5 ktyr−1 between 2008 (in Zhang et al., 2009)
and 2017 (in this study). For PM10 emissions in Shaanxi
Province, the emissions also increased from 474.0 to
830.0 ktyr−1. The PM10 emissions in this study are higher
than values in other studies due to the inclusion of construc-
tion fugitive dust. Other emission species, such as NOx , SO2,
NH3, volatile organic compounds (VOCs), and CO, were
slightly higher in this work than in previous studies.

3 Design of the sensitivity experiments

A set of model sensitivity experiments using different initial
and emission conditions were designed in this study. Three
methods were applied for the initial condition tests: using the
clean initial condition files as a clean initial simulation, using
the restart files as a restart simulation, and a continuous sim-
ulation. For the emission tests, we compared the simulation
results using the original emission inventory and those using
the updated local emission inventory with construction fugi-
tive dust emissions. The configurations of the sensitivity ex-
periment simulations are shown in Table 3, and the time pe-
riod for each initial condition experiment is shown in Fig. 7.
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Table 2. Emission of major anthropogenic species in Shaanxi Province (unit: 103 t yr−1).

CO NOx VOCs NH3 SO2 PM10 PM2.5

This study

Point source 1196.0 534.4 1572.7 – 724.7 321.7 257.5
Area source 3272.5 224.1 471.9 294.0 490.2 508.3 244.9
Xi’an 964.1 177.5 370.5 23.4 155.4 198.6 82.8
Baoji 628.3 65.8 256.9 32.8 131.0 68.4 41.1
Xianyang 773.9 93.2 584.5 25.9 173.0 88.6 66.8
Tongchuan 80.6 45.0 32.2 4.4 27.5 60.5 32.3
Weinan 561.9 140.3 500.9 30.5 224.7 132.6 103.7
Shaanxi Province 4468.5 758.5 2044.6 294.0 1214.8 830.0 502.3

Zhang et al. (2009) Shaanxi Province 3528.0 352.0 491.0 – 907.0 474.0 328.0
CCCPSC (2011) Shaanxi Province – 521.2 – – 938.7 580.1 –
Yang et al. (2019) Shaanxi Province 4369.0 736.9 1994.1 293.2 1193.7 770.4 534.9
Yang et al. (2020) Shaanxi Province 3905.8 575.7 1904.3 287.6 802.3 564.0 398.1

Figure 5. Spatial distribution of construction sites in Xi’an. Grey dots indicate the construction sites. The base map shows the types of land
use (Xiao et al., 2019).

3.1 Initial condition (ICON) test using the clean initial
condition files

The ICBCPREP module used a clean-troposphere vertical
profile to generate the initial concentration fields for each day
for the simulation using the clean initial condition files. The
output files from CAMx were initialised at 13:00 UTC. The
CAMx model forecasted the next 48 h of PM2.5 concentra-
tions in each simulation cycle. By extracting data from sim-
ulated results based on different time periods (0–24, 6–30,
12–36, 18–42, and 24–48 h respectively), as shown in Fig. 7a,
we conducted the C00, C06, C12, C18, and C24 sensitivity
experiments to explore the influence of different time peri-
ods on the simulation of PM2.5. For the C00 sensitivity ex-

periment, the data from the first 24 h of the output file were
cut and merged for analysis. For C06, the first 6 h of data
was spin-up time; we cut and merged the data from 19:00
to 18:00 UTC on the second day. C12, C18, and C24 used
the same method to extract and merge data, and their spin-up
times were the first 12, 18, and 24 h of data respectively.

3.2 ICON test using the restart files

The meteorological data for the 12–36 h period were cut to
estimate the PM2.5 concentrations by restarting the simula-
tion of the CAMx model. The ICBCPREP module also used
clean initial concentration fields at the beginning of the first
simulation day to use the restart files. The gridded 3-D in-
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Figure 6. Spatial distribution of PM10 emissions in Xi’an and its surrounding area. (a) Construction fugitive dust in Xi’an only. (b) All
surface PM10 emissions in Xi’an. The grid size is 3km× 3km. (Unit: gkm−2 s.)

stantaneous concentrations of all species on all grids were
written at the end of the simulation to allow for a model
restart. ICON then used the 24 h forecast results from the
day before as the initial conditions for the following days,
as shown in Fig. 7b. The first day of the simulation started
at 12:00 UTC, and the following days started at 00:00 UTC.
To explore how long the spin-up time should be to eliminate
the error caused by the initial value, the R1120 and R1124
sensitivity experiments were set at the first day of the model
simulation, which began on the 20 and 24 November 2016
respectively.

3.3 ICON test using the continuous simulation

For the continuous simulation, the CT12 and CT24 sensitiv-
ity experiments were set at the start time of the intercepted
time periods, which began at 00:00 UTC and 12:00 UTC re-
spectively, as shown in Fig. 7c. For CT12, the meteorological
data from the 12–36 h period were cut and merged into one
file. The 24–48 h period was cut and merged for CT24. We
also built the continuous emission files using the SMOKE
model. During the simulation, there was no interruption, and
a long-term sequence simulation result for each start time
was finally generated.

3.4 Emission test using different emission inventories

Based on the initial condition tests, we selected the best
method to perform the emission sensitivity experiments. We
compared the simulation results of the original emission in-
ventory (Enc sensitivity experiments) and the updated local
emission inventory with the construction fugitive dust emis-
sions (Ec sensitivity experiments) for the emission tests.

4 Results and discussion

In this study, we collected the observations in Decem-
ber 2016 and evaluated the model performance and improve-
ment. Hence, the model ability was evaluated using both the
meteorological field and daily PM2.5 simulations in Xi’an.

4.1 Model performance for the initial condition tests

There are 13 NSAQ stations in Xi’an, which are marked us-
ing squares in Fig. 2. Nine stations are in urban Xi’an, in-
cluding GYC, XQ, FZC, XZ, TYC, GXXQ, JKQ, QJ, and
GYT. Three stations are located in suburban towns, including
CAQ, YLQ, and LTQ. The CT station is the city background
station, which is located in an urban area in northern Xi’an.

4.1.1 Sensitivity experiments using clean initial
condition files

A Taylor nomogram (Taylor, 2001; Gates et al., 1999) was
used to evaluate the accuracy of the simulated PM2.5 daily
concentrations for NSAQ stations that were used for the
sensitivity experiments with clean initial condition files, as
shown in Fig. 8. There are three statistical parameters to eval-
uate model accuracy in the Taylor nomogram (Taylor, 2001;
Gates et al., 1999; Chang and Hanna, 2004): the correlation
coefficient (R), the normalised standard deviation (NSD),
and the normalised root mean square error (NRMSE). The
C00, C06, C12, C18, and C24 sensitivity experiments are
shown using different coloured symbols. We randomly se-
lected three stations in urban Xi’an, two stations in county
towns and a background station, to show the simulation re-
sults. “AVG” refers to the average of 13 NSAQ stations.

As shown in Fig. 8, R is between 0.36 and 0.76 for the
C00, C06, C12, C18, and C24 sensitivity experiments. The
R value is the largest and best for C24 for all NSAQ stations,
and is the lowest for C00. The NRMSE, which measures the
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Table 3. The simulation experiment configurations. C00–C24, R1120, R1124, CT12, and CT24 were used to investigate the impact of
simulation methods, the start time, and the extracted time period. The impact of different emission inventories was investigated using Ec and
Enc. C, R, and CT in the “Method” column represent the clean initial condition simulation methods, the restart simulation, and the continuous
simulation; nc and c in the “Emission inventory” column represent the original emission inventory and the updated local emission inventory
with the construction fugitive dust emissions respectively.

Experiment Method Emission inventory Start time and extracted time period

C00 C c 26 Nov 2016, 0–24 h
C06 C c 26 Nov 2016, 6–30 h
C12 C c 26 Nov 2016, 12–36 h
C18 C c 26 Nov 2016, 18–42 h
C24 C c 26 Nov 2016, 24–48 h
R1120 R c 20 Nov 2016, 12–36 h
R1124 R c 24 Nov 2016, 12–36 h
CT12 CT c 26 Nov 2016, 12–36 h
CT24/Ec CT c 26 Nov 2016, 24–48 h
CT24/Enc CT nc 26 Nov 2016, 24–48 h

distance from the marker to the REF (a perfect simulated re-
sult for the air quality model) in the Taylor nomogram, is
the smallest and best for C24 and is the longest for C00.
Regarding the NSD, most NSAQ stations have similar reg-
ularity – that is, the NSD values from C00 to C24 become
closer to one. The other statistical parameters are presented
in Table 4. From the C00 to C24 experiments, the absolute
mean bias (MB) and the mean error (ME) decreased from
51.07 to 3.72 µgm−3 and from 74.09 to 45.82 µgm−3 respec-
tively. The absolute normal mean bias (NMB) and the normal
mean error (NME) decreased from 29.73 % to 2.17 % and
from 43.12 % to 26.67 % respectively. The index of agree-
ment (IOA) increased from 0.50 to 0.8. In general, the model
performance is better for C24 than for the other sensitivity
experiments in the clean initial simulation tests.

4.1.2 Sensitivity experiments using restart files

The R1120 and R1124 sensitivity experiments were set at
the date of the first day of the model simulation in order to
explore the restart simulation. Starting from 12:00 UTC on
24 November, the PM2.5 concentration simulation results of
R1120 and R1124 are shown in Fig. 9. At first, the results
of the two sensitivity experiments are very different; the two
lines are then gradually fitted until 16:00 UTC on 25 Novem-
ber. After 16:00 UTC (on 25 November), the two lines fit al-
most completely. Therefore, a spin-up time of 27 h can elim-
inate the error introduced by the initial field for the PM2.5
concentrations in the CAMx model.

As shown in Table 4, the model performance of the R1120
and R1124 sensitivity experiments is similar in Decem-
ber 2016. The R value between the observations and simula-
tions for R1120 and R1124 was 0.70. The mean bias (MB)
and mean error (ME) were 4.01 and 49.68 µgm−3 respec-
tively. The normal mean bias (NMB) and normal mean error

(NME) were 2.33 % and 28.92 % respectively. The root mean
square error (RMSE) was 67.28, and the IOA reached 0.82.

4.1.3 Sensitivity experiments using the continuous
simulation

For the continuous simulation, sensitivity experiments were
conducted with CT12 and CT24. Although the CT12 and
R1120 sensitivity experiments use different methods to gen-
erate the initial concentration fields, the start times of the
intercepted time periods for the two experiments were the
same. The PM2.5 concentrations of CT12 and R1120 are pre-
sented in Fig. 10. As shown in Fig. 10, the points lie very
close to the perfect line “y = x”, which indicates that the
simulation results of CT12 and R1120 were nearly identical.

The model starting times of the CT12 and CT24 sensitivity
experiments are 26 November at 00:00 UTC and 26 Novem-
ber at 12:00 UTC respectively. The concentration accumula-
tion of CT24 was 12 h higher than that of CT12. As shown
in Fig. 11, there is an air pollution peak in December 2016,
for which CT24 matches better than CT12. The statistical
parameters of CT12 and CT24 are presented in Table 4. The
mean bias (MB) and mean error (ME) of the CT24 results
were 6.29 and 42.67 µgm−3 respectively, which are slightly
better than the CT12 results. The root mean square error
(RMSE) of the CT24 results is 68.21, which is also slightly
better than the CT12 results. From CT12 to CT24, the R and
IOA increased from 0.69 to 0.81 and from 0.81 to 0.90 re-
spectively. Thus, the sensitivity experiments with CT24 show
better model performance than CT12.

4.2 Model performance for the emission tests

A Taylor nomogram for the modelled and observed daily av-
eraged PM2.5 concentrations for all initial condition sensitiv-
ity experiments is shown in Fig. 13. The red symbols indicate
the sensitivity experiment using the clean initial condition
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Figure 7. Time period for each initial condition experiment. Panel (a) shows the time period for the clean initial condition experiments
(denoted using C). The output files from CAMx were initialised at 13:00 UTC every day, and the CAMx model forecasted the next 48 h
of PM2.5 concentrations in each simulation cycle. The C00, C06, C12, C18, and C24 sensitivity experiments extract different time periods
(0–24, 6–30, 12–36, 18–42, and 24–48 h respectively) in each output file as valid data, represented by the grids with a number in them. Each
grid represents an hour, and the numbers in the grids indicate the hours of the data. The grids with numbers in them represent the valid
time period for each output file. The 24 h of data from a day is cut and merged from 16:00 UTC in the valid time period of each output file
to analyse from 00:00 Beijing time (16:00 UTC) every day. The shaded grids represent the data for 1 single day. Panel (b) shows the time
period for the restart experiments (denoted using R). The meteorological data from the 12–36 h period were extracted to estimate the PM2.5
concentrations by restarting the simulation. The first day of the simulation starts at 12:00 UTC, and the following days start at 00:00 UTC.
Panel (c) shows the time period for the continuous simulation experiments (denoted using CT). The meteorological data from the 12–36 h
period were cut and merged into one file for CT12, and data from the 24–48 h period were cut and merged for CT24.

files, the blue symbols represent the sensitivity experiments
using the restart files, and the brown symbols show the con-
tinuous simulation sensitivity experiments. One experiment
is shown per symbol. The circles and triangles represent the
“bias”. As shown in Fig. 13, the R value is between 0.36
and 0.81 for all initial condition sensitivity experiments. The
CT24 R value is highest in all of the initial condition sen-
sitivity experiments. The CT24 marker has the shortest dis-
tance to the “REF” compared with the other initial condi-
tion sensitivity experiments, which means that the NRMSE
is the lowest. The NSD of CT24 is 0.92, which shows that
the modelled and observed patterns have a more consistent
variation amplitude. According to these statistical parame-

ters, the CT24 sensitivity experiments show the best model
performance compared with the other initial condition sensi-
tivity experiments.

Based on the initial condition tests, we selected the best
method, CT24, to perform the emission sensitivity experi-
ments, as shown in Fig. 12. CT24 is the experiment with con-
struction fugitive dust emissions (Ec sensitivity experiment),
and the Enc sensitivity experiments do not include these
emissions. As shown in Fig. 12, the simulated PM2.5 con-
centrations of Ec exhibited better model performance than
those of Enc in the high-concentration range. As shown in
Fig. 13, the R values for Ec and Enc are 0.81 and 0.85 re-
spectively. The NRMSE for Enc is lower than that for Ec,
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Figure 8. Taylor nomogram for modelled and observed daily av-
eraged PM2.5 concentrations for the sensitivity experiment using
the clean initial condition files. “AVG” refers to the average of 13
NSAQ stations. The C00, C06, C12, C18, and C24 sensitivity exper-
iments are represented using different coloured symbols. According
to Chang and Hanna (2004), REF represents a perfect simulated re-
sult for the air quality model.

Figure 9. The time series of hourly simulated PM2.5 concentrations
using the restart files during a spin-up time period. The red and blue
lines represent the R1120 and R1124 model sensitivity experiments
respectively. The starting day of the model simulation for R1120
was 20 November 2016, and the starting day of the model simula-
tion for R1124 was 24 November 2016.

as shown in the Taylor nomogram. However, the NSD of Ec
(0.92) is better than that of Enc (0.74). Moreover, the bias of
Enc is much larger than that of Ec. The other statistical pa-
rameters are presented in Table 4. The ME decreased from
49.18 to 42.67 µgm−3, and the IOA of the simulation results
with the updated local emissions was 0.90. Thus, compared
with the simulation results based on the original emission in-
ventory, the new simulation results, driven by the updated
local emissions, showed improved performance with respect
to PM2.5 concentrations.

Figure 10. Scatter diagram of the R1120 and CT12 experiments for
PM2.5 concentrations. The “y = x” line represents that the simu-
lated value from R1120 is the same as CT12.

Figure 11. Time series of the daily PM2.5 concentrations for the
continuous simulation for Xi’an. The black line represents obser-
vations, and the blue and red lines show simulated data starting on
26 November at 00:00 UTC and on 26 November at 12:00 UTC re-
spectively.

4.3 Model performance for SO2 and NO2

Sulfur dioxide (SO2) and nitrogen dioxide (NO2) concen-
trations are important precursors of SO4 and NO3, which
are particulate matter components. Figure 14 shows the time
series of daily average SO2 and NO2 concentrations from
13 NSAQ observation stations from the initial restart sim-
ulation, and the statistical results are listed in Table 5. The
model shows an evident overestimation of SO2, with an av-
erage bias of 156.31 µgm−3; the observed SO2 concentration
is also only 18 % of the simulated value. The main reason
for this is the fact that the implementation of desulfurisation
projects for important emission sources, such as coal-fired
power plants, has not been fully considered, which has led
to an overestimation of SO2 emissions in the emission in-
ventory. C. Li et al. (2017) found that the SO2 emissions in
China decreased by 75 % from 2007 to 2016 (i.e. SO2 emis-
sions in 2016 were about 25 % of those in 2007). In addition,
the intensity of emission reduction has an uneven spatial dis-
tribution. The model performance of the NO2 concentration
is better: the IOA is 0.82, and the MB is only 3.32 µgm−3.
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Table 4. Statistical measures of the modelled daily PM2.5 in Xi’an (unit: µgm−3).

R MB (µgm−3) ME (µgm−3) NMB (%) NME (%) RMSE IOA

C00 0.36 −51.07 74.09 −29.73 43.12 100.72 0.49
C06 0.48 −24.17 60.95 −14.07 35.48 85.50 0.61
C12 0.58 −12.88 53.25 −7.50 30.99 76.64 0.70
C18 0.68 −7.00 48.83 −4.08 28.42 68.85 0.78
C24 0.76 −3.72 45.82 −2.17 26.67 60.12 0.86
R1120 0.70 4.01 49.68 2.33 28.92 67.28 0.82
R1124 0.70 4.01 49.68 2.33 28.92 67.28 0.82
CT12 0.69 6.73 50.20 3.92 29.22 68.21 0.81
CT24/Ec 0.81 6.29 42.67 3.66 24.83 55.29 0.90
CT24/Enc 0.85 −35.16 49.18 −20.47 28.63 61.22 0.86

Figure 12. Time series of daily observed and simulated PM2.5 con-
centrations averaged from 13 NSAQ observation stations during
December 2016 in Xi’an. The black line represents the observa-
tions, the blue line represents simulated values from the CAMx
model including construction fugitive dust, and the red line repre-
sents the simulated values without construction fugitive dust.

There is high consistency in the variation trend between the
simulated and observed SO2 and NO2 concentrations, with
R values of 0.81 and 0.75 respectively.

5 Conclusions

The WRF-SMOKE-CAMx model system was used to simu-
late fine particulate matter (PM2.5) concentrations in Xi’an in
December 2016. In this study, the construction fugitive dust
emissions in Xi’an were added to the SMOKE model to up-
date the local emission inventory. A series of model sensitiv-
ity experiments for the initial conditions and emissions were
designed to improve the model performance in the Chinese
megacity of Xi’an.

Three methods were applied for the initial condition tests:
using the clean initial condition files as a clean initial sim-
ulation, using the restart files as a restart simulation, and
a continuous simulation. The updated emission inventories
drive all initial condition sensitivity experiments. The emis-
sion tests are based on the initial condition sensitivity exper-
iment, which has the best model performance.

Figure 13. Taylor nomogram for modelled and observed daily
PM2.5 concentrations for all sensitivity experiments using differ-
ent initial conditions and emissions. The red symbols indicate the
clean initial simulations, the blue symbols represent the restart sim-
ulations, the brown symbols show the continuous simulation sensi-
tivity experiment, and the orange symbols represent emission tests.
The triangles and circles signify “Bias”. The triangle’s size repre-
sents the bias value, and the direction of the triangle’s vertex repre-
sents a positive or negative bias.

Comparing the model performance of PM2.5 concentra-
tions in different model sensitivity experiments in Xi’an, we
found that the model combining the continuous simulation
method and the updated local emission inventory can effec-
tively improve the model performance. According to statis-
tical parameters, for initial condition tests, the model perfor-
mance is best for the CT24, C24, and R1120 and R1124 sim-
ulations. The R values range from 0.36 to 0.81 in all initial
condition sensitivity experiments. The R value of CT24 is
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Table 5. Statistical verification parameters of SO2 and NO2 during December 2016 in Xi’an. “Obs.” denotes observations, and “Sim.” denotes
simulated values.

Species Mean (µgm−3) R MB ME NMB NME RMSE IOA

Obs. Sim. (µgm−3) (µgm−3)

SO2 35.45 191.76 0.81 156.31 156.31 4.41 4.41 171.73 0.11
NO2 76.77 80.09 0.75 3.32 12.86 0.04 0.17 17.13 0.82

Figure 14. Time series of daily observed and simulated SO2 (a)
and NO2 (b) concentrations averaged from 13 NSAQ observation
stations during December 2016 in Xi’an. The black and green lines
indicate observed and simulated results respectively.

the largest and best in all initial condition sensitivity exper-
iments. The R values of C24 and R1120/R1124 can reach
0.76 and 0.70 respectively. The MB values of CT24, C24,
and R1120/R1124 are lower: 6.29, −3.72, and 4.01 µgm−3

respectively. The IOA of CT24, C24, and R1120/R1124
reached above 0.8: the IOA of CT24 was 0.9. Compared with
other methods, the method of using the clean initial condition
files has a longer simulation time and larger data volume.
Therefore, the continuous simulation method for hindcasts,
which is used to retrieve PM2.5 concentrations, is suggested.
For air quality forecasting, the restart simulation method is
recommended. In addition, when simulating PM2.5 concen-
trations using the CAMx model, the simulation requires a
spin-up time of at least 27 h. This can improve the simula-
tion results and reduce the simulation time.

This study updated the emissions inventory, which added
construction fugitive dust emissions to the original emissions
inventory. Compared with the simulation results based on
the original emission inventory, the new simulation results,
which were driven by the updated local emissions, showed
much better performance with respect to PM2.5 modelling.
The absolute MB decreased from 35.16 to 6.29 µgm−3, and
the IOA of simulation results with the updated local emis-
sions was 0.90. Therefore, the right addition of emissions
will also help to improve the simulation and forecasting.

Finally, we recommend the continuous simulation method
for hindcasts, as it performs best for PM2.5 concentrations

and can also reduce the output of IO (daily grid instanta-
neous concentration) files to improve computing efficiency.
For forecasting, the restart simulation method is suggested,
which can reach similar model performance to the continu-
ous simulation. If the restart simulation cannot be used owing
to computing resource and storage space limitations when
forecasting PM2.5 concentrations, we attempt to extend the
spin-up time as much as possible – to at least 27 h according
to our results.
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Appendix A: Statistical parameters for model
evaluation

The mean bias (MB) was calculated as follows:

MB=
∑
(Mi −Oi)

n
(A1)

The mean error (ME) was calculated as follows:

ME=
∑
|Mi −Oi |

n
(A2)

The normalised mean bias (NMB) was calculated as follows:

NMB=
∑
(Mi −Oi)∑

Oi
(A3)

The normalised mean error (NME) was calculated as fol-
lows:

NME=
∑
|Mi −Oi |∑

Oi
(A4)

The root mean square error (RMSE) was calculated as fol-
lows:

RMSE=

[
1
n

n∑
i=1

(Mi −Oi)
2

] 1
2

(A5)

The correlation coefficient (R) was calculated as follows:

R =

n∑
i=1
(Mi − M̄)(Oi − Ō)√

n∑
i=1
(Mi − M̄)2

N∑
i=1
(Oi − Ō)2

(A6)

The index of agreement (IOA) was calculated as follows:

IOA= 1−

n∑
i=1
(Mi −Oi)

2

n∑
i=1
(
∣∣Mi − Ō

∣∣+ |Oi − Ō|)2 (A7)

The normalised standard deviation (NSD) was calculated as
follows:

NSD=

√
n∑
i=1
(Mi−M̄)

2

n√
n∑
i=1
(Oi−Ō)

2

n

(A8)

The normalised root mean square error (NRMSE) was calcu-
lated as follows:

NRMSE=

√√√√ [(Mi −M)− (Oi −O)]2

σOi
, (A9)

whereMi andOi represent the simulated and observed value
of a station respectively, n represents the number of stations,
M̄ and Ō represent the averages of the simulated and ob-
served values respectively, and σOi represents the standard
deviation over the observed value.
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cess: 4 June 2020, National Centers for Environmental Predic-
tion/National Weather Service/NOAA/U.S. Department of Com-
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