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Abstract. Bayesian source reconstruction is a powerful
tool for determining atmospheric releases. It can be used,
amongst other applications, to identify a point source releas-
ing radioactive particles into the atmosphere. This is rele-
vant for applications such as emergency response in case of a
nuclear accident or Comprehensive Nuclear-Test-Ban treaty
verification. The method involves solving an inverse prob-
lem using environmental radioactivity observations and at-
mospheric transport models. The Bayesian approach has the
advantage of providing an uncertainty quantification on the
inferred source parameters. However, it requires the speci-
fication of the inference input errors, such as the observa-
tion error and model error. The latter is particularly hard
to provide as there is no straightforward way to determine
the atmospheric transport and dispersion model error. Here,
the importance of model error is illustrated for Bayesian
source reconstruction using a recent and unique case where
radionuclides were detected on several continents. A numer-
ical weather prediction ensemble is used to create an ensem-
ble of atmospheric transport and dispersion simulations, and
a method is proposed to determine the model error.

1 Introduction

Nuclear facilities release a certain amount of anthropogenic
radioactive particulates or gases into the atmosphere, which
are transported and dispersed by the wind. These releases
can either be routine or accidental. Several countries run a
network of stations to monitor airborne levels of environ-
mental radioactivity (Steinhauser, 2018). These monitoring
networks allow the verification of compliance with regula-
tory release limits but also the detection of reported and un-
reported nuclear events. Recent examples include the detec-
tions of 13T in Europe (Masson et al., 2018) or '%°Ru detec-
tions on the Northern Hemisphere (Masson et al., 2019).

On the international scale, the radionuclide component of
the International Monitoring System will consist of 80 sta-
tions measuring radioactive particulates (of which at least 40
will be equipped with radioactive noble gas detectors). This
network is being set up to verify compliance with the Com-
prehensive Nuclear-Test-Ban Treaty once it enters into force.
In the past, anomalous radionuclide detections were made
that are likely linked to a nuclear explosion (Ringbom et al.,
2014; De Meutter et al., 2018).

If an anomalous! detection occurred (either from a nu-
clear accident or a clandestine nuclear weapon test), methods

! Anomalous radionuclide detections are detections of anthro-
pogenic radionuclides originating from upwind nuclear facilities,
where the detected concentration of (a) specific radionuclide(s)
and/or the combination of several detected radionuclides are anoma-
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are needed that relate the detection with its source or poten-
tial sources if the source is unknown. One of these meth-
ods is atmospheric transport and dispersion modelling. An
atmospheric transport and dispersion model typically simu-
lates the transport, dispersion, dry and wet deposition, and ra-
dioactive decay of radionuclides released in the atmosphere.
These processes establish a linear relationship between the
concentrations at receptors and the release amount at the
source. One can calculate such source—receptor relationships
(Seibert and Frank, 2004) between a fixed source and several
receptors or stations (when modelling forward in time) or
between a fixed receptor and several potential sources (when
modelling backwards in time).

A significant event of interest will often be accompanied
by multiple detections taken at multiple stations. Statistical
methods can then be employed to combine the information
from all these detections (and possibly non-detections — ob-
servations where the activity concentration is below a mini-
mum detectable concentration) in a meaningful way in order
to infer relevant information on the source. In cases with an
unknown source, the objective is often to find the source lo-
cation, release time and release amount. In case of a known
source, the source location and perhaps also the release times
are known. In that case, the release amount and release height
can be inferred to refine a previous release estimate obtained
through other ways (for instance, an estimation could be
made based on accident scenarios and the known or esti-
mated inventory of a reactor). The process of inferring in-
formation on the source based on observations is called in-
verse modelling. Several methods exist, ranging from simply
calculating correlations between observations and source—
receptor sensitivities to locate the source (Becker et al., 2007)
to more elaborate methods such as optimization methods us-
ing cost functions (e.g., Stohl et al., 2012), data assimilation
(e.g., Bocquet, 2007) or Bayesian inference (e.g., Yee, 2012).

Of these methods, the Bayesian inference has the advan-
tage of readily providing an uncertainty quantification on the
outcome. However, the quality of the inference and the un-
certainty quantification depends on the quality of input un-
certainties. Typically, one specifies the observation error and
model error. Here, the model error relates to errors in the at-
mospheric transport and dispersion model. These errors are
very hard to readily quantify, mainly because of the under-
lying numerical weather prediction data that are used to cal-
culate the transport and dispersion (Harris et al., 2005; En-
gstrom and Magnusson, 2009; Hegarty et al., 2013). The er-
rors associated with numerical weather prediction depend on
the atmospheric state and thus vary between locations and
from day to day.

A well-established method to quantify uncertainties in nu-
merical weather predictions is the ensemble method (Leut-

lous with respect to the station’s detection history and/or with re-
spect to what can be expected from these upwind nuclear facilities
operating under normal conditions.
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becher and Palmer, 2008). For simplicity, let us focus on
single-model ensembles. Such ensembles are created using
a single model and consist of a set of one unperturbed and
several perturbed scenarios or model predictions. These sce-
narios are designed in such a way that the spread among the
different scenarios represent the uncertainty of an individ-
ual model prediction. Each scenario (also called an ensemble
member) is created by perturbing certain input data and/or
using different parameterization schemes (except for the un-
perturbed member, which is created by running the model
with the best available input and parameterization schemes).
The key to create a good ensemble lies in providing realistic
perturbations. The latter is a very complex task that requires
expert knowledge of all data, processes and their associated
uncertainties at each level of the modelling process. Ideally,
one has a large number of distinct ensemble members (so
that many different but realistic scenarios can be obtained).
However, the huge computational cost of running an ensem-
ble and storing its vast amount of data limits the number of
ensemble members. Therefore, ensembles used operationally
at major weather institutes around the world are designed in
a way that, even with a limited number of members (between
14 and 50, Leutbecher, 2019), the ensemble tries to capture
all (and not more) of the possible outcomes.

Yee et al. (2014) demonstrated the significant impact of
model error on the outcome of Bayesian source reconstruc-
tion by employing two different measurement models for
the incorporation of the model error (a measurement model
relates the model variable with the observation). Neverthe-
less, given the difficulty of quantifying the model error, many
studies instead rely on assumptions regarding the model error
structure and scale. In this paper, an ensemble of atmospheric
transport model simulations is used to determine the model
error used in the Bayesian inference. The effect of different
model error formulations on the source localization is stud-
ied for a recent case where "°Ru was observed throughout
the Northern Hemisphere in autumn 2017. In this study, the
Bayesian source reconstruction tool FREAR (FREAR stands
for Forensic Radionuclide Event Analysis and Reconstruc-
tion) described in De Meutter and Hoffman (2020) will be
used. FREAR was designed to determine the properties of
point releases (release location, release amount, and release
start and release stop times) based on observations from one
or more sparse measuring networks. Expert information can
be taken into account through the prior distribution.

In Sect. 2, the case that is used to illustrate how the ensem-
ble can be used to determine the model error is described.
The observational and model data are also described. Sec-
tion 3 describes the Bayesian inference system. Section 4 de-
scribes the effect of model error on the source location prob-
ability maps. The uncertainty parameters are fitted using the
ensemble in Sect. 5. The ensemble is used in a scenario-based
way in Sect. 6. This allows the testing of whether informa-
tion is lost when using the ensemble solely to fit uncertainty
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parameters as performed in Sect. 5. Finally, conclusions are
given in Sect. 7.

2 Description of the case

In autumn 2017, several national and international monitor-
ing networks reported the detection of '°°Ru and to a lesser
extent B3Ry (Masson et al., 2019). However, to date no
country or facility has claimed responsibility for the release.
106Ry (half-life: 373.6 d) and '°3Ru (half-life: 39.26 d) are ra-
dioactive particulates that do not have natural sources. Since
no other fission products such as iodine and cesium were
measured, a nuclear reactor accident can be excluded. Sev-
eral studies using direct and inverse atmospheric transport
modelling showed that a release in the region of the southern
Ural mountains in Russia can best explain the observations
(Sgrensen, 2018; Saunier et al., 2019; Bossew et al., 2019;
De Meutter et al., 2020). Two major nuclear facilities are lo-
cated in that area: the Research Institute of Atomic Reactors
and the Mayak Production Association (Fig. 1).

Here, we revisit the modelling data used in De Meutter
et al. (2020) but perform a Bayesian analysis instead of a cost
function analysis. We apply our methods to this case as it of-
fers a very interesting data set since (i) there were detections
on multiple continents, (ii) the single-source assumption is
likely valid as there is no measurable global background from
anthropogenic sources, and (iii) it is a recent case and thus
state-of-the-art numerical weather data are readily available.
However, we stress that the case study is used here to exam-
ine the model error structure for a Bayesian source recon-
struction and how an ensemble can provide insight into the
model error structure and scale; it is not our goal as such to
find the origin of the reported '°°Ru and '%3Ru.

2.1 Activity concentration observations

A total of 12 '%°Ru detections have been used from five dif-
ferent stations of the International Monitoring System, which
is being commissioned to verify compliance with the Com-
prehensive Nuclear-Test-Ban Treaty once it enters into force.
The observations, with their associated sampling times, are
listed in Table 1. The location of these stations are shown
in Fig. 1. The stations sample approximately 20 000m> of
air during a period of 24 h, during which radioactive particu-
lates — if present — are captured on a filter. The filter is then
analyzed using gamma spectroscopy to detect the presence of
any radionuclides. A few stations also measured 103Ry, but
these detections will not be used for the inference. Although
the observations were selected to realistically represent this
case, we do not attempt to use all (or some optimal selection)
of the available detections and non-detections in the infer-
ence as it is not our goal to determine the true source location
as such. Furthermore, many additional observations contain
redundant information. Also, since this work is focussed on
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Comprehensive Nuclear-Test-Ban Treaty verification appli-
cations, we only use a few observations taken at stations from
the International Monitoring System. Finally, local observa-
tions in Russia could heavily influence the inferred source
location, but we do not use these as our numerical weather
ensemble is not well suited to capturing uncertainties at these
smaller spatial and shorter temporal scales.

2.2 Numerical weather prediction and atmospheric
transport modelling

We have used the source-receptor sensitivities associated
with the 12 observations from De Meutter et al. (2020).
These were obtained by running the Lagrangian particle
model Flexpart (Stohl et al., 2005) in backward mode (Seib-
ert and Frank, 2004). All simulations ended on 20 Septem-
ber 2017. The source—receptor sensitivities represent the res-
idence time of modelled particles in a geotemporal grid box.
The time-averaged source—receptor sensitivities were output
every 3 h, and thus the maximum possible residence time in
a geotemporal grid box is 10 800 s. The source—receptor sen-
sitivities have horizontal grid spacings of 0.5°. An activity
concentration (in Bq/m?) can be related to a release (in Bq)
by multiplying the latter with the source—receptor sensitivity
(in s) and dividing by the grid box volume and the source—
receptor sensitivities averaging period (which was 10800 s).
An ensemble of numerical weather predictions was used to
create an ensemble of atmospheric transport and dispersion
simulations. The transport and dispersion processes them-
selves were not perturbed. The Ensemble of Data Assimila-
tions from the European Centre for Medium-Range Weather
Forecasts (ECMWF) was used to run Flexpart. It consists of
26 independent lower-resolution 4D-Var assimilations: one
using unperturbed observations and physics and 25 using
perturbed observations, sea surface temperatures, and model
physics (Bonavita et al., 2016). The Ensemble of Data As-
similations (EDA) system uses a Gaussian grid with 640
latitude lines between pole and Equator, but the data were
converted to a long—lat grid having grid spacings of 0.5°.
By adding and subtracting perturbations from the ensemble
mean, the number of perturbed members was doubled, and
thus 50 perturbed and 1 unperturbed member were obtained.
The perturbations are created in such a way that each ensem-
ble member represents a possible scenario for the true (un-
known) atmospheric state, and the spread between the dif-
ferent members is simply the model uncertainty as estimated
by the ensemble. Following this, for each weather ensemble
member, Flexpart was run so that an atmospheric transport
ensemble of 51 source-receptor sensitivities was obtained.

3 Bayesian source reconstruction

De Meutter and Hoffman (2020) have developed and applied
a Bayesian inference system to find the source parameters of
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Figure 1. Locations of the five stations from which 106Ry detections have been used. The shaded box shows the search domain of the
Bayesian inference. For reference, the locations of two nuclear facilities are also shown: the Research Institute of Atomic Reactors in
Dimitrovgrad, labelled “Dimitrovgrad” (54.19° N, 49.48° E) and the Mayak Production Association in Ozyorsk, labelled “Mayak” (55.70° N,

60.80° E).

Table 1. List of 12 observations with their corresponding sampling times and location.

Station  Collection start (UTC)  Collection stop (UTC)  Location

RN59 2 Oct 2017, 02:01 3 Oct 2017, 02:03 Zalesovo, Russian Federation
RN59 3 Oct 2017, 02:03 4 Oct 2017, 01:53 Zalesovo, Russian Federation
RN59 4 Oct 2017, 01:53 5 Oct 2017, 01:58 Zalesovo, Russian Federation
RN59 5 Oct 2017, 01:58 6 Oct 2017, 01:49 Zalesovo, Russian Federation
RN40 3 Oct 2017, 06:51 4 Oct 2017, 06:51 Kuwait City, Kuwait

RN40 4 Oct 2017, 06:51 5 Oct 2017, 06:51 Kuwait City, Kuwait

RN40 5 Oct 2017, 06:51 6 Oct 2017, 06:51 Kuwait City, Kuwait

RN61 4 Oct 2017, 09:28 5 Oct 2017, 08:04 Dubna, Russian Federation
RN63 30 Sep 2017, 08:41 1 Oct 2017, 08:41 Stockholm, Sweden

RN63 1 Oct 2017, 08:41 2 Oct 2017, 08:41 Stockholm, Sweden

RN63 2 Oct 2017, 08:41 3 Oct 2017, 08:41 Stockholm, Sweden

RN56 4 Oct 2017, 23:46 50ct 2017, 23:46 Peleduy, Russian Federation

an anomalous 7>Se release based on airborne >Se activity
concentrations. The main components of the inference sys-
tem are summarized here, but details are given in De Meutter
and Hoffman (2020) and references therein.

3.1 Source parameters

The unknown source is described by the following five
source parameters:

the longitude of the source (xy),

the latitude of the source (yy),

the accumulated release (Q),

the release start time (Zgart),
— the release end time (Z5op)-
In practice, the release period is parameterized by fractions

Fstart and Fgop t0 ensure that #gpe occurs before #gop. The cor-
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responding release period is calculated as follows:

Istart = 11 + Fstart (b — 11), (D
Istop = Istart + T'stop (Em — Tstart) s (2

with #; and 1, the first and last time for which source—
receptor sensitivities are available for the source reconstruc-
tion. The release rate is assumed to be constant during the
release period. The vertical position of the source is assumed
to stretch between the surface and the top of the lowest model
layer (at 100 m). Thus, the unknown source is parameterized
as follows:

(X, y,2,1; X5, Vs, Ztops D> Lstart Istop)
0
= ——— 8 —x)8(y —ys)
(tstop — Istart) Ztop

: [H(Z) —H(z— Ztop)] : [H(t — fstart) — H({E — tstop)] , (3

with § the Dirac delta function and H the Heaviside step
function.
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Table 2. Definition of a true non-detection, a miss, a false alarm,
and a true detection based on the Currie critical level Lc, the de-
tected activity concentration cget, and the “true” activity concentra-
tion crye, Which will never be known.

‘?obs (cdet < Lc) dobs (Cdet > L)

false alarm
true detection

dirue (Ctrue < Lc) true non-detection
dirue (Ctrue > Lc)  miss

3.2 Prior distribution

Uninformative bounded uniform priors are used for the
source parameters. The prior is designed to allow for all plau-
sible scenarios given the sparse measurement network and
under the assumption the detected radionuclides are from the
same release. For the current study, the source longitude is
assumed to be between 20 and 80° and the source latitude
is assumed to be between 40 and 70° (see Fig. 1 for a map
showing the search domain). The accumulated release is as-
sumed to be between 10'° Bq and 10'6 Bq. Since this spans
many orders of magnitude, we take log 10(Q) as source pa-
rameter in our implementation and simply use a uniform
distribution between 10 and 16 as uninformative prior. Re-
call that the first observation that we consider for the infer-
ence was taken on 1 October 2017. Therefore, the release
is assumed to have occurred between 25 September 2017,
00:00 UTC, and 28 September 2017, 00:00 UTC. Generally,
the upper limit on the release time will exclude solutions fur-
ther downwind, while the lower limit on the release time will
exclude solutions further upwind. Uniform bounded priors
between 0 and 1 are used for 7y and Fiop.

3.3 Likelihood

De Meutter and Hoffman (2020) proposed likelihood equa-
tions that can take into account detections, instrumental non-
detections, misses and false alarms using Currie detection
limits (Currie, 1968). Since non-detections will not be used
in this study, only the likelihood of detections will be used
here. The possibility of a false alarm, where the detector
wrongly identifies a detection, is also considered. For sim-
plicity, the observations cqe; are assumed to be independent,
thereby neglecting possible geotemporal correlations. As a
result, the total likelihood is simply the product of the likeli-
hood associated with individual observations:

n
P(Cdet|Cmod) = l_[ p(Cdet,i |Cmod,i)- @

i=1

First, let us define cqye, Which is the true activity concentra-
tion that will never be known. Next, we define cget, which is
the activity concentration as seen by the detector and which
can differ from cyye (the observed net signal can even be neg-
ative due to the statistical nature of spectroscopic analysis).
Currie (1968) defined a critical level Lc above which a net
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signal (which is the detected signal from which the effects
of background radiation are subtracted) should be in order to
declare the net signal to be a detection. We use this Currie
critical threshold Lc to decide, given a net signal, whether
a real detection took place (dops if cget > L) or not (dops if
Cdet < Lc). One can then define a true non-detection, a miss,
a true detection and a false alarm as in Table 2. In this appli-
cation, the risk of a missed detection and a false alarm is set
equal to 5 %. cyye Will never be known, but we assume that
the modelled activity concentration cpeg corresponding to a
source hypothesis E and its associated uncertainty results in
a distribution of true activity concentrations d,,, given by
the following formula:

b (Conlengyy = L LE+05)
ciue (Ctrue[Cmod, i) = —F————=—
2 s; T(B)

1

—,
[C_V + (Ctrue — Cmod,i)2/(25,'2)]/34_0.5
with the index i denoting “corresponding to the ith observa-
tion” (with i = 1...12); I" the gamma function; and s, &, and
B parameters of an inverse gamma distribution. The above
equation was used by Yee (2012) as a likelihood function
for detections, and was obtained by starting from a Gaussian
function, replacing the standard deviation o with an inverse
gamma distribution and integrating over all possible values
of o. However, in order to take into account the possibility
of a false alarm, instead we propose the following likelihood
for the ith detection cqet,; given its corresponding modelled
activity concentration cmeq,; associated with a source hypoth-
esis &:

D(cdet,ilCmod,i) = P(Cdet,i|Cmod,i» dirue) p(dtrue|cm0d,i)

+ p(Cdet,i |d_true) p(‘ztrue |¢mod,i)- (6)
In the equation above, p(diyelcmod) is the probability of a
true detection, given by

o]

P (diruelCmod) = / P (diruel Ctrue) P(Ctrue|Cmod) ACtrue (N

0
00

Z/p(ctruewmod)dctrue, (8)
Lc

and p(c?m,e|cmod) is the probability of a true non-detection,
given by
o

p(d_true [¢mod) = / p(d_true |¢true) P (Ctrue|Cmod) dCirues 9

0
Lc

Z/P(Ctrue|cmod)dctrue» (10)
0
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=1 — p(diruelCmod)- (1D

In these equations, p(ciue|cmod) 1S simply equal to Eq. (5)
but is normalized (below, ¢y, is @ dummy variable for inte-
gration).

dcm,c (CtruelCmod)

dCtrue (Ct/.rue | CmOd) dC{rue

P (CruelCmod) = foo (12)
0

P (Cdet,i|Cmod.i » dirue) gives the likelihood of detecting cger,i

given cmod,; and assuming that the detection was not a false

alarm. We assume it is given by Eq. (5) as follows.

p(cdet,i |Cmod,i , dirue) = dc[me (Ctrue = Cdet,i |Cmod,i) (13)

P(Cdet, i|c?mle) is the likelihood of detecting cge,; assuming
that the detection is a false alarm:

Lc )
coeildione) = [
D(cdet,i|dirue) ([ \/ﬂLc/ka

(Cdet — Ctrue)2
exp <_(LC/—ka)2> dctryes (14)

with k, = 1.645 for a false alarm risk of 5 %. The likelihood
and its different components are plotted for two hypothetical
detections in Fig. 2. For the hypothetical detection cge; close
toits Lc (Fig. 2, left), the likelihood is significantly increased
for small cmoq because the possibility of a false alarm is con-
sidered. For a hypothetical detection cqe; significantly larger
than its Lc (Fig. 2, right), the consideration of a false alarm
does not significantly add to the total likelihood. Indeed, for
Cdet,i > Lc,i and ¢mod,i 3> Lc,i, Eq. (6) simplifies to

p(cdet,i |Cmod,i) ~ dc[me (Cctrue = Cdet,i |Cm0d,i)~ (15)

3.4 Sampling from the posterior

The posterior distribution was sampled using the general-
purpose Markov chain Monte Carlo algorithm MT-
DREAMzs) (Laloy and Vrugt, 2012). A chain of source hy-
potheses is obtained by repeatedly creating a proposal source
hypothesis based on the current source hypothesis and then
accepting the proposal or — if it is rejected — retaining the
current source hypothesis. A key feature of a Markov chain
Monte Carlo algorithm is its ability to construct proposals
in such a way that the posterior distribution is efficiently ex-
plored and sampled. MT-DREAM 75 creates a new proposal
by adding a perturbation to the current source hypothesis.
Such perturbations are created by taking the difference of
two randomly drawn states out of an archive of past states
so that the size and direction of the perturbation are adap-
tive and optimal for the problem — without the necessity of
prior tuning. Every 10th iteration, the current source hypoth-
esis is added to the archive. Three chains are run simultane-
ously (sharing the same archive of past states) to diagnose

Geosci. Model Dev., 14, 1237-1252, 2021

convergence more easily. To enhance efficiency and to ob-
tain more accurate results, randomized subspace sampling is
used (Vrugt et al., 2009). This simply means that not nec-
essarily all source parameters are updated at a time, but in-
stead a randomized subset of the source parameters are up-
dated. Furthermore, MT-DREAMzs) makes use of multiple-
try Metropolis sampling (Liu et al., 2000) to enhance the
mixing of the chains. This means in practice that to advance
to Markov chain several proposals are drawn instead of one
proposal as in traditional Metropolis sampling. Furthermore,
the Metropolis acceptance is calculated in a modified way
(Liu et al., 2000; Laloy and Vrugt, 2012).

3.5 Observation and model errors

The detected activity concentration cger 1S assumed to be
Gaussian distributed around the true activity concentration
Ctrue, With a standard deviation o,ps equal to the reported ob-
servation error. The model error originates from errors in the
source—receptor sensitivities calculated by the atmospheric
transport model. The main sources of error are simplifica-
tions in the turbulence parameterization of the atmospheric
transport model and errors in the numerical weather predic-
tion data used to run the atmospheric transport model. As it
is very hard if not impossible to specify the model error, we
assume Gaussian errors but replace a fixed opyeq With an in-
verse gamma distribution, as mentioned earlier in this section
and following Yee (2012):

- &féi s; 28
W(Umod,i“i’ai,ﬂi):zrﬂ_i)( >

Omod,i
_ s,.2 1
exp | —ai — . (16)
Gmod,i Omod,i

with the subscript i denoting that these values can be
observation-specific. The parameters s, @ and 8 of the in-
verse gamma distribution are, respectively, an estimate of
Omod, @ scale parameter and a shape parameter. Yee (2012)
proposed using & = 7 !and B =1, in which case (o moedq,i) =
s; and the variance of oyeq,; becomes infinite (Eq. 16 will
then be a very heavy-tailed distribution). We now have to
come up with a value for s;. Since the source-receptor sen-
sitivities or SRSs (calculated by the Flexpart model) typi-
cally span many orders of magnitude, it makes more sense
to define a relative error rather than an absolute error. Fur-
thermore, because the source-receptor sensitivities are lin-
early proportional to the activity concentration, we propose
the following for s;:

Osrs,i

STS;

si = 2 max(cgeci, 16- Le,i). (17)
ogs 1S the unknown SRS error in the equation above. The
value of 16 is an empirical number that was found to give
a good balance between information obtained from detec-
tions versus information from non-detections (De Meutter

https://doi.org/10.5194/gmd-14-1237-2021
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Figure 2. Likelihood function for two detections: cqer = 1.5 (a) and cget = 8.0 (b). The dotted vertical grey lines represent Lc = 1.0,
MDC = 2.0 and the detected activity concentration cget. The units are arbitrary in this example.

and Hoffman, 2020). Note that the above proposal results in
a larger relative model error if cqer; < 16- L ;. This is desir-
able since small detections are caused by a part of the plume
of radionuclides that was subject to more atmospheric dilu-
tion and thus should have a larger relative uncertainty than
large detections (although the latter have higher absolute un-
certainty). In Eq. (13) (which is simply Eq. 5 but with cirye
replaced by cget.i), Si is replaced by the following in order to
take into account both observation and model error:

. /.2 2
Si = \/S; —i—aobs’i.

From now on, we will express any parameters s; and o (the
combined observation and model error) as relative errors and
thus as fractions of max(cger,i, 16 - Lc,;) (see Eq. 17).

(18)

4 Model error and Bayesian source reconstruction

In this section, only the unperturbed member is used. The
model uncertainty thus needs to be specified manually, and
the impact of different choices on the posterior is discussed
here. We focus on the inferred source location and not the
release period or release amount. This is because the release
location is of primary interest in the context of treaty ver-
ification. Once a location is found (for instance, based on
the location of known nuclear facilities within the posterior
source region or based on a seismic signal associated with
a nuclear explosion), a new inference could be performed
fixing the release location as was done in De Meutter and
Hoffman (2020).

4.1 Posterior effects

In this section, the effect of model error on the posterior is
illustrated by varying the parameter s; of the inverse gamma
function (Eq. 16), which roughly fixes the scale of the model
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uncertainty. The Bayesian inference was independently re-
peated multiple times, once for each of the chosen param-
eter values. The resulting source location probability maps
are shown in Fig. 3a, c, e for three values of s;: 0.3, 0.5,
and 3. Here, the same value s; is used for all observations.
The source location probability maps illustrate that the model
error has a profound impact on the resulting posterior. The
source location probability ranges from a narrow spot to a
fairly elongated area. Perhaps surprisingly, an increase in the
uncertainty parameter s does not simply enlarge the region
of possible sources: instead, the enlargement is mostly in one
direction (northeast); furthermore, the area with the highest
probability shifts to the northeast. Therefore, one cannot sim-
ply predict beforehand how the posterior will change when
the model error is changed. The resulting source location is
in line with what previous studies found (Sgrensen, 2018;
Saunier et al., 2019; Bossew et al., 2019; De Meutter et al.,
2020).

4.2 Introduction to multipliers

In this and the next subsection, an alternative model error
structure will be discussed involving multipliers or scale fac-
tors. Besides being an alternative model error, multipliers
could also be used to take into account errors that were not
fully captured by the model (such as errors due to local at-
mospheric features not resolved by the model, measurement
errors due to sample inhomogeneity)

Yee et al. (2014) used a small number of activity concen-
tration measurements to retrieve the known source parame-
ters of a major medical isotope production facility. The re-
sulting source longitude, latitude and the release term were
compared with the true source parameters in order to evalu-
ate the performance of the source reconstruction. The method
they used is similar to the method employed here: a La-
grangian stochastic particle model was used in backward

Geosci. Model Dev., 14, 1237-1252, 2021



1244

05
0.200

0.100
0.050
0.020
0.010
0.005

0.002
0.001

s=0.3
40 45 50 55 60 65 70

0.5
0.200

0.100
0.050
0.020
0.010
0.005

0.002
0.001

=05
40 45 50 55 60 65 70

0.5
0.200

0.100
0.050
0.020
0.010
0.005

0.002
0.001

s=3.0

40 45 50 55 60 65 70

20 30 40 50 60 70 80

P. De Meutter et al.: On the model uncertainties in Bayesian source reconstruction

(b) with multipliers
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Figure 3. Source location probability maps obtained from the Bayesian source reconstruction. The model uncertainty parameters of the
inverse gamma distribution were fixed a priori, and different values for s were used in the panels: s = 0.3 in (a), (b), s = 0.5 in (¢), (d) and
s = 3.0 in (e) and (f). No multipliers were used in (a), (¢) and (e), while multipliers were used in panels (b), (d) and (f) (see Sect. 4.3 for
details). The longitude and latitude are shown by grey numbers and dashed lines.

mode to generate the source—receptor sensitivities, and the
source parameters were obtained using Bayesian inference
and the MT-DREAMzs) algorithm. Yee et al. (2014) showed
that the main challenge in source reconstruction lies in the
correct specification of the model uncertainty (both scale and
structure) by using two different measurement models:

19)
(20)

Cobs,i = Cmod,i T €i,

’
Cobs,i = Mj Cmod,i + €;-

In Eq. (19), €; is the combined model and measurement er-
ror, which is assumed to be drawn from a Gaussian distribu-
tion with unknown standard deviation. Again, the unknown
standard deviation is replaced by a distribution rather than a
single fixed value. In Eq. (20), €/ only represents the mea-
surement error. The model error is now taken into account
by so-called scale factors or multipliers m;. These multipli-
ers are parameters of the Bayesian inference, and they are
allowed to vary between 0.1 and 10. The range is chosen so
that the multipliers can compensate for model underpredic-
tions or overpredictions of up to a factor 10.

Yee et al. (2014) found that using Eq. (19) resulted in a
source reconstruction that did not include the correct source
parameters. The multipliers (Eq. 20) on the other hand re-
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sulted in a huge shift in the posterior source location, which
significantly improved the source reconstruction.

4.3 Multipliers as unknown model error

Here, multipliers (m;) are introduced to account for unknown
model uncertainties that are not yet taken into account by
the likelihood formulation. For instance, local atmospheric
features that are not resolved by the model might result in
incorrect source—receptor sensitivities. Such errors are very
hard to quantify because the computational power to resolve
such features is prohibitively high (at least for continental-
scale problems).

The multipliers are additional parameters that need to be
estimated during the Bayesian inference. For the sampling of
the parameter, we work with log;((m;) and assign a uniform
prior between [—1, 1]. While the multipliers increase the run
time of the Bayesian inference, the increase is small — es-
pecially if one considers the huge increase in the number of
unknown parameters (one additional parameter per observa-
tion).

We apply the multipliers using three different values for
the model uncertainty parameter s; (0.3, 0.5 and 3) and show
the results in Fig. 3b, d and f. Somewhat similar to the re-
sults in Yee et al. (2014), the multipliers cause a shift in the
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source location probability (though not as dramatic). Further-
more, the multipliers do not cause a widening in the posterior
source location. It is interesting to contrast the effect of in-
troducing the multipliers versus increasing the value of the
parameter s;: while the latter result in a shift and a widen-
ing of the posterior distribution, the former only result in a
shift. While the results with and without multipliers are sig-
nificantly different for small values of s; (Fig. 3a and b), there
is substantial agreement in the results when using s; = 3.0
(Fig. 3e and f). This suggests that the effect of introducing
multipliers and the effect of increasing the model uncertainty
converges when specifying large model uncertainty.

The results in this section lead to the following question:
which of the source location maps shown in Fig. 3 is correct?
More fundamentally, what is the true structure and scale of
the model uncertainty? This will be assessed in the next sec-
tion using the ensemble of source—receptor sensitivities de-
scribed in Sect. 2.2.

5 Fitting uncertainty parameters

5.1 The source-receptor sensitivity ensemble
distribution

In this subsection, it is assessed whether the atmospheric
transport model error structure can be obtained from the en-
semble of source-receptor sensitivities (SRSs). Note that the
ensemble is set up to deal with errors arising from the meteo-
rological input data only. While this type of error likely adds
the largest contribution to the total model error, other sources
of model error are not included.

As our ensemble contains 51 members (one unperturbed
member and 50 perturbed members), there are 51 SRS val-
ues available for each spatio-temporal grid box and each ob-
servation. In order to obtain the error structure, the data of
all spatial grid boxes are aggregated into an uncertainty dis-
tribution. This does not necessarily destroy the spatial error
correlations in the numerical weather prediction data, since
the SRS are the result of an integrated trajectory through the
atmosphere associated to a specific observation. The follow-
ing procedure is applied in order to find the error structure.

1. For each SRS file (associated with a certain observa-
tion) and for each spatio-temporal grid box, the ensem-
ble median SRS is calculated; each of the 51 SRS values
is scaled by its ensemble median.

2. A Lagrangian particle model can only track a finite
number of particles due to computational constraints,
and this causes stochastic uncertainty when there are
very few particles passing through a geotemporal grid
box. However, the SRS variations between ensemble
members should represent meteorological uncertainty
and should not be impacted by stochastic uncertainty.
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Figure 4. Probability density function showing how the atmo-
spheric transport model ensemble members are distributed around
the ensemble median (solid black line). Also shown are two fits,
one using Eq. (5) (dashed blue line) and one using a Gaussian dis-
tribution (dotted orange line). Note that the SRSs are scaled by its
ensemble median and that the natural logarithm is applied.

Therefore, a threshold? of exp(—20) [s] is applied to the
median: if the median is smaller than the threshold, all
of its 51 SRSs are omitted from the analysis.

3. The natural logarithm is applied to all SRSs since these
span many orders of magnitude. If any ensemble mem-
ber has an SRS equal to 0 for a specific grid box, all its
51 SRSs are omitted from the analysis.

4. The remaining data points are used to make an uncer-
tainty distribution (as in Fig. 4).

As an example, the probability density function of ensemble
SRS members around its ensemble median is shown in Fig. 4
for an arbitrary observation and an arbitrary time. It can be
seen that most SRS values fall within a factor exp(3) ~ 20
of the ensemble median. Of particular interest is how this
density can be approximated by a statistical distribution. In
Fig. 4, two distributions are fitted to the density: a Gaussian
distribution and a fit using Eq. (5). Interestingly, while the
probability density function can roughly be represented by a
Gaussian distribution (effectively being a lognormal distribu-
tion with respect to the SRS, since the natural logarithm was
applied), its tails are heavier than a Gaussian distribution. On
the other hand, a much better fit is obtained using Eq. (5).
This distribution describes how the (unknown) true activity
concentration is distributed on average around the modelled
activity concentration. Similarly, the ensemble gives a dis-
tribution of the true SRS around the model-predicted SRS.
Note that the activity concentrations are simply linear com-
binations of SRS. This result shows that our choice for the
model error structure is supported by the ensemble. This ini-
tial result will be elaborated in the next subsection.

2Since the SRS files are output every 3 h, the maximum value
for the SRS is 10800s.
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5.2 Fitting model uncertainty

In this subsection, the SRS ensemble is used to determine the
parameters s;, ¢&; and Bi in Eq. (5), which describes how the
true activity concentration cyrye is believed to be distributed
given the modelled activity concentration cmod,;- The fitting
can be performed in several ways, and four different cases are
considered. A goodness-of-fit is calculated for each case. As
a reference, the fitting procedure is repeated using a Gaus-
sian distribution instead of Eq. (5). The mean of the Gaus-
sian is fixed to be 0 (corresponding to the median of the SRS
ensemble) so that only the standard deviation is allowed to
vary. Since our Gaussian fitting thus has only one degree of
freedom (and given the suggestion of long tails in Fig. 4), it
should not be surprising that the Gaussian fit will be outper-
formed by the fit using Eq. (5).

The following cases are considered to obtain the uncer-
tainty parameters.

— Case 1: the parameters are fixed by a priori chosen
values; for the fit using Eq. (5), we choose s; = 0.5,
o =1/m, and Bi =1 for all observations and all 3 h
release time intervals; for the Gaussian distribution, we
choose o = 0.5.

— Case 2: the parameters are fitted once for all release time
intervals and all observations (data are aggregated for all
release times and all observations).

— Case 3: the parameters are fitted for each observation
(data are aggregated for all release time intervals).

— Case 4: the parameters are fitted for each observation
and each release time interval.

The following goodness-of-fit is chosen to quantify how well
the fitted probability density function pg resembles the en-
semble probability density function peps; it involves the in-
tegration of the absolute difference of both densities and is
simply the fraction of overlap in density:

[e¢]

1
overlap in density = 1 — 3 / Pens(x) — pric(x)dx. 21)

—0o0

If the overlap in density equals 1, pg; equals peps. On the
other hand, if it equals 0, there is no overlap between pg; and
Pens-

The uncertainty parameters are obtained using the proce-
dures outlined in cases 1 to 4. Following this, for each case
the overlap in density is calculated by comparing pg, with
Pens for each observation and each release time interval sepa-
rately, resulting in 288 data points since there are 24 different
release time intervals and 12 observations. The set of overlap
in densities is used to construct box plots in Fig. 5. The over-
lap in density is poor when using the a priori values for the
uncertainty parameters (labels “InvG” and “Gaus”, case 1 in
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Fig. 5). While the outcome would have been entirely differ-
ent if better a priori values would have been chosen, its sig-
nificance should not be underestimated: (i) although seem-
ingly realistic a priori uncertainty parameters have been cho-
sen, the agreement with the ensemble density is poor. (ii) For
this case and this particular choice of uncertainty parameters,
a Gaussian distribution resulted in a better agreement. (iii) In
the absence of an ensemble, using uncertainty parameters
that are chosen a priori might be the only available option.
When fitting the uncertainty parameters once for all obser-
vations and all release time intervals, the overlap in density
is significantly improved (labels “InvG” and “Gaus”, case 2
in Fig. 5). The fit using Eq. (5) performs significantly better
than the Gaussian fit. Additional smaller improvements are
obtained when fitting for each observation separately (labels
InvG and Gaus, case 3 in Fig. 5) and when fitting for each
observation and release time interval separately (labels InvG
and Gaus, case 4 in Fig. 5).

5.3 Error dependency on the release time interval and
the observation

In this subsection, it is assessed how the fitted uncertainty pa-
rameters vary among different observations and different re-
lease time intervals. The motivation for this is as follows: first
(somewhat trivially), we can expect the model uncertainty to
increase as a function of simulation time. Second, uncertain-
ties are expected to be observation-dependent, since obser-
vations are made on different times and at different distances
from the source; uncertainties on the trajectories between the
receptor and the source will also be affected by the atmo-
spheric conditions along the trajectory, which are expected
to be observation-specific. The interplay of the three uncer-
tainty parameters s, & and 8 of the inverse gamma function
make it less feasible to directly estimate any effect. There-
fore, only the fitted standard deviations of the Gaussian dis-
tribution are considered here.

The fitted standard deviation for each observation (aver-
aged over all release time intervals) is shown in Fig. 6 (left).
The standard deviation varies significantly between the dif-
ferent observations — up to a factor of 2 between the 3rd
and the 11th observation. This can alter the posterior since
the uncertainty scales how deviations between the simulated
and observed activity concentration are penalized. While it
appears difficult to assign meaningful observation-specific a
priori uncertainty parameters, the ensemble can readily pro-
vide such information.

The fitted standard deviation for each release time interval
(averaged over all observations) is shown in Fig. 6 (right).
It can be seen that the model uncertainty grows when going
backwards in time. The growth is about 30 % during a 3d
period (note that such growth does not have to be constant
over time, and an in-depth assessment is out of the scope of
this paper). Also interesting to note is that there is an oscilla-
tory behaviour with a period of eight time steps, correspond-
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Figure 5. Box plots of the overlap between the ensemble densities and the fitted densities using uncertainty parameters obtained in four ways
(cases 1 to 4; see Sect. 5.2 for details) and using the distribution in Eq. (5) (InvG) and the Gaussian distribution (Gaus) for fitting.

ing to the diurnal cycle (since SRS fields were produced ev-
ery 3 h). The oscillations are likely associated with boundary
layer processes, which often follow the diurnal cycle.

5.4 Resulting source location probability map

In this subsection, the Bayesian source reconstruction is ap-
plied using fitted observation-specific parameters s;, o; and
,3,- (this corresponds to case 3, invG in Fig. 5). Furthermore,
the inference is run using the SRS ensemble median for
each geotemporal grid box — prior to this the unperturbed
ensemble member was used. The resulting probability map
is shown in Fig. 7a. While the source location probability
map is distinct from (most of) the individual panels shown in
Fig. 3, it is not too different from what Fig. 3 as a whole
suggests. It best resembles Fig. 3f, which corresponds to
the combination of multipliers with large model uncertainty.
Note that simply changing the a priori uncertainty parameters
might never yield a near-perfect correspondence with Fig. 7a,
since the fitting resulted in different uncertainty parameters
for each observation, which seems impossible to obtain with-
out an ensemble.

For comparison, the average probability of the six panels
in Fig. 3 is shown in Fig. 7b. The latter is perhaps the best
approach one can take in the absence of an ensemble. While
both maps roughly agree at first glance, there are still impor-
tant differences. Foremost, the most southwest mode out of
two modes in Fig. 7b is absent in Fig. 7a. The other mode in
Fig. 7b is slightly shifted to the west in Fig. 7a and extends
further northeast.

https://doi.org/10.5194/gmd-14-1237-2021

6 Ensembles as a set of scenarios

In this section, it is assessed whether additional information
can be acquired by considering each ensemble member as an
independent scenario, thus performing the Bayesian source
reconstruction for each ensemble member separately. No fit-
ting of uncertainty parameters is applied here, and thus these
need to be set a priori. The experiment is performed twice,
once using s; = 0.5 and once using s; = 3.0. The other two
uncertainty parameters remain fixed (& = 1/7 and 8 = 1).

6.1 Source location probability maps

The Bayesian inference is repeated using the SRS of each en-
semble member, so that 51 different posteriors are obtained.
These posteriors then need to be aggregated in some way. As
before, we focus on the source location probability. While
several aggregation methods are possible, here the grid-box-
wise mean and maximum probability is taken (normalization
is required to ensure that the probabilities sum up to 1). Equal
weights were assigned to each ensemble member, since our
ensemble is constructed to yield equally likely scenarios or
ensemble members. Note that in the case of multi-model en-
sembles, the latter might not be true, and thus a weighting
should be applied based on the skill of each model.

Figure 8a and b show the results using the unperturbed
member only and using s; = 0.5 and s; = 3.0; hence, these
are identical to Fig. 3c and e. As discussed earlier in Sect. 4,
the source location probability map differs significantly
when changing the parameter s. Figure 8c and d show the re-
sults for the grid-box-wise ensemble mean using s; = 0.5 and
s; = 3.0. The results are slightly broader and much smoother,
not showing significant bimodal behaviour. Two features are

Geosci. Model Dev., 14, 1237-1252, 2021
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Figure 7. Source location probability map obtained from the
Bayesian source reconstruction. (a) The parameters of the inverse
gamma distribution were obtained using the ensemble SRS for each
observation separately. (b) The average source location probability
is taken from all six panels shown in Fig. 3. The longitude and lati-
tude are shown by grey numbers and dashed lines.

noteworthy: first, the results roughly approximate those in
Fig. 7, though important differences are present, as there
were between Fig. 7a and b. Second, the results are generally
insensitive to the choice of the uncertainty parameter s, since
Fig. 8c and d are very similar. The same is true for Fig. 8e
and f, which show the grid-box-wise ensemble maximum.
As one can expect, the resulting source location probability
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is slightly broader than the one obtained by taking the grid
box mean probability; however, the differences are minor.

It seems that overall a similar picture is obtained when run-
ning the Bayesian inference for each ensemble member sep-
arately compared to the procedure explained in Sect. 5. This
suggests that if we use the ensemble only (i) to fit the uncer-
tainty parameters and (ii) to calculate the ensemble median
SRS for running the inference as was done in order to ob-
tain Fig. 7, no crucial information from the ensemble is lost
with respect to the source location. As a consequence, it is
equivalent to running the inference with all members of the
ensemble separately to determine the uncertainty.

6.2 Ensemble convergence

Finally, we perform a brief assessment on whether or not
each ensemble member is adding new information to the en-
semble mean source location probability. For each perturbed
member m € [1, 50], the overlap in source location proba-
bility is calculated between that member and the mean of
all previous members [0, m — 1] (with member O the unper-
turbed member). We thus start with the first perturbed mem-
ber (which is compared with simply the unperturbed mem-
ber) and end with the last perturbed member (which is com-
pared with the mean of all other ensemble members). The re-
sults are shown in Fig. 9 for an uncertainty parameter s = 0.5
and an uncertainty parameter s = 3.0. Note that the over-
lap in density is calculated using Eq. (21) and has the same
meaning as before, with 0 denoting no overlap (thus being
fully informative) and 1 denoting full overlap (providing no
new information).

Figure 9 shows that most ensemble members have an over-
lap in density less than 0.6. There is significant variance in
how much new information is added by each ensemble mem-
ber. A linear fit suggests that the added information from
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Figure 8. Source location probability maps for (a), (b) the unperturbed member; (c), (d) the grid-box-wise ensemble mean; and (e), (f) the
grid-box-wise ensemble maximum. Panels (a), (c), and(e) were obtained using s = 0.5; panels (b), (d), and (f) were obtained using s = 3.0.
The longitude and latitude are shown by grey numbers and dashed lines.

additional ensemble members is slowly decreasing, as ex-
pected. Note that the effect is more pronounced for the case
with higher model uncertainty (Fig. 9, right). The reason for
this is that the source location probability is more spread
out due to the higher model uncertainty, making an over-
lap more likely. We conclude that all ensemble members are
adding new information. This is desirable, as it shows that
the ensemble is well-constructed (if members are generally
not adding new information, they could be a waste of com-
putational resources).

7 Conclusions

Model error has a huge impact on the posterior obtained
through Bayesian source reconstruction, a conclusion in
agreement with other studies (e.g., Yee et al., 2014). Specif-
ically for the source location, an increase in the scale of the
model error resulted in a non-uniform broadening and a shift
in the source location probability.

Both the non-uniformity of the broadening and the shift in
the source location probability imply that one cannot simply
predict beforehand what the result will be when the Bayesian
source reconstruction is repeated with different model error.

In the absence of a way to determine the model error, one
could perform multiple Bayesian source reconstructions us-
ing different model error formulations as shown in Fig. 3.
The results could be aggregated by taking the average (as in
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Fig. 7b) or by using more elaborate procedures (including a
weighted mean).

Multipliers can be used to represent model error (as in Yee
et al., 2014) or to represent the unknown part of model error
as was done in Sect. 4.3. The multipliers result in a shift in
the source location probability but not in a broadening.

We found that the ensemble members of source—receptor
sensitivities are distributed around their ensemble median
(Fig. 4) in a way that can be well-described by Eq. (5); the
latter describes how the true activity concentration cypye 1S as-
sumed to be distributed around the modelled activity concen-
tration cpod. Therefore, an ensemble of atmospheric trans-
port and dispersion simulations can be employed to deter-
mine the parameters associated with the inverse gamma func-
tion in Eq. (16). Of course, the effectiveness of such approach
largely depends on whether the ensemble is capable of rep-
resenting model error.

The ensemble showed that model error varies among dif-
ferent observations (up to a factor of 2 in the standard de-
viation when fitting a Gaussian distribution). Therefore, it is
expected that having available model error information that is
observation-specific can improve the quality of the Bayesian
source reconstruction. The model error is also shown to in-
crease when going further backward in time (for this specific
case, there was an increase of 30 % during a 3 d period in the
standard deviation when fitting a Gaussian distribution).

Geosci. Model Dev., 14, 1237-1252, 2021
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Figure 9. Overlap in source location probability as a proxy for how much new information each ensemble member is adding to the ensemble
mean (see text). (a) Results obtained using an uncertainty parameter s = 0.5. (b) Results obtained using an uncertainty parameter s = 3.0. A

linear fit is also plotted (solid black line).

The source location probability using the fitted model er-
ror obtained from the ensemble (Fig. 7a) is distinct from the
source location probability obtained using fixed uncertainty
parameters (individual panels in Fig. 3); however, it is not
too different from what Fig. 3 as a whole suggests, which
demonstrates the usefulness of performing multiple Bayesian
source reconstructions using different model error formula-
tions as a sensitivity analysis in the absence of an ensemble.

A scenario-based approach (where each ensemble member
is used as input for the Bayesian source reconstruction, in-
stead of using the ensemble to fit the uncertainty parameters)
gives results that are more robust against the choice of the un-
certainty parameters but are more costly compared to directly
fitting the uncertainty parameters. This is because the en-
semble introduces model uncertainty that may predominate
against the uncertainty prescribed by arbitrarily choosing the
uncertainty parameter. No new information is obtained for
the source location probability (in other words, one does not
lose information when using the ensemble only to fit the un-
certainty parameters and to calculate the ensemble median
for use in the Bayesian inference). The scenario-based ap-
proach might be best in case of a small multi-model ensem-
ble, since the fitting of uncertainty parameters might be diffi-
cult due to the difference in skill of each ensemble member.

In a future study, we will apply the different approaches
and methods presented in this paper to situations in which the
source characteristics are known unambiguously. This will
help to better evaluate the different approaches proposed in
this paper.

Code and data availability. The Flexpart model that was used
to generate the SRS data is open source and is available
for download (Flexpart, 2020, https://www.flexpart.eu/, last ac-
cess: 1 September 2020). The SRS data from the Flexpart
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model are available on Zenodo (De Meutter and Delcloo, 2020,
https://doi.org/10.5281/zenodo.4003640). The Bayesian inference
tool is available under the GPL3 and can be downloaded from
Zenodo (https://doi.org/10.5281/zenodo.4588282, De Meutter et
al., 2021). More recent versions of the code will be published
on GitLab.com (https://gitlab.com/trDMt2er/FREAR, last access:
24 February 2021).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-14-1237-2021-supplement.

Author contributions. All authors contributed to the conceptualiza-
tion of the study. PDM conducted the simulations and performed
the analysis. IH and KU supervised the research. All authors con-
tributed to the manuscript. IH took care of the project administra-
tion.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. The authors would like to thank the reviewers
for their constructive comments.

Financial support. This research has been supported by the De-
fense Research and Development Canada’s Canadian Safety and
Security Program (project no. CSSP-2018-TI-2393).

Review statement. This paper was edited by Slimane Bekki and re-
viewed by Patrick Armand and two anonymous referees.

https://doi.org/10.5194/gmd-14-1237-2021


https://www.flexpart.eu/
https://doi.org/10.5281/zenodo.4003640
https://doi.org/10.5281/zenodo.4588282
https://gitlab.com/trDMt2er/FREAR
https://doi.org/10.5194/gmd-14-1237-2021-supplement

P. De Meutter et al.: On the model uncertainties in Bayesian source reconstruction 1251

References

Becker, A., Wotawa, G., De Geer, L.-E., Seibert, P., Draxler, R. R.,
Sloan, C., D’ Amours, R., Hort, M., Glaab, H., Heinrich, P., Gril-
lon Vyacheslav Shershakov, Y., Katayama, K., Zhang, Y., Stew-
art, P, Hirtl, M., Jean, M., and Chen, P.: Global backtracking
of anthropogenic radionuclides by means of a receptor oriented
ensemble dispersion modelling system in support of Nuclear-
Test-Ban Treaty verification, Atmos. Environ., 41, 45204534,
https://doi.org/10.1016/j.atmosenv.2006.12.048, 2007.

Bocquet, M.: High-resolution reconstruction of a tracer dispersion
event: application to ETEX, Q. J. Roy. Meteor. Soc., 133, 1013—
1026, https://doi.org/10.1002/qj.64, 2007.

Bonavita, M., Holm, E., Isaksen, L., and Fisher, M.: The evolution
of the ECMWEF hybrid data assimilation system, Q. J. Roy. Me-
teor. Soc., 142, 287-303, https://doi.org/10.1002/qj.2652, 2016.

Bossew, P., Gering, F., Petermann, E., Hamburger, T., Katzlberger,
C., Hernandez-Ceballos, M., De Cort, M., Gorzkiewicz, K.,
Kierepko, R., and Mietelski, J.: An episode of Ru-106 in air over
Europe, September—October 2017-Geographical distribution of
inhalation dose over Europe, J. Environ. Radioactiv., 205, 79-92,
https://doi.org/10.1016/j.jenvrad.2019.05.004, 2019.

Currie, L. A.: Limits for qualitative detection and quantitative de-
termination. Application to radiochemistry, Analyt. Chem., 40,
586593, https://doi.org/10.1021/ac60259a007, 1968.

De Meutter, P. and Delcloo, A.: SRS data,
https://doi.org/10.5281/zenodo.4003640, 2020.

De Meutter, P. and Hoffman, I.: Bayesian source recon-
struction of an anomalous Selenium-75 release at a nu-
clear research institute, J. Environ. Radioactiv., 218, 1-13,
https://doi.org/10.1016/j.jenvrad.2020.106225, 2020.

De Meutter, P., Camps, J., Delcloo, A., and Termonia, P:
Source localisation and its uncertainty quantification af-
ter the third DPRK nuclear test, Sci. Rep.-UK, 8, 10155,
https://doi.org/10.1038/s41598-018-28403-z, 2018.

De Meutter, P, Camps, J., Delcloo, A., and Termonia, P.: Source
Localization of Ruthenium-106 Detections in Autumn 2017 Us-
ing Inverse Modelling, in: Mensink C., Gong W., Hakami A.
(eds) Air Pollution Modeling and its Application XXVI. ITM
2018. Springer Proceedings in Complexity., Springer, Cham,
https://doi.org/10.1007/978-3-030-22055-6_15, 2020.

De Meutter, P., Hoffman, I., and Hladun, N.: FREAR source code,
Zenodo, https://doi.org/10.5281/zenodo.4588282, 2021.

Engstrom, A. and Magnusson, L.: Estimating trajectory uncertain-
ties due to flow dependent errors in the atmospheric analysis,
Atmos. Chem. Phys., 9, 8857-8867, https://doi.org/10.5194/acp-
9-8857-2009, 20009.

Flexpart: Flexpart, available at: https://www.flexpart.eu/, last ac-
cess: 1 September 2020.

Harris, J. M., Draxler, R. R., and Oltmans, S. J.: Trajec-
tory model sensitivity to differences in input data and ver-
tical transport method, J. Geophys. Res.-Atmos., 110, 1-8,
https://doi.org/10.1029/2004JD005750, 2005.

Hegarty, J., Draxler, R. R., Stein, A. F., Brioude, J., Mountain,
M., Eluszkiewicz, J., Nehrkorn, T., Ngan, F., and Andrews, A.:
Evaluation of Lagrangian particle dispersion models with mea-
surements from controlled tracer releases, J. Appl. Meteorol.
Climatol., 52, 2623-2637, https://doi.org/10.1175/JAMC-D-13-
0125.1, 2013.

Zenodo,

https://doi.org/10.5194/gmd-14-1237-2021

Laloy, E. and Vrugt, J. A.: High-dimensional posterior exploration
of hydrologic models using multiple-try DREAM (ZS) and high-
performance computing, Water Resour. Res., 48, 1-18, 2012.

Leutbecher, M.: Ensemble size: How suboptimal is less
than infinity?, Q. J. Roy. Meteor. Soc., 145, 107-128,
https://doi.org/10.1002/qj.3387, 2019.

Leutbecher, M. and Palmer, T. N.: Ensemble fore-
casting, J. Comput. Phys., 227, 3515-3539,
https://doi.org/10.1016/j.jcp.2007.02.014, 2008.

Liu, J. S., Liang, F.,, and Wong, W. H.: The multiple-try method and
local optimization in Metropolis sampling, J. Am. Stat. Assoc.,
95, 121-134, 2000.

Masson, O., Steinhauser, G., Wershofen, H., Mietelski, J. W., Fis-
cher, H. W,, Pourcelot, L., Saunier, O., Bieringer, J., Steinkopff,
T., Hyza, M., Mgller, B., Bowyer, T. W., Dalaka, E., Dal-
heimer, A., de Vismes-Ott, A., Eleftheriadis, K., Forte, M.,
Gasco Leonarte, C., Gorzkiewicz, K., Homoki, Z., Isajenko,
K., Karhunen, T., Katzlberger, C., Kierepko, R., K&vend-
iné Koényi, J.,, Mald, H., Nikolic, J., Povinec, P. P, Ra-
jacic, M., Ringer, W., Rulik, P, Rusconi, R., Séifrany, G.,
Sykora, I., Todorovi¢, D., Tschiersch, J., Ungar, K., and
Zorko, B.: Potential source apportionment and meteorologi-
cal conditions involved in airborne 1311 detections in Jan-
uary/February 2017 in Europe, Environ. Sci. Technol., 52, 8488—
8500, https://doi.org/10.1021/acs.est.8b01810, 2018.

Masson, O., Steinhauser, G., Zok, D., Saunier, O., Angelov, H.,
Babi¢, D., BeCkovd, V., Bieringer, J., Bruggeman, M., Bur-
bidge, C. I, Conil, S., Dalheimer, A., De Geer, L.-E., de
Vismes Ott, A., Eleftheriadis, K., Estier, S., Fischer, H., Gar-
avaglia, M. G., Gasco, Leonarte, C., Gorzkiewicz, K., Hainz,
D., Hoffman, I., HyZa, M., Isajenko, K., Karhunen, T., Kast-
lander, J., Katzlberger, C., Kierepko, R., Knetsch, G.-J., Kévend-
iné Kényi, J., Lecomte, M., Mietelski, J. W., Min, P., Mgller, B.,
Nielsen, S. P., Nikolic, J., Nikolovska, L., Penev, 1., Petrinec,
B., Povinec, P. P, Querfeld, R., Raimondi, O., Ransby, D.,
Ringer, W., Romanenko, O., Rusconi, R., Saey, P. R. J., Sam-
sonov, V., Silobritiené, B., Simion, E., Soderstrdm, C., Sos-
tari¢, M., Steinkopff, T., Steinmann, P., Sykora, 1., Tabachnyi,
L., Todorovic, D., Tomankiewicz, E., Tschiersch, J., Tsibran-
ski, R., Tzortzis, M., Ungar, K., Vidic, A., Weller, A., Wer-
shofen, H., Zagyvai, P, Zalewska, T., Zapata Garcia, D., and
Zorko, B.: Airborne concentrations and chemical considerations
of radioactive ruthenium from an undeclared major nuclear re-
lease in 2017, P. Natl. Acad. Sci. USA, 116, 16750-16759,
https://doi.org/10.1073/pnas.1907571116, 2019.

Ringbom, A., Axelsson, A., Aldener, M., Auer, M., Bowyer,
T. W., Fritioff, T., Hoffman, 1., Khrustalev, K., Nikkinen,
M., Popov, V., Popov, Y., Ungar, K., and Wotawa, G.: Ra-
dioxenon detections in the CTBT international monitoring sys-
tem likely related to the announced nuclear test in North Ko-
rea on February 12, 2013, J. Environ. Radioactiv., 128, 47-63,
https://doi.org/10.1016/j.jenvrad.2013.10.027, 2014.

Saunier, O., Didier, D., Mathieu, A., Masson, O., and Le Brazidec,
J. D.: Atmospheric modeling and source reconstruction of
radioactive ruthenium from an undeclared major release
in 2017, P. Natl. Acad. Sci. USA, 116, 24991-25000,
https://doi.org/10.1073/pnas.1907823116, 2019.

Seibert, P. and Frank, A.: Source-receptor matrix calculation with
a Lagrangian particle dispersion model in backward mode, At-

Geosci. Model Dev., 14, 1237-1252, 2021


https://doi.org/10.1016/j.atmosenv.2006.12.048
https://doi.org/10.1002/qj.64
https://doi.org/10.1002/qj.2652
https://doi.org/10.1016/j.jenvrad.2019.05.004
https://doi.org/10.1021/ac60259a007
https://doi.org/10.5281/zenodo.4003640
https://doi.org/10.1016/j.jenvrad.2020.106225
https://doi.org/10.1038/s41598-018-28403-z
https://doi.org/10.1007/978-3-030-22055-6_15
https://doi.org/10.5281/zenodo.4588282
https://doi.org/10.5194/acp-9-8857-2009
https://doi.org/10.5194/acp-9-8857-2009
https://www.flexpart.eu/
https://doi.org/10.1029/2004JD005750
https://doi.org/10.1175/JAMC-D-13-0125.1
https://doi.org/10.1175/JAMC-D-13-0125.1
https://doi.org/10.1002/qj.3387
https://doi.org/10.1016/j.jcp.2007.02.014
https://doi.org/10.1021/acs.est.8b01810
https://doi.org/10.1073/pnas.1907571116
https://doi.org/10.1016/j.jenvrad.2013.10.027
https://doi.org/10.1073/pnas.1907823116

1252 P. De Meutter et al.: On the model uncertainties in Bayesian source reconstruction

mos. Chem. Phys., 4, 51-63, https://doi.org/10.5194/acp-4-51-
2004, 2004.

Sgrensen, J. H.: Method for source localization proposed and
applied to the October 2017 case of atmospheric disper-
sion of Ru-106, J. Environ. Radioactiv., 189, 221-226,
https://doi.org/10.1016/j.jenvrad.2018.03.010, 2018.

Steinhauser, G.: Anthropogenic radioactive particles in the
environment, J. Radioanal. Nucl. Ch., 318, 1629-1639,
https://doi.org/10.1007/s10967-018-6268-4, 2018.

Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G.:
Technical note: The Lagrangian particle dispersion model
FLEXPART version 6.2, Atmos. Chem. Phys., 5, 2461-2474,
https://doi.org/10.5194/acp-5-2461-2005, 2005.

Stohl, A., Seibert, P., Wotawa, G., Arnold, D., Burkhart, J. F., Eck-
hardt, S., Tapia, C., Vargas, A., and Yasunari, T. J.: Xenon-
133 and caesium-137 releases into the atmosphere from the
Fukushima Dai-ichi nuclear power plant: determination of the
source term, atmospheric dispersion, and deposition, Atmos.
Chem. Phys., 12, 2313-2343, https://doi.org/10.5194/acp-12-
2313-2012, 2012.

Geosci. Model Dev., 14, 1237-1252, 2021

Vrugt, J. A., Ter Braak, C., Diks, C., Robinson, B. A., Hyman,
J. M., and Higdon, D.: Accelerating Markov chain Monte Carlo
simulation by differential evolution with self-adaptive random-
ized subspace sampling, Int. J. Nonlin. Sci. Num., 10, 273-290,
https://doi.org/10.1515/1JNSNS.2009.10.3.273, 2009.

Yee, E.: Inverse dispersion for an unknown number of sources:
model selection and uncertainty analysis, ISRN Applied Mathe-
matics, 2012, 1-20, https://doi.org/10.5402/2012/465320, 2012.

Yee, E., Hoffman, I, and Ungar, K. Bayesian infer-
ence for source reconstruction: A real-world applica-
tion, International scholarly research notices, 2014, 1-12,
https://doi.org/10.1155/2014/507634, 2014.

https://doi.org/10.5194/gmd-14-1237-2021


https://doi.org/10.5194/acp-4-51-2004
https://doi.org/10.5194/acp-4-51-2004
https://doi.org/10.1016/j.jenvrad.2018.03.010
https://doi.org/10.1007/s10967-018-6268-4
https://doi.org/10.5194/acp-5-2461-2005
https://doi.org/10.5194/acp-12-2313-2012
https://doi.org/10.5194/acp-12-2313-2012
https://doi.org/10.1515/IJNSNS.2009.10.3.273
https://doi.org/10.5402/2012/465320
https://doi.org/10.1155/2014/507634

	Abstract
	Introduction
	Description of the case
	Activity concentration observations
	Numerical weather prediction and atmospheric transport modelling

	Bayesian source reconstruction
	Source parameters
	Prior distribution
	Likelihood
	Sampling from the posterior
	Observation and model errors

	Model error and Bayesian source reconstruction
	Posterior effects
	Introduction to multipliers
	Multipliers as unknown model error

	Fitting uncertainty parameters
	The source–receptor sensitivity ensemble distribution
	Fitting model uncertainty
	Error dependency on the release time interval and the observation
	Resulting source location probability map

	Ensembles as a set of scenarios
	Source location probability maps
	Ensemble convergence

	Conclusions
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

