Articles | Volume 14, issue 3
https://doi.org/10.5194/gmd-14-1237-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-1237-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
On the model uncertainties in Bayesian source reconstruction using an ensemble of weather predictions, the emission inverse modelling system FREAR v1.0, and the Lagrangian transport and dispersion model Flexpart v9.0.2
Pieter De Meutter
CORRESPONDING AUTHOR
Radiation Protection Bureau, Health Canada, 775 Brookfield Road, Ottawa, Canada
Belgian Nuclear Research Institute, Boeretang 200, Mol, Belgium
Royal Meteorological Institute of Belgium, Ringlaan 3, Brussels, Belgium
Ian Hoffman
Radiation Protection Bureau, Health Canada, 775 Brookfield Road, Ottawa, Canada
Kurt Ungar
Radiation Protection Bureau, Health Canada, 775 Brookfield Road, Ottawa, Canada
Related authors
Stijn Van Leuven, Pieter De Meutter, Johan Camps, Piet Termonia, and Andy Delcloo
Atmos. Chem. Phys., 25, 9199–9218, https://doi.org/10.5194/acp-25-9199-2025, https://doi.org/10.5194/acp-25-9199-2025, 2025
Short summary
Short summary
We use deposition measurements to trace the source of the radioactive isotope 106Ru released into the atmosphere in 2017, which led to detections in Europe and other parts of the Northern Hemisphere. Most frequently, measurements of air concentration are used for such purposes. Our research shows that, while air concentration data can provide more precise results, deposition measurements can still effectively pinpoint the release location, offering a less costly and more versatile alternative.
Jens Peter Karolus Wenceslaus Frankemölle, Johan Camps, Pieter De Meutter, and Johan Meyers
Geosci. Model Dev., 18, 1989–2003, https://doi.org/10.5194/gmd-18-1989-2025, https://doi.org/10.5194/gmd-18-1989-2025, 2025
Short summary
Short summary
To detect anomalous radioactivity in the environment, it is paramount that we understand the natural background level. In this work, we propose a statistical model to describe the most likely background level and the associated uncertainty in a network of dose rate detectors. We train, verify, and validate the model using real environmental data. Using the model, we show that we can correctly predict the background level in a subset of the detector network during a known
anomalous event.
Stijn Van Leuven, Pieter De Meutter, Johan Camps, Piet Termonia, and Andy Delcloo
Geosci. Model Dev., 16, 5323–5338, https://doi.org/10.5194/gmd-16-5323-2023, https://doi.org/10.5194/gmd-16-5323-2023, 2023
Short summary
Short summary
Precipitation collects airborne particles and deposits these on the ground. This process is called wet deposition and greatly determines how airborne radioactive particles (released routinely or accidentally) contaminate the surface. In this work we present a new method to improve the calculation of wet deposition in computer models. We apply this method to the existing model FLEXPART by simulating the Fukushima nuclear accident (2011) and show that it improves the simulation of wet deposition.
Stijn Van Leuven, Pieter De Meutter, Johan Camps, Piet Termonia, and Andy Delcloo
Atmos. Chem. Phys., 25, 9199–9218, https://doi.org/10.5194/acp-25-9199-2025, https://doi.org/10.5194/acp-25-9199-2025, 2025
Short summary
Short summary
We use deposition measurements to trace the source of the radioactive isotope 106Ru released into the atmosphere in 2017, which led to detections in Europe and other parts of the Northern Hemisphere. Most frequently, measurements of air concentration are used for such purposes. Our research shows that, while air concentration data can provide more precise results, deposition measurements can still effectively pinpoint the release location, offering a less costly and more versatile alternative.
Jens Peter Karolus Wenceslaus Frankemölle, Johan Camps, Pieter De Meutter, and Johan Meyers
Geosci. Model Dev., 18, 1989–2003, https://doi.org/10.5194/gmd-18-1989-2025, https://doi.org/10.5194/gmd-18-1989-2025, 2025
Short summary
Short summary
To detect anomalous radioactivity in the environment, it is paramount that we understand the natural background level. In this work, we propose a statistical model to describe the most likely background level and the associated uncertainty in a network of dose rate detectors. We train, verify, and validate the model using real environmental data. Using the model, we show that we can correctly predict the background level in a subset of the detector network during a known
anomalous event.
Stijn Van Leuven, Pieter De Meutter, Johan Camps, Piet Termonia, and Andy Delcloo
Geosci. Model Dev., 16, 5323–5338, https://doi.org/10.5194/gmd-16-5323-2023, https://doi.org/10.5194/gmd-16-5323-2023, 2023
Short summary
Short summary
Precipitation collects airborne particles and deposits these on the ground. This process is called wet deposition and greatly determines how airborne radioactive particles (released routinely or accidentally) contaminate the surface. In this work we present a new method to improve the calculation of wet deposition in computer models. We apply this method to the existing model FLEXPART by simulating the Fukushima nuclear accident (2011) and show that it improves the simulation of wet deposition.
Cited articles
Becker, A., Wotawa, G., De Geer, L.-E., Seibert, P., Draxler, R. R., Sloan, C., D'Amours, R., Hort, M., Glaab, H., Heinrich, P., Grillon Vyacheslav Shershakov, Y., Katayama, K., Zhang, Y., Stewart, P., Hirtl, M., Jean, M., and Chen, P.: Global
backtracking of anthropogenic radionuclides by means of a receptor oriented
ensemble dispersion modelling system in support of Nuclear-Test-Ban Treaty
verification, Atmos. Environ., 41, 4520–4534,
https://doi.org/10.1016/j.atmosenv.2006.12.048, 2007. a
Bocquet, M.: High-resolution reconstruction of a tracer dispersion event:
application to ETEX, Q. J. Roy. Meteor. Soc., 133, 1013–1026, https://doi.org/10.1002/qj.64, 2007. a
Bonavita, M., Hólm, E., Isaksen, L., and Fisher, M.: The evolution of the
ECMWF hybrid data assimilation system, Q. J. Roy. Meteor. Soc., 142, 287–303, https://doi.org/10.1002/qj.2652, 2016. a
Bossew, P., Gering, F., Petermann, E., Hamburger, T., Katzlberger, C.,
Hernandez-Ceballos, M., De Cort, M., Gorzkiewicz, K., Kierepko, R., and
Mietelski, J.: An episode of Ru-106 in air over Europe, September–October
2017–Geographical distribution of inhalation dose over Europe, J.
Environ. Radioactiv., 205, 79–92,
https://doi.org/10.1016/j.jenvrad.2019.05.004, 2019. a, b
Currie, L. A.: Limits for qualitative detection and quantitative determination.
Application to radiochemistry, Analyt. Chem., 40, 586–593,
https://doi.org/10.1021/ac60259a007, 1968. a, b
De Meutter, P. and Delcloo, A.: SRS data, Zenodo, https://doi.org/10.5281/zenodo.4003640, 2020. a
De Meutter, P., Camps, J., Delcloo, A., and Termonia, P.: Source localisation
and its uncertainty quantification after the third DPRK nuclear test,
Sci. Rep.-UK, 8, 10155, https://doi.org/10.1038/s41598-018-28403-z, 2018. a
De Meutter, P., Camps, J., Delcloo, A., and Termonia, P.: Source Localization
of Ruthenium-106 Detections in Autumn 2017 Using Inverse Modelling, in:
Mensink C., Gong W., Hakami A. (eds) Air Pollution Modeling and its
Application XXVI. ITM 2018. Springer Proceedings in Complexity., Springer,
Cham, https://doi.org/10.1007/978-3-030-22055-6_15, 2020. a, b, c, d
De Meutter, P., Hoffman, I., and Hladun, N.: FREAR source code, Zenodo, https://doi.org/10.5281/zenodo.4588282, 2021. a
Engström, A. and Magnusson, L.: Estimating trajectory uncertainties due to flow dependent errors in the atmospheric analysis, Atmos. Chem. Phys., 9, 8857–8867, https://doi.org/10.5194/acp-9-8857-2009, 2009. a
Flexpart: Flexpart, available at: https://www.flexpart.eu/, last access: 1
September 2020. a
Harris, J. M., Draxler, R. R., and Oltmans, S. J.: Trajectory model sensitivity
to differences in input data and vertical transport method, J.
Geophys. Res.-Atmos., 110, 1–8, https://doi.org/10.1029/2004JD005750, 2005. a
Hegarty, J., Draxler, R. R., Stein, A. F., Brioude, J., Mountain, M.,
Eluszkiewicz, J., Nehrkorn, T., Ngan, F., and Andrews, A.: Evaluation of
Lagrangian particle dispersion models with measurements from controlled
tracer releases, J. Appl. Meteorol. Climatol., 52,
2623–2637, https://doi.org/10.1175/JAMC-D-13-0125.1, 2013. a
Leutbecher, M.: Ensemble size: How suboptimal is less than infinity?, Q. J. Roy. Meteor. Soc., 145, 107–128,
https://doi.org/10.1002/qj.3387, 2019. a
Leutbecher, M. and Palmer, T. N.: Ensemble forecasting, J.
Comput. Phys., 227, 3515–3539, https://doi.org/10.1016/j.jcp.2007.02.014,
2008. a
Masson, O., Steinhauser, G., Wershofen, H., Mietelski, J. W., Fischer, H. W., Pourcelot, L., Saunier, O., Bieringer, J., Steinkopff, T., Hýža, M., Møller, B., Bowyer, T. W., Dalaka, E., Dalheimer, A., de Vismes-Ott, A., Eleftheriadis, K., Forte, M., Gasco Leonarte, C., Gorzkiewicz, K., Homoki, Z., Isajenko, K., Karhunen, T., Katzlberger, C., Kierepko, R., Kövendiné Kónyi, J., Malá, H., Nikolic, J., Povinec, P. P., Rajacic, M., Ringer, W., Rulík, P., Rusconi, R., Sáfrány, G., Sykora, I., Todorović, D., Tschiersch, J., Ungar, K., and Zorko, B.:
Potential source apportionment and meteorological conditions involved in
airborne 131I detections in January/February 2017 in Europe, Environ.
Sci. Technol., 52, 8488–8500, https://doi.org/10.1021/acs.est.8b01810, 2018. a
Masson, O., Steinhauser, G., Zok, D., Saunier, O., Angelov, H., Babić, D., BeĊková, V., Bieringer, J., Bruggeman, M., Burbidge, C. I., Conil, S., Dalheimer, A., De Geer, L.-E., de Vismes Ott, A., Eleftheriadis, K., Estier, S., Fischer, H., Garavaglia, M. G., Gasco, Leonarte, C., Gorzkiewicz, K., Hainz, D., Hoffman, I., Hýža, M., Isajenko, K., Karhunen, T., Kastlander, J., Katzlberger, C., Kierepko, R., Knetsch, G.-J., Kövendiné Kónyi, J., Lecomte, M., Mietelski, J. W., Min, P., Møller, B., Nielsen, S. P., Nikolic, J., Nikolovska, L., Penev, I., Petrinec, B., Povinec, P. P., Querfeld, R., Raimondi, O., Ransby, D., Ringer, W., Romanenko, O., Rusconi, R., Saey, P. R. J., Samsonov, V., Šilobritienė, B., Simion, E., Söderström, C., Šoštarić, M., Steinkopff, T., Steinmann, P., Sýkora, I., Tabachnyi, L., Todorovic, D., Tomankiewicz, E., Tschiersch, J., Tsibranski, R., Tzortzis, M., Ungar, K., Vidic, A., Weller, A., Wershofen, H., Zagyvai, P., Zalewska, T., Zapata García, D., and Zorko, B.:
Airborne concentrations and chemical considerations of radioactive ruthenium
from an undeclared major nuclear release in 2017, P. Natl.
Acad. Sci. USA, 116, 16750–16759, https://doi.org/10.1073/pnas.1907571116,
2019. a, b
Ringbom, A., Axelsson, A., Aldener, M., Auer, M., Bowyer, T. W., Fritioff, T., Hoffman, I., Khrustalev, K., Nikkinen, M., Popov, V., Popov, Y., Ungar, K., and Wotawa, G.: Radioxenon
detections in the CTBT international monitoring system likely related to the
announced nuclear test in North Korea on February 12, 2013, J.
Environ. Radioactiv., 128, 47–63,
https://doi.org/10.1016/j.jenvrad.2013.10.027, 2014. a
Saunier, O., Didier, D., Mathieu, A., Masson, O., and Le Brazidec, J. D.:
Atmospheric modeling and source reconstruction of radioactive ruthenium from
an undeclared major release in 2017, P. Natl. Acad.
Sci. USA, 116, 24991–25000, https://doi.org/10.1073/pnas.1907823116, 2019. a, b
Seibert, P. and Frank, A.: Source–receptor matrix calculation with a Lagrangian particle dispersion model in backward mode, Atmos. Chem. Phys., 4, 51–63, https://doi.org/10.5194/acp-4-51-2004, 2004. a, b
Sørensen, J. H.: Method for source localization proposed and applied to the
October 2017 case of atmospheric dispersion of Ru-106, J.
Environ. Radioactiv., 189, 221–226,
https://doi.org/10.1016/j.jenvrad.2018.03.010, 2018. a, b
Steinhauser, G.: Anthropogenic radioactive particles in the environment,
J. Radioanal. Nucl. Ch., 318, 1629–1639,
https://doi.org/10.1007/s10967-018-6268-4, 2018. a
Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G.: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2, Atmos. Chem. Phys., 5, 2461–2474, https://doi.org/10.5194/acp-5-2461-2005, 2005. a
Stohl, A., Seibert, P., Wotawa, G., Arnold, D., Burkhart, J. F., Eckhardt, S., Tapia, C., Vargas, A., and Yasunari, T. J.: Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition, Atmos. Chem. Phys., 12, 2313–2343, https://doi.org/10.5194/acp-12-2313-2012, 2012.
a
Vrugt, J. A., Ter Braak, C., Diks, C., Robinson, B. A., Hyman, J. M., and
Higdon, D.: Accelerating Markov chain Monte Carlo simulation by
differential evolution with self-adaptive randomized subspace sampling,
Int. J. Nonlin. Sci. Num., 10,
273–290, https://doi.org/10.1515/IJNSNS.2009.10.3.273, 2009. a
Yee, E.: Inverse dispersion for an unknown number of sources: model selection
and uncertainty analysis, ISRN Applied Mathematics, 2012, 1–20,
https://doi.org/10.5402/2012/465320, 2012. a, b, c, d
Short summary
Inverse atmospheric transport modelling is an important tool in several disciplines. However, the specification of atmospheric transport model error remains challenging. In this paper, we employ a state-of-the-art ensemble technique combined with a state-of-the-art Bayesian inference algorithm to infer point sources. Our research helps to fill the gap in our understanding of model error in the context of inverse atmospheric transport modelling.
Inverse atmospheric transport modelling is an important tool in several disciplines. However,...