Articles | Volume 13, issue 11
https://doi.org/10.5194/gmd-13-5549-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-5549-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modeling lightning observations from space-based platforms (CloudScat.jl 1.0)
Instituto de Astrofísica de Andalucía (IAA, CSIC), Granada, Spain
Francisco José Gordillo-Vázquez
Instituto de Astrofísica de Andalucía (IAA, CSIC), Granada, Spain
Dongshuai Li
Instituto de Astrofísica de Andalucía (IAA, CSIC), Granada, Spain
Alejandro Malagón-Romero
Instituto de Astrofísica de Andalucía (IAA, CSIC), Granada, Spain
Francisco Javier Pérez-Invernón
Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Wessling, Germany
Anthony Schmalzried
Instituto de Astrofísica de Andalucía (IAA, CSIC), Granada, Spain
Sergio Soler
Instituto de Astrofísica de Andalucía (IAA, CSIC), Granada, Spain
Olivier Chanrion
National Space Institute, Technical University of Denmark (DTU Space), Kongens Lyngby, Denmark
Matthias Heumesser
National Space Institute, Technical University of Denmark (DTU Space), Kongens Lyngby, Denmark
Torsten Neubert
National Space Institute, Technical University of Denmark (DTU Space), Kongens Lyngby, Denmark
Víctor Reglero
Image Processing Laboratory, University of Valencia, Valencia, Spain
Nikolai Østgaard
Birkeland Centre for Space Science, Department of Physics and Technology, University of Bergen, Bergen, Norway
Related authors
David Sarria, Casper Rutjes, Gabriel Diniz, Alejandro Luque, Kevin M. A. Ihaddadene, Joseph R. Dwyer, Nikolai Østgaard, Alexander B. Skeltved, Ivan S. Ferreira, and Ute Ebert
Geosci. Model Dev., 11, 4515–4535, https://doi.org/10.5194/gmd-11-4515-2018, https://doi.org/10.5194/gmd-11-4515-2018, 2018
Short summary
Short summary
We evaluate three models (Geant4, REAM, GRRR) used in the field of high-energy atmospheric physics that are able to simulate relativistic runaway electron avalanches. Several models have been used by the community, but there was, up until now, no study evaluating their consistency in this context. We conclude that there are no major differences to report, and we discuss minor ones. We also provide advice on how to properly set up the general purpose code (Geant4) in this context.
Casper Rutjes, David Sarria, Alexander Broberg Skeltved, Alejandro Luque, Gabriel Diniz, Nikolai Østgaard, and Ute Ebert
Geosci. Model Dev., 9, 3961–3974, https://doi.org/10.5194/gmd-9-3961-2016, https://doi.org/10.5194/gmd-9-3961-2016, 2016
Short summary
Short summary
High energy atmospheric physics includes terrestrial gamma-ray flashes, electron–positron beams and gamma-ray glows from thunderstorms. It requires appropriate models for the interaction of energetic particles with the atmosphere. We benchmark general purpose and custom-made codes against each other. We focus on basic tests, namely on the evolution of particles through air in the absence of electric and magnetic fields, providing a first benchmark for present and future custom-made codes.
Francisco J. Pérez-Invernón, Francisco J. Gordillo-Vázquez, Heidi Huntrieser, Patrick Jöckel, and Eric J. Bucsela
EGUsphere, https://doi.org/10.5194/egusphere-2024-3348, https://doi.org/10.5194/egusphere-2024-3348, 2024
Short summary
Short summary
Lightning plays a significant role in tropospheric chemistry by producing substantial amounts of nitrogen oxides. According to recent estimates, thunderstorms that produce a higher lightning frequency rate also produce less nitrogen oxide per flash. We implemented the dependency of nitrogen oxide production per flash on lightning flash frequency in a chemical atmospheric model.
Sergio Soler, Francisco J. Gordillo-Vázquez, Francisco J. Pérez-Invernón, Patrick Jöckel, Torsten Neubert, Olivier Chanrion, Victor Reglero, and Nikolai Østgaard
Atmos. Chem. Phys., 24, 10225–10243, https://doi.org/10.5194/acp-24-10225-2024, https://doi.org/10.5194/acp-24-10225-2024, 2024
Short summary
Short summary
Sudden local ozone (O3) enhancements have been reported in different regions of the world since the 1970s. While the hot channel of lightning strokes directly produce significant amounts of nitrogen oxide, no direct emission of O3 is expected. Corona discharges in convective active regions could explain local O3 increases, which remains unexplained. We present the first mathematical functions that relate the global annual frequency of in-cloud coronas with four sets of meteorological variables.
Francisco J. Pérez-Invernón, Francisco J. Gordillo-Vázquez, Alejandro Malagón-Romero, and Patrick Jöckel
Atmos. Chem. Phys., 24, 3577–3592, https://doi.org/10.5194/acp-24-3577-2024, https://doi.org/10.5194/acp-24-3577-2024, 2024
Short summary
Short summary
Sprites are electrical discharges that occur in the upper atmosphere. Recent modelling and observational data suggest that they may have a measurable impact on atmospheric chemistry. We incorporate both the occurrence rate of sprites and their production of chemical species into a chemistry–climate model. While our results indicate that sprites have a minimal global influence on atmospheric chemistry, they underscore their noteworthy importance at a regional scale.
Jose V. Moris, Pedro Álvarez-Álvarez, Marco Conedera, Annalie Dorph, Thomas D. Hessilt, Hugh G. P. Hunt, Renata Libonati, Lucas S. Menezes, Mortimer M. Müller, Francisco J. Pérez-Invernón, Gianni B. Pezzatti, Nicolau Pineda, Rebecca C. Scholten, Sander Veraverbeke, B. Mike Wotton, and Davide Ascoli
Earth Syst. Sci. Data, 15, 1151–1163, https://doi.org/10.5194/essd-15-1151-2023, https://doi.org/10.5194/essd-15-1151-2023, 2023
Short summary
Short summary
This work describes a database on holdover times of lightning-ignited wildfires (LIWs). Holdover time is defined as the time between lightning-induced fire ignition and fire detection. The database contains 42 datasets built with data on more than 152 375 LIWs from 13 countries in five continents from 1921 to 2020. This database is the first freely-available, harmonized and ready-to-use global source of holdover time data, which may be used to investigate LIWs and model the holdover phenomenon.
Francisco J. Pérez-Invernón, Heidi Huntrieser, Thilo Erbertseder, Diego Loyola, Pieter Valks, Song Liu, Dale J. Allen, Kenneth E. Pickering, Eric J. Bucsela, Patrick Jöckel, Jos van Geffen, Henk Eskes, Sergio Soler, Francisco J. Gordillo-Vázquez, and Jeff Lapierre
Atmos. Meas. Tech., 15, 3329–3351, https://doi.org/10.5194/amt-15-3329-2022, https://doi.org/10.5194/amt-15-3329-2022, 2022
Short summary
Short summary
Lightning, one of the major sources of nitrogen oxides in the atmosphere, contributes to the tropospheric concentration of ozone and to the oxidizing capacity of the atmosphere. In this work, we contribute to improving the estimation of lightning-produced nitrogen oxides in the Ebro Valley and the Pyrenees by using two different TROPOMI products and comparing the results.
Francisco J. Pérez-Invernón, Heidi Huntrieser, Patrick Jöckel, and Francisco J. Gordillo-Vázquez
Geosci. Model Dev., 15, 1545–1565, https://doi.org/10.5194/gmd-15-1545-2022, https://doi.org/10.5194/gmd-15-1545-2022, 2022
Short summary
Short summary
This study reports the first parameterization of long-continuing-current lightning in a climate model. Long-continuing-current lightning is proposed to be the main precursor of lightning-ignited wildfires and sprites, a type of transient luminous event taking place in the mesosphere. This parameterization can significantly contribute to improving the implementation of wildfires in climate models.
Francisco J. Pérez-Invernón, Heidi Huntrieser, Sergio Soler, Francisco J. Gordillo-Vázquez, Nicolau Pineda, Javier Navarro-González, Víctor Reglero, Joan Montanyà, Oscar van der Velde, and Nikos Koutsias
Atmos. Chem. Phys., 21, 17529–17557, https://doi.org/10.5194/acp-21-17529-2021, https://doi.org/10.5194/acp-21-17529-2021, 2021
Short summary
Short summary
Lightning-ignited fires tend to occur in remote areas and can spread significantly before suppression. Long continuing current (LCC) lightning, preferably taking place in dry thunderstorms, is believed to be the main precursor of lightning-ignited fires. We analyze fire databases of lightning-ignited fires in the Mediterranean basin and report the shared meteorological conditions of fire- and LCC-lightning-producing thunderstorms. These results can be useful to improve fire forecasting methods.
Nikolai Østgaard, Jone P. Reistad, Paul Tenfjord, Karl M. Laundal, Theresa Rexer, Stein E. Haaland, Kristian Snekvik, Michael Hesse, Stephen E. Milan, and Anders Ohma
Ann. Geophys., 36, 1577–1596, https://doi.org/10.5194/angeo-36-1577-2018, https://doi.org/10.5194/angeo-36-1577-2018, 2018
Short summary
Short summary
In this paper we take advantage of having two auroral imaging missions giving simultaneous data of both the southern and northern aurora. Combined with all available in situ measurements from space and global ground-based networks, we explore the asymmetric behavior of geospace. We find large auroral asymmetries and different reconnection geometry in the two hemispheres. During substorm expansion phase asymmetries are reduced.
David Sarria, Casper Rutjes, Gabriel Diniz, Alejandro Luque, Kevin M. A. Ihaddadene, Joseph R. Dwyer, Nikolai Østgaard, Alexander B. Skeltved, Ivan S. Ferreira, and Ute Ebert
Geosci. Model Dev., 11, 4515–4535, https://doi.org/10.5194/gmd-11-4515-2018, https://doi.org/10.5194/gmd-11-4515-2018, 2018
Short summary
Short summary
We evaluate three models (Geant4, REAM, GRRR) used in the field of high-energy atmospheric physics that are able to simulate relativistic runaway electron avalanches. Several models have been used by the community, but there was, up until now, no study evaluating their consistency in this context. We conclude that there are no major differences to report, and we discuss minor ones. We also provide advice on how to properly set up the general purpose code (Geant4) in this context.
Casper Rutjes, David Sarria, Alexander Broberg Skeltved, Alejandro Luque, Gabriel Diniz, Nikolai Østgaard, and Ute Ebert
Geosci. Model Dev., 9, 3961–3974, https://doi.org/10.5194/gmd-9-3961-2016, https://doi.org/10.5194/gmd-9-3961-2016, 2016
Short summary
Short summary
High energy atmospheric physics includes terrestrial gamma-ray flashes, electron–positron beams and gamma-ray glows from thunderstorms. It requires appropriate models for the interaction of energetic particles with the atmosphere. We benchmark general purpose and custom-made codes against each other. We focus on basic tests, namely on the evolution of particles through air in the absence of electric and magnetic fields, providing a first benchmark for present and future custom-made codes.
N. Y. Ganushkina, M. W. Liemohn, S. Dubyagin, I. A. Daglis, I. Dandouras, D. L. De Zeeuw, Y. Ebihara, R. Ilie, R. Katus, M. Kubyshkina, S. E. Milan, S. Ohtani, N. Ostgaard, J. P. Reistad, P. Tenfjord, F. Toffoletto, S. Zaharia, and O. Amariutei
Ann. Geophys., 33, 1369–1402, https://doi.org/10.5194/angeo-33-1369-2015, https://doi.org/10.5194/angeo-33-1369-2015, 2015
Short summary
Short summary
A number of current systems exist in the Earth's magnetosphere. It is very difficult to identify local measurements as belonging to a specific current system. Therefore, there are different definitions of supposedly the same current, leading to unnecessary controversy. This study presents a robust collection of these definitions of current systems in geospace, particularly in the near-Earth nightside magnetosphere, as viewed from a variety of observational and computational analysis techniques.
Related subject area
Atmospheric sciences
Simulation performance of planetary boundary layer schemes in WRF v4.3.1 for near-surface wind over the western Sichuan Basin: a single-site assessment
FootNet v1.0: development of a machine learning emulator of atmospheric transport
Updates and evaluation of NOAA's online-coupled air quality model version 7 (AQMv7) within the Unified Forecast System
Quantifying the analysis uncertainty for nowcasting application
Improving the ensemble square root filter (EnSRF) in the Community Inversion Framework: a case study with ICON-ART 2024.01
The MESSy DWARF (based on MESSy v2.55.2)
An enhanced emission module for the PALM model system 23.10 with application for PM10 emission from urban domestic heating
Identifying lightning processes in ERA5 soundings with deep learning
Sensitivity of predicted ultrafine particle size distributions in Europe to different nucleation rate parameterizations using PMCAMx-UF v2.2
Explaining neural networks for detection of tropical cyclones and atmospheric rivers in gridded atmospheric simulation data
Accurate space-based NOx emission estimates with the flux divergence approach require fine-scale model information on local oxidation chemistry and profile shapes
Exploring a high-level programming model for the NWP domain using ECMWF microphysics schemes
Quantifying uncertainties in satellite NO2 superobservations for data assimilation and model evaluation
ML-AMPSIT: Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool
Coupling the urban canopy model TEB (SURFEXv9.0) with the radiation model SPARTACUS-Urbanv0.6.1 for more realistic urban radiative exchange calculation
Forecasting contrail climate forcing for flight planning and air traffic management applications: the CocipGrid model in pycontrails 0.51.0
Simulation of the heat mitigation potential of unsealing measures in cities by parameterizing grass grid pavers for urban microclimate modelling with ENVI-met (V5)
AI-NAOS: an AI-based nonspherical aerosol optical scheme for the chemical weather model GRAPES_Meso5.1/CUACE
Orbital-Radar v1.0.0: a tool to transform suborbital radar observations to synthetic EarthCARE cloud radar data
The Modular and Integrated Data Assimilation System at Environment and Climate Change Canada (MIDAS v3.9.1)
Modeling of polycyclic aromatic hydrocarbons (PAHs) from global to regional scales: model development (IAP-AACM_PAH v1.0) and investigation of health risks in 2013 and 2018 in China
LIMA (v2.0): A full two-moment cloud microphysical scheme for the mesoscale non-hydrostatic model Meso-NH v5-6
SLUCM+BEM (v1.0): a simple parameterisation for dynamic anthropogenic heat and electricity consumption in WRF-Urban (v4.3.2)
NAQPMS-PDAF v2.0: a novel hybrid nonlinear data assimilation system for improved simulation of PM2.5 chemical components
Source-specific bias correction of US background and anthropogenic ozone modeled in CMAQ
Observational operator for fair model evaluation with ground NO2 measurements
Valid time shifting ensemble Kalman filter (VTS-EnKF) for dust storm forecasting
An updated parameterization of the unstable atmospheric surface layer in the Weather Research and Forecasting (WRF) modeling system
The impact of cloud microphysics and ice nucleation on Southern Ocean clouds assessed with single-column modeling and instrument simulators
An updated aerosol simulation in the Community Earth System Model (v2.1.3): dust and marine aerosol emissions and secondary organic aerosol formation
Exploring ship track spreading rates with a physics-informed Langevin particle parameterization
Do data-driven models beat numerical models in forecasting weather extremes? A comparison of IFS HRES, Pangu-Weather, and GraphCast
Development of the MPAS-CMAQ coupled system (V1.0) for multiscale global air quality modeling
UA-ICON with NWP physics package (version: ua-icon-2.1): mean state and variability of the middle atmosphere
Assessment of object-based indices to identify convective organization
The Global Forest Fire Emissions Prediction System version 1.0
Sensitivity Studies of Four‐Dimensional Local Ensemble Transform Kalman Filter Coupled With WRF-Chem Version 3.9.1 for Improving Particulate Matter Simulation Accuracy
Development of A Fast Radiative Transfer Model for Ground-based Microwave Radiometers (ARMS-gb v1.0): Validation and Comparison to RTTOV-gb
NEIVAv1.0: Next-generation Emissions InVentory expansion of Akagi et al. (2011) version 1.0
FLEXPART version 11: improved accuracy, efficiency, and flexibility
Low-level jets in the North and Baltic Seas: Mesoscale Model Sensitivity and Climatology
Challenges of high-fidelity air quality modeling in urban environments – PALM sensitivity study during stable conditions
Knowledge-inspired fusion strategies for the inference of PM2.5 values with a Neural Network
Air quality modeling intercomparison and multiscale ensemble chain for Latin America
Recommended coupling to global meteorological fields for long-term tracer simulations with WRF-GHG
Estimation of aerosol and cloud radiative heating rate in tropical stratosphere using radiative kernel method
Selecting CMIP6 global climate models (GCMs) for Coordinated Regional Climate Downscaling Experiment (CORDEX) dynamical downscaling over Southeast Asia using a standardised benchmarking framework
Integrated Methane Inversion (IMI) 2.0: an improved research and stakeholder tool for monitoring total methane emissions with high resolution worldwide using TROPOMI satellite observations
Improved definition of prior uncertainties in CO2 and CO fossil fuel fluxes and its impact on multi-species inversion with GEOS-Chem (v12.5)
RASCAL v1.0: an open-source tool for climatological time series reconstruction and extension
Qin Wang, Bo Zeng, Gong Chen, and Yaoting Li
Geosci. Model Dev., 18, 1769–1784, https://doi.org/10.5194/gmd-18-1769-2025, https://doi.org/10.5194/gmd-18-1769-2025, 2025
Short summary
Short summary
This study evaluates the performance of four planetary boundary layer (PBL) schemes in near-surface wind fields over the Sichuan Basin, China. Using 112 sensitivity experiments with the Weather Research and Forecasting (WRF) model and focusing on 28 wind events, it is found that wind direction was less sensitive to the PBL schemes. The quasi-normal scale elimination (QNSE) scheme captured temporal variations best, while the Mellor–Yamada–Janjić (MYJ) scheme had the least error in wind speed.
Tai-Long He, Nikhil Dadheech, Tammy M. Thompson, and Alexander J. Turner
Geosci. Model Dev., 18, 1661–1671, https://doi.org/10.5194/gmd-18-1661-2025, https://doi.org/10.5194/gmd-18-1661-2025, 2025
Short summary
Short summary
It is computationally expensive to infer greenhouse gas (GHG) emissions using atmospheric observations. This is partly due to the detailed model used to represent atmospheric transport. We demonstrate how a machine learning (ML) model can be used to simulate high-resolution atmospheric transport. This type of ML model will help estimate GHG emissions using dense observations, which are becoming increasingly common with the proliferation of urban monitoring networks and geostationary satellites.
Wei Li, Beiming Tang, Patrick C. Campbell, Youhua Tang, Barry Baker, Zachary Moon, Daniel Tong, Jianping Huang, Kai Wang, Ivanka Stajner, and Raffaele Montuoro
Geosci. Model Dev., 18, 1635–1660, https://doi.org/10.5194/gmd-18-1635-2025, https://doi.org/10.5194/gmd-18-1635-2025, 2025
Short summary
Short summary
The study describes the updates of NOAA's current UFS-AQMv7 air quality forecast model by incorporating the latest scientific and structural changes in CMAQv5.4. An evaluation during the summer of 2023 shows that the updated model overall improves the simulation of MDA8 O3 by reducing the bias by 8%–12% in the contiguous US. PM2.5 predictions have mixed results due to wildfire, highlighting the need for future refinements.
Yanwei Zhu, Aitor Atencia, Markus Dabernig, and Yong Wang
Geosci. Model Dev., 18, 1545–1559, https://doi.org/10.5194/gmd-18-1545-2025, https://doi.org/10.5194/gmd-18-1545-2025, 2025
Short summary
Short summary
Most works have delved into convective weather nowcasting, and only a few works have discussed the nowcasting uncertainty for variables at the surface level. Hence, we proposed a method to estimate uncertainty. Generating appropriate noises associated with the characteristic of the error in analysis can simulate the uncertainty of nowcasting. This method can contribute to the estimation of near–surface analysis uncertainty in both nowcasting applications and ensemble nowcasting development.
Joël Thanwerdas, Antoine Berchet, Lionel Constantin, Aki Tsuruta, Michael Steiner, Friedemann Reum, Stephan Henne, and Dominik Brunner
Geosci. Model Dev., 18, 1505–1544, https://doi.org/10.5194/gmd-18-1505-2025, https://doi.org/10.5194/gmd-18-1505-2025, 2025
Short summary
Short summary
The Community Inversion Framework (CIF) brings together methods for estimating greenhouse gas fluxes from atmospheric observations. The initial ensemble method implemented in CIF was found to be incomplete and could hardly be compared to other ensemble methods employed in the inversion community. In this paper, we present and evaluate a new implementation of the ensemble mode, building upon the initial developments.
Astrid Kerkweg, Timo Kirfel, Duong H. Do, Sabine Griessbach, Patrick Jöckel, and Domenico Taraborrelli
Geosci. Model Dev., 18, 1265–1286, https://doi.org/10.5194/gmd-18-1265-2025, https://doi.org/10.5194/gmd-18-1265-2025, 2025
Short summary
Short summary
Normally, the Modular Earth Submodel System (MESSy) is linked to complete dynamic models to create chemical climate models. However, the modular concept of MESSy and the newly developed DWARF component presented here make it possible to create simplified models that contain only one or a few process descriptions. This is very useful for technical optimisation, such as porting to GPUs, and can be used to create less complex models, such as a chemical box model.
Edward C. Chan, Ilona J. Jäkel, Basit Khan, Martijn Schaap, Timothy M. Butler, Renate Forkel, and Sabine Banzhaf
Geosci. Model Dev., 18, 1119–1139, https://doi.org/10.5194/gmd-18-1119-2025, https://doi.org/10.5194/gmd-18-1119-2025, 2025
Short summary
Short summary
An enhanced emission module has been developed for the PALM model system, improving flexibility and scalability of emission source representation across different sectors. A model for parametrized domestic emissions has also been included, for which an idealized model run is conducted for particulate matter (PM10). The results show that, in addition to individual sources and diurnal variations in energy consumption, vertical transport and urban topology play a role in concentration distribution.
Gregor Ehrensperger, Thorsten Simon, Georg J. Mayr, and Tobias Hell
Geosci. Model Dev., 18, 1141–1153, https://doi.org/10.5194/gmd-18-1141-2025, https://doi.org/10.5194/gmd-18-1141-2025, 2025
Short summary
Short summary
As lightning is a brief and localized event, it is not explicitly resolved in atmospheric models. Instead, expert-based auxiliary descriptions are used to assess it. This study explores how AI can improve our understanding of lightning without relying on traditional expert knowledge. We reveal that AI independently identified the key factors known to experts as essential for lightning in the Alps region. This shows how knowledge discovery could be sped up in areas with limited expert knowledge.
David Patoulias, Kalliopi Florou, and Spyros N. Pandis
Geosci. Model Dev., 18, 1103–1118, https://doi.org/10.5194/gmd-18-1103-2025, https://doi.org/10.5194/gmd-18-1103-2025, 2025
Short summary
Short summary
The effect of the assumed atmospheric nucleation mechanism on particle number concentrations and size distribution was investigated. Two quite different mechanisms involving sulfuric acid and ammonia or a biogenic organic vapor gave quite similar results which were consistent with measurements at 26 measurement stations across Europe. The number of larger particles that serve as cloud condensation nuclei showed little sensitivity to the assumed nucleation mechanism.
Tim Radke, Susanne Fuchs, Christian Wilms, Iuliia Polkova, and Marc Rautenhaus
Geosci. Model Dev., 18, 1017–1039, https://doi.org/10.5194/gmd-18-1017-2025, https://doi.org/10.5194/gmd-18-1017-2025, 2025
Short summary
Short summary
In our study, we built upon previous work to investigate the patterns artificial intelligence (AI) learns to detect atmospheric features like tropical cyclones (TCs) and atmospheric rivers (ARs). As primary objective, we adopt a method to explain the AI used and investigate the plausibility of learned patterns. We find that plausible patterns are learned for both TCs and ARs. Hence, the chosen method is very useful for gaining confidence in the AI-based detection of atmospheric features.
Felipe Cifuentes, Henk Eskes, Enrico Dammers, Charlotte Bryan, and Folkert Boersma
Geosci. Model Dev., 18, 621–649, https://doi.org/10.5194/gmd-18-621-2025, https://doi.org/10.5194/gmd-18-621-2025, 2025
Short summary
Short summary
We tested the capability of the flux divergence approach (FDA) to reproduce known NOx emissions using synthetic NO2 satellite column retrievals from high-resolution model simulations. The FDA accurately reproduced NOx emissions when column observations were limited to the boundary layer and when the variability of the NO2 lifetime, the NOx : NO2 ratio, and NO2 profile shapes were correctly modeled. This introduces strong model dependency, reducing the simplicity of the original FDA formulation.
Stefano Ubbiali, Christian Kühnlein, Christoph Schär, Linda Schlemmer, Thomas C. Schulthess, Michael Staneker, and Heini Wernli
Geosci. Model Dev., 18, 529–546, https://doi.org/10.5194/gmd-18-529-2025, https://doi.org/10.5194/gmd-18-529-2025, 2025
Short summary
Short summary
We explore a high-level programming model for porting numerical weather prediction (NWP) model codes to graphics processing units (GPUs). We present a Python rewrite with the domain-specific library GT4Py (GridTools for Python) of two renowned cloud microphysics schemes and the associated tangent-linear and adjoint algorithms. We find excellent portability, competitive GPU performance, robust execution on diverse computing architectures, and enhanced code maintainability and user productivity.
Pieter Rijsdijk, Henk Eskes, Arlene Dingemans, K. Folkert Boersma, Takashi Sekiya, Kazuyuki Miyazaki, and Sander Houweling
Geosci. Model Dev., 18, 483–509, https://doi.org/10.5194/gmd-18-483-2025, https://doi.org/10.5194/gmd-18-483-2025, 2025
Short summary
Short summary
Clustering high-resolution satellite observations into superobservations improves model validation and data assimilation applications. In our paper, we derive quantitative uncertainties for satellite NO2 column observations based on knowledge of the retrievals, including a detailed analysis of spatial error correlations and representativity errors. The superobservations and uncertainty estimates are tested in a global chemical data assimilation system and are found to improve the forecasts.
Dario Di Santo, Cenlin He, Fei Chen, and Lorenzo Giovannini
Geosci. Model Dev., 18, 433–459, https://doi.org/10.5194/gmd-18-433-2025, https://doi.org/10.5194/gmd-18-433-2025, 2025
Short summary
Short summary
This paper presents the Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool (ML-AMPSIT), a computationally efficient tool that uses machine learning algorithms for sensitivity analysis in atmospheric models. It is tested with the Weather Research and Forecasting (WRF) model coupled with the Noah-Multiparameterization (Noah-MP) land surface model to investigate sea breeze circulation sensitivity to vegetation-related parameters.
Robert Schoetter, Robin James Hogan, Cyril Caliot, and Valéry Masson
Geosci. Model Dev., 18, 405–431, https://doi.org/10.5194/gmd-18-405-2025, https://doi.org/10.5194/gmd-18-405-2025, 2025
Short summary
Short summary
Radiation is relevant to the atmospheric impact on people and infrastructure in cities as it can influence the urban heat island, building energy consumption, and human thermal comfort. A new urban radiation model, assuming a more realistic form of urban morphology, is coupled to the urban climate model Town Energy Balance (TEB). The new TEB is evaluated with a reference radiation model for a variety of urban morphologies, and an improvement in the simulated radiative observables is found.
Zebediah Engberg, Roger Teoh, Tristan Abbott, Thomas Dean, Marc E. J. Stettler, and Marc L. Shapiro
Geosci. Model Dev., 18, 253–286, https://doi.org/10.5194/gmd-18-253-2025, https://doi.org/10.5194/gmd-18-253-2025, 2025
Short summary
Short summary
Contrails forming in some atmospheric conditions may persist and become strongly warming cirrus, while in other conditions may be neutral or cooling. We develop a contrail forecast model to predict contrail climate forcing for any arbitrary point in space and time and explore integration into flight planning and air traffic management. This approach enables contrail interventions to target high-probability high-climate-impact regions and reduce unintended consequences of contrail management.
Nils Eingrüber, Alina Domm, Wolfgang Korres, and Karl Schneider
Geosci. Model Dev., 18, 141–160, https://doi.org/10.5194/gmd-18-141-2025, https://doi.org/10.5194/gmd-18-141-2025, 2025
Short summary
Short summary
Climate change adaptation measures like unsealings can reduce urban heat stress. As grass grid pavers have never been parameterized for microclimate model simulations with ENVI-met, a new parameterization was developed based on field measurements. To analyse the cooling potential, scenario analyses were performed for a densely developed area in Cologne. Statistically significant average cooling effects of up to −11.1 K were found for surface temperature and up to −2.9 K for 1 m air temperature.
Xuan Wang, Lei Bi, Hong Wang, Yaqiang Wang, Wei Han, Xueshun Shen, and Xiaoye Zhang
Geosci. Model Dev., 18, 117–139, https://doi.org/10.5194/gmd-18-117-2025, https://doi.org/10.5194/gmd-18-117-2025, 2025
Short summary
Short summary
The Artificial-Intelligence-based Nonspherical Aerosol Optical Scheme (AI-NAOS) was developed to improve the estimation of the aerosol direct radiation effect and was coupled online with a chemical weather model. The AI-NAOS scheme considers black carbon as fractal aggregates and soil dust as super-spheroids, encapsulated with hygroscopic aerosols. Real-case simulations emphasize the necessity of accurately representing nonspherical and inhomogeneous aerosols in chemical weather models.
Lukas Pfitzenmaier, Pavlos Kollias, Nils Risse, Imke Schirmacher, Bernat Puigdomenech Treserras, and Katia Lamer
Geosci. Model Dev., 18, 101–115, https://doi.org/10.5194/gmd-18-101-2025, https://doi.org/10.5194/gmd-18-101-2025, 2025
Short summary
Short summary
The Python tool Orbital-Radar transfers suborbital radar data (ground-based, airborne, and forward-simulated numerical weather prediction model) into synthetic spaceborne cloud profiling radar data, mimicking platform-specific instrument characteristics, e.g. EarthCARE or CloudSat. The tool's novelty lies in simulating characteristic errors and instrument noise. Thus, existing data sets are transferred into synthetic observations and can be used for satellite calibration–validation studies.
Mark Buehner, Jean-Francois Caron, Ervig Lapalme, Alain Caya, Ping Du, Yves Rochon, Sergey Skachko, Maziar Bani Shahabadi, Sylvain Heilliette, Martin Deshaies-Jacques, Weiguang Chang, and Michael Sitwell
Geosci. Model Dev., 18, 1–18, https://doi.org/10.5194/gmd-18-1-2025, https://doi.org/10.5194/gmd-18-1-2025, 2025
Short summary
Short summary
The Modular and Integrated Data Assimilation System (MIDAS) software is described. The flexible design of MIDAS enables both deterministic and ensemble prediction applications for the atmosphere and several other Earth system components. It is currently used for all main operational weather prediction systems in Canada and also for sea ice and sea surface temperature analysis. The use of MIDAS for multiple Earth system components will facilitate future research on coupled data assimilation.
Zichen Wu, Xueshun Chen, Zifa Wang, Huansheng Chen, Zhe Wang, Qing Mu, Lin Wu, Wending Wang, Xiao Tang, Jie Li, Ying Li, Qizhong Wu, Yang Wang, Zhiyin Zou, and Zijian Jiang
Geosci. Model Dev., 17, 8885–8907, https://doi.org/10.5194/gmd-17-8885-2024, https://doi.org/10.5194/gmd-17-8885-2024, 2024
Short summary
Short summary
We developed a model to simulate polycyclic aromatic hydrocarbons (PAHs) from global to regional scales. The model can reproduce PAH distribution well. The concentration of BaP (indicator species for PAHs) could exceed the target values of 1 ng m-3 over some areas (e.g., in central Europe, India, and eastern China). The change in BaP is lower than that in PM2.5 from 2013 to 2018. China still faces significant potential health risks posed by BaP although the Action Plan has been implemented.
Marie Taufour, Jean-Pierre Pinty, Christelle Barthe, Benoît Vié, and Chien Wang
Geosci. Model Dev., 17, 8773–8798, https://doi.org/10.5194/gmd-17-8773-2024, https://doi.org/10.5194/gmd-17-8773-2024, 2024
Short summary
Short summary
We have developed a complete two-moment version of the LIMA (Liquid Ice Multiple Aerosols) microphysics scheme. We have focused on collection processes, where the hydrometeor number transfer is often estimated in proportion to the mass transfer. The impact of these parameterizations on a convective system and the prospects for more realistic estimates of secondary parameters (reflectivity, hydrometeor size) are shown in a first test on an idealized case.
Yuya Takane, Yukihiro Kikegawa, Ko Nakajima, and Hiroyuki Kusaka
Geosci. Model Dev., 17, 8639–8664, https://doi.org/10.5194/gmd-17-8639-2024, https://doi.org/10.5194/gmd-17-8639-2024, 2024
Short summary
Short summary
A new parameterisation for dynamic anthropogenic heat and electricity consumption is described. The model reproduced the temporal variation in and spatial distributions of electricity consumption and temperature well in summer and winter. The partial air conditioning was the most critical factor, significantly affecting the value of anthropogenic heat emission.
Hongyi Li, Ting Yang, Lars Nerger, Dawei Zhang, Di Zhang, Guigang Tang, Haibo Wang, Yele Sun, Pingqing Fu, Hang Su, and Zifa Wang
Geosci. Model Dev., 17, 8495–8519, https://doi.org/10.5194/gmd-17-8495-2024, https://doi.org/10.5194/gmd-17-8495-2024, 2024
Short summary
Short summary
To accurately characterize the spatiotemporal distribution of particulate matter <2.5 µm chemical components, we developed the Nested Air Quality Prediction Model System with the Parallel Data Assimilation Framework (NAQPMS-PDAF) v2.0 for chemical components with non-Gaussian and nonlinear properties. NAQPMS-PDAF v2.0 has better computing efficiency, excels when used with a small ensemble size, and can significantly improve the simulation performance of chemical components.
T. Nash Skipper, Christian Hogrefe, Barron H. Henderson, Rohit Mathur, Kristen M. Foley, and Armistead G. Russell
Geosci. Model Dev., 17, 8373–8397, https://doi.org/10.5194/gmd-17-8373-2024, https://doi.org/10.5194/gmd-17-8373-2024, 2024
Short summary
Short summary
Chemical transport model simulations are combined with ozone observations to estimate the bias in ozone attributable to US anthropogenic sources and individual sources of US background ozone: natural sources, non-US anthropogenic sources, and stratospheric ozone. Results indicate a positive bias correlated with US anthropogenic emissions during summer in the eastern US and a negative bias correlated with stratospheric ozone during spring.
Li Fang, Jianbing Jin, Arjo Segers, Ke Li, Ji Xia, Wei Han, Baojie Li, Hai Xiang Lin, Lei Zhu, Song Liu, and Hong Liao
Geosci. Model Dev., 17, 8267–8282, https://doi.org/10.5194/gmd-17-8267-2024, https://doi.org/10.5194/gmd-17-8267-2024, 2024
Short summary
Short summary
Model evaluations against ground observations are usually unfair. The former simulates mean status over coarse grids and the latter the surrounding atmosphere. To solve this, we proposed the new land-use-based representative (LUBR) operator that considers intra-grid variance. The LUBR operator is validated to provide insights that align with satellite measurements. The results highlight the importance of considering fine-scale urban–rural differences when comparing models and observation.
Mijie Pang, Jianbing Jin, Arjo Segers, Huiya Jiang, Wei Han, Batjargal Buyantogtokh, Ji Xia, Li Fang, Jiandong Li, Hai Xiang Lin, and Hong Liao
Geosci. Model Dev., 17, 8223–8242, https://doi.org/10.5194/gmd-17-8223-2024, https://doi.org/10.5194/gmd-17-8223-2024, 2024
Short summary
Short summary
The ensemble Kalman filter (EnKF) improves dust storm forecasts but faces challenges with position errors. The valid time shifting EnKF (VTS-EnKF) addresses this by adjusting for position errors, enhancing accuracy in forecasting dust storms, as proven in tests on 2021 events, even with smaller ensembles and time intervals.
Prabhakar Namdev, Maithili Sharan, Piyush Srivastava, and Saroj Kanta Mishra
Geosci. Model Dev., 17, 8093–8114, https://doi.org/10.5194/gmd-17-8093-2024, https://doi.org/10.5194/gmd-17-8093-2024, 2024
Short summary
Short summary
Inadequate representation of surface–atmosphere interaction processes is a major source of uncertainty in numerical weather prediction models. Here, an effort has been made to improve the Weather Research and Forecasting (WRF) model version 4.2.2 by introducing a unique theoretical framework under convective conditions. In addition, to enhance the potential applicability of the WRF modeling system, various commonly used similarity functions under convective conditions have also been installed.
Andrew Gettelman, Richard Forbes, Roger Marchand, Chih-Chieh Chen, and Mark Fielding
Geosci. Model Dev., 17, 8069–8092, https://doi.org/10.5194/gmd-17-8069-2024, https://doi.org/10.5194/gmd-17-8069-2024, 2024
Short summary
Short summary
Supercooled liquid clouds (liquid clouds colder than 0°C) are common at higher latitudes (especially over the Southern Ocean) and are critical for constraining climate projections. We compare a single-column version of a weather model to observations with two different cloud schemes and find that both the dynamical environment and atmospheric aerosols are important for reproducing observations.
Yujuan Wang, Peng Zhang, Jie Li, Yaman Liu, Yanxu Zhang, Jiawei Li, and Zhiwei Han
Geosci. Model Dev., 17, 7995–8021, https://doi.org/10.5194/gmd-17-7995-2024, https://doi.org/10.5194/gmd-17-7995-2024, 2024
Short summary
Short summary
This study updates the CESM's aerosol schemes, focusing on dust, marine aerosol emissions, and secondary organic aerosol (SOA) . Dust emission modifications make deflation areas more continuous, improving results in North America and the sub-Arctic. Humidity correction to sea-salt emissions has a minor effect. Introducing marine organic aerosol emissions, coupled with ocean biogeochemical processes, and adding aqueous reactions for SOA formation advance the CESM's aerosol modelling results.
Lucas A. McMichael, Michael J. Schmidt, Robert Wood, Peter N. Blossey, and Lekha Patel
Geosci. Model Dev., 17, 7867–7888, https://doi.org/10.5194/gmd-17-7867-2024, https://doi.org/10.5194/gmd-17-7867-2024, 2024
Short summary
Short summary
Marine cloud brightening (MCB) is a climate intervention technique to potentially cool the climate. Climate models used to gauge regional climate impacts associated with MCB often assume large areas of the ocean are uniformly perturbed. However, a more realistic representation of MCB application would require information about how an injected particle plume spreads. This work aims to develop such a plume-spreading model.
Leonardo Olivetti and Gabriele Messori
Geosci. Model Dev., 17, 7915–7962, https://doi.org/10.5194/gmd-17-7915-2024, https://doi.org/10.5194/gmd-17-7915-2024, 2024
Short summary
Short summary
Data-driven models are becoming a viable alternative to physics-based models for weather forecasting up to 15 d into the future. However, it is unclear whether they are as reliable as physics-based models when forecasting weather extremes. We evaluate their performance in forecasting near-surface cold, hot, and windy extremes globally. We find that data-driven models can compete with physics-based models and that the choice of the best model mainly depends on the region and type of extreme.
David C. Wong, Jeff Willison, Jonathan E. Pleim, Golam Sarwar, James Beidler, Russ Bullock, Jerold A. Herwehe, Rob Gilliam, Daiwen Kang, Christian Hogrefe, George Pouliot, and Hosein Foroutan
Geosci. Model Dev., 17, 7855–7866, https://doi.org/10.5194/gmd-17-7855-2024, https://doi.org/10.5194/gmd-17-7855-2024, 2024
Short summary
Short summary
This work describe how we linked the meteorological Model for Prediction Across Scales – Atmosphere (MPAS-A) with the Community Multiscale Air Quality (CMAQ) air quality model to form a coupled modelling system. This could be used to study air quality or climate and air quality interaction at a global scale. This new model scales well in high-performance computing environments and performs well with respect to ground surface networks in terms of ozone and PM2.5.
Markus Kunze, Christoph Zülicke, Tarique Adnan Siddiqui, Claudia Christine Stephan, Yosuke Yamazaki, Claudia Stolle, Sebastian Borchert, and Hauke Schmidt
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-191, https://doi.org/10.5194/gmd-2024-191, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
We present the Icosahedral Nonhydrostatic (ICON) general circulation model with upper atmosphere extension with the physics package for numerical weather prediction (UA-ICON(NWP)). The parameters for the gravity wave parameterizations were optimized, and realistic modelling of the thermal and dynamic state of the mesopause regions was achieved. UA-ICON(NWP) now shows a realistic frequency of major sudden stratospheric warmings and well-represented solar tides in temperature.
Giulio Mandorli and Claudia J. Stubenrauch
Geosci. Model Dev., 17, 7795–7813, https://doi.org/10.5194/gmd-17-7795-2024, https://doi.org/10.5194/gmd-17-7795-2024, 2024
Short summary
Short summary
In recent years, several studies focused their attention on the disposition of convection. Lots of methods, called indices, have been developed to quantify the amount of convection clustering. These indices are evaluated in this study by defining criteria that must be satisfied and then evaluating the indices against these standards. None of the indices meet all criteria, with some only partially meeting them.
Kerry Anderson, Jack Chen, Peter Englefield, Debora Griffin, Paul A. Makar, and Dan Thompson
Geosci. Model Dev., 17, 7713–7749, https://doi.org/10.5194/gmd-17-7713-2024, https://doi.org/10.5194/gmd-17-7713-2024, 2024
Short summary
Short summary
The Global Forest Fire Emissions Prediction System (GFFEPS) is a model that predicts smoke and carbon emissions from wildland fires. The model calculates emissions from the ground up based on satellite-detected fires, modelled weather and fire characteristics. Unlike other global models, GFFEPS uses daily weather conditions to capture changing burning conditions on a day-to-day basis. GFFEPS produced lower carbon emissions due to the changing weather not captured by the other models.
Jianyu Lin, Tie Dai, Lifang Sheng, Weihang Zhang, Shangfei Hai, and Yawen Kong
EGUsphere, https://doi.org/10.5194/egusphere-2024-3321, https://doi.org/10.5194/egusphere-2024-3321, 2024
Short summary
Short summary
The effectiveness of assimilation system and its sensitivity to ensemble member size and length of assimilation window have been investigated. This study advances our understanding about the selection of basic parameters in the four-dimension local ensemble transform Kalman filter assimilation system and the performance of ensemble simulation in a particulate matter polluted environment.
Yi-Ning Shi, Jun Yang, Wei Han, Lujie Han, Jiajia Mao, Wanlin Kan, and Fuzhong Weng
EGUsphere, https://doi.org/10.5194/egusphere-2024-2884, https://doi.org/10.5194/egusphere-2024-2884, 2024
Short summary
Short summary
Assimilating Ground-based microwave radiometers' observations into numerical weather prediction models holds significant promise for enhancing forecast accuracy. Radiative transfer models (RTM) are crucial for direct data assimilation. We propose a new RTM capable of simulating brightness temperatures observed by GMRs and their Jacobians. Several improvements are introduced to achieve higher accuracy.The RTM align with RTTOV-gb well and can achieve smaller STD in water vapor absorption channels.
Samiha Binte Shahid, Forrest G. Lacey, Christine Wiedinmyer, Robert J. Yokelson, and Kelley C. Barsanti
Geosci. Model Dev., 17, 7679–7711, https://doi.org/10.5194/gmd-17-7679-2024, https://doi.org/10.5194/gmd-17-7679-2024, 2024
Short summary
Short summary
The Next-generation Emissions InVentory expansion of Akagi (NEIVA) v.1.0 is a comprehensive biomass burning emissions database that allows integration of new data and flexible querying. Data are stored in connected datasets, including recommended averages of ~1500 constituents for 14 globally relevant fire types. Individual compounds were mapped to common model species to allow better attribution of emissions in modeling studies that predict the effects of fires on air quality and climate.
Lucie Bakels, Daria Tatsii, Anne Tipka, Rona Thompson, Marina Dütsch, Michael Blaschek, Petra Seibert, Katharina Baier, Silvia Bucci, Massimo Cassiani, Sabine Eckhardt, Christine Groot Zwaaftink, Stephan Henne, Pirmin Kaufmann, Vincent Lechner, Christian Maurer, Marie D. Mulder, Ignacio Pisso, Andreas Plach, Rakesh Subramanian, Martin Vojta, and Andreas Stohl
Geosci. Model Dev., 17, 7595–7627, https://doi.org/10.5194/gmd-17-7595-2024, https://doi.org/10.5194/gmd-17-7595-2024, 2024
Short summary
Short summary
Computer models are essential for improving our understanding of how gases and particles move in the atmosphere. We present an update of the atmospheric transport model FLEXPART. FLEXPART 11 is more accurate due to a reduced number of interpolations and a new scheme for wet deposition. It can simulate non-spherical aerosols and includes linear chemical reactions. It is parallelised using OpenMP and includes new user options. A new user manual details how to use FLEXPART 11.
Bjarke Tobias Eisensøe Olsen, Andrea Noemi Hahmann, Nicolás González Alonso-de-Linaje, Mark Žagar, and Martin Dörenkämper
EGUsphere, https://doi.org/10.5194/egusphere-2024-3123, https://doi.org/10.5194/egusphere-2024-3123, 2024
Short summary
Short summary
Low-level jets (LLJs) are strong winds in the lower atmosphere, important for wind energy as turbines get taller. This study compares a weather model (WRF) with real data across five North and Baltic Sea sites. Adjusting the model improved accuracy over the widely-used ERA5. In key offshore regions, LLJs occur 10–15 % of the time and significantly boost wind power, especially in spring and summer, contributing up to 30 % of total capacity in some areas.
Jaroslav Resler, Petra Bauerová, Michal Belda, Martin Bureš, Kryštof Eben, Vladimír Fuka, Jan Geletič, Radek Jareš, Jan Karel, Josef Keder, Pavel Krč, William Patiño, Jelena Radović, Hynek Řezníček, Matthias Sühring, Adriana Šindelářová, and Ondřej Vlček
Geosci. Model Dev., 17, 7513–7537, https://doi.org/10.5194/gmd-17-7513-2024, https://doi.org/10.5194/gmd-17-7513-2024, 2024
Short summary
Short summary
Detailed modeling of urban air quality in stable conditions is a challenge. We show the unprecedented sensitivity of a large eddy simulation (LES) model to meteorological boundary conditions and model parameters in an urban environment under stable conditions. We demonstrate the crucial role of boundary conditions for the comparability of results with observations. The study reveals a strong sensitivity of the results to model parameters and model numerical instabilities during such conditions.
Matthieu Dabrowski, José Mennesson, Jérôme Riedi, Chaabane Djeraba, and Pierre Nabat
EGUsphere, https://doi.org/10.5194/egusphere-2024-2676, https://doi.org/10.5194/egusphere-2024-2676, 2024
Short summary
Short summary
This work focuses on the prediction of aerosol concentration values at ground level, which are a strong indicator of air quality, using Artificial Neural Networks. A study of different variables and their efficiency as inputs for these models is also proposed, and reveals that the best results are obtained when using all of them. Comparison of networks architectures and information fusion methods allows the extraction of knowledge on the most efficient methods in the context of this study.
Jorge E. Pachón, Mariel A. Opazo, Pablo Lichtig, Nicolas Huneeus, Idir Bouarar, Guy Brasseur, Cathy W. Y. Li, Johannes Flemming, Laurent Menut, Camilo Menares, Laura Gallardo, Michael Gauss, Mikhail Sofiev, Rostislav Kouznetsov, Julia Palamarchuk, Andreas Uppstu, Laura Dawidowski, Nestor Y. Rojas, María de Fátima Andrade, Mario E. Gavidia-Calderón, Alejandro H. Delgado Peralta, and Daniel Schuch
Geosci. Model Dev., 17, 7467–7512, https://doi.org/10.5194/gmd-17-7467-2024, https://doi.org/10.5194/gmd-17-7467-2024, 2024
Short summary
Short summary
Latin America (LAC) has some of the most populated urban areas in the world, with high levels of air pollution. Air quality management in LAC has been traditionally focused on surveillance and building emission inventories. This study performed the first intercomparison and model evaluation in LAC, with interesting and insightful findings for the region. A multiscale modeling ensemble chain was assembled as a first step towards an air quality forecasting system.
David Ho, Michał Gałkowski, Friedemann Reum, Santiago Botía, Julia Marshall, Kai Uwe Totsche, and Christoph Gerbig
Geosci. Model Dev., 17, 7401–7422, https://doi.org/10.5194/gmd-17-7401-2024, https://doi.org/10.5194/gmd-17-7401-2024, 2024
Short summary
Short summary
Atmospheric model users often overlook the impact of the land–atmosphere interaction. This study accessed various setups of WRF-GHG simulations that ensure consistency between the model and driving reanalysis fields. We found that a combination of nudging and frequent re-initialization allows certain improvement by constraining the soil moisture fields and, through its impact on atmospheric mixing, improves atmospheric transport.
Jie Gao, Yi Huang, Jonathon S. Wright, Ke Li, Tao Geng, and Qiurun Yu
EGUsphere, https://doi.org/10.5194/egusphere-2024-2815, https://doi.org/10.5194/egusphere-2024-2815, 2024
Short summary
Short summary
The aerosol in the upper troposphere and stratosphere is highly variable, and its radiative effect is poorly understood. To estimate that effect, the radiative kernel is constructed and applied. The results show that the kernels can reproduce aerosol radiative effects and are expected to simulate stratospheric aerosol radiative effects. This approach reduces computational expense and consists well with radiative model calculations and can be applied to atmospheric models with speed requirements.
Phuong Loan Nguyen, Lisa V. Alexander, Marcus J. Thatcher, Son C. H. Truong, Rachael N. Isphording, and John L. McGregor
Geosci. Model Dev., 17, 7285–7315, https://doi.org/10.5194/gmd-17-7285-2024, https://doi.org/10.5194/gmd-17-7285-2024, 2024
Short summary
Short summary
We use a comprehensive approach to select a subset of CMIP6 models for dynamical downscaling over Southeast Asia, taking into account model performance, model independence, data availability and the range of future climate projections. The standardised benchmarking framework is applied to assess model performance through both statistical and process-based metrics. Ultimately, we identify two independent model groups that are suitable for dynamical downscaling in the Southeast Asian region.
Lucas A. Estrada, Daniel J. Varon, Melissa Sulprizio, Hannah Nesser, Zichong Chen, Nicholas Balasus, Sarah E. Hancock, Megan He, James D. East, Todd A. Mooring, Alexander Oort Alonso, Joannes D. Maasakkers, Ilse Aben, Sabour Baray, Kevin W. Bowman, John R. Worden, Felipe J. Cardoso-Saldaña, Emily Reidy, and Daniel J. Jacob
EGUsphere, https://doi.org/10.5194/egusphere-2024-2700, https://doi.org/10.5194/egusphere-2024-2700, 2024
Short summary
Short summary
Reducing methane emissions, a powerful greenhouse gas, is a top policy concern for mitigating anthropogenic climate change. The Integrated Methane Inversion (IMI) is an advanced, cloud-based software that translates satellite observations into actionable emissions data. Here we present IMI version 2.0 with vastly expanded capabilities. These updates enable a wider range of scientific and stakeholder applications from regional to global scales and allow continuous emissions monitoring.
Ingrid Super, Tia Scarpelli, Arjan Droste, and Paul I. Palmer
Geosci. Model Dev., 17, 7263–7284, https://doi.org/10.5194/gmd-17-7263-2024, https://doi.org/10.5194/gmd-17-7263-2024, 2024
Short summary
Short summary
Monitoring greenhouse gas emission reductions requires a combination of models and observations, as well as an initial emission estimate. Each component provides information with a certain level of certainty and is weighted to yield the most reliable estimate of actual emissions. We describe efforts for estimating the uncertainty in the initial emission estimate, which significantly impacts the outcome. Hence, a good uncertainty estimate is key for obtaining reliable information on emissions.
Álvaro González-Cervera and Luis Durán
Geosci. Model Dev., 17, 7245–7261, https://doi.org/10.5194/gmd-17-7245-2024, https://doi.org/10.5194/gmd-17-7245-2024, 2024
Short summary
Short summary
RASCAL is an open-source Python tool designed for reconstructing daily climate observations, especially in regions with complex local phenomena. It merges large-scale weather patterns with local weather using the analog method. Evaluations in central Spain show that RASCAL outperforms ERA20C reanalysis in reconstructing precipitation and temperature. RASCAL offers opportunities for broad scientific applications, from short-term forecasts to local-scale climate change scenarios.
Cited articles
Adachi, T., Sato, M., Ushio, T., Yamazaki, A., Suzuki, M., Kikuchi,
M., Takahashi, Y., Inan, U. S., Linscott, I., Hobara, Y., Frey,
H. U., Mende, S. B., Chen, A. B., Hsu, R.-R., and Kusunoki, K.:
Identifying the occurrence of lightning and transient luminous events by
nadir spectrophotometric observation, J. Atmos. Solar-Terr. Phy., 145, 85,
https://doi.org/10.1016/j.jastp.2016.04.010, 2016. a
Bates, D. R.: Rayleigh scattering by air, Planet. Space Sci., 32, 785,
https://doi.org/10.1016/0032-0633(84)90102-8, 1984. a
Berk, A., Anderson, G. P., Acharya, P. K., Bernstein, L. S., Muratov,
L., Lee, J., Fox, M., Adler-Golden, S. M., Chetwynd, J. H., Hoke,
M. L., Lockwood, R. B., Gardner, J. A., Cooley, T. W., Borel, C. C.,
and Lewis, P. E.: MODTRAN 5: a reformulated atmospheric band model with
auxiliary species and practical multiple scattering options: update, vol.
5806 of Society of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series, p. 662, https://doi.org/10.1117/12.606026, 2005. a
Blakeslee, R. J.: Non-Quality Controlled Lightning Imaging Sensor (LIS) on
International Space Station (ISS) Science Data, NASA Earth Data,
https://doi.org/10.5067/LIS/ISSLIS/DATA107,
2019. a
Blakeslee, R. J., Christian, H. J., J., Mach, D. M., Buechler, D. E.,
Koshak, W. J., Walker, T. D., Bateman, M. G., Stewart, M. F.,
O'Brien, S., Wilson, T. O., Pavelitz, S. D., and Coker, C.:
Lightning Imaging Sensor (LIS) on the International Space Station (ISS):
Launch, Installation, Activation, and First Results, in: AGU Fall Meeting
Abstracts, vol. 2016, p. AE23A, 2016. a
Boccippio, D. J., Koshak, W. J., and Blakeslee, R. J.: Performance
Assessment of the Optical Transient Detector and Lightning Imaging Sensor.
Part I: Predicted Diurnal Variability, J. Atmos. Ocean.
Tech., 19, 1318, https://doi.org/10.1175/1520-0426(2002)019<1318:PAOTOT>2.0.CO;2,
2002. a
Bodhaine, B. A., Wood, N. B., Dutton, E. G., and Slusser, J. R.: On
Rayleigh Optical Depth Calculations, J. Atmos. Ocean.
Tech., 16, 1854, https://doi.org/10.1175/1520-0426(1999)016<1854:ORODC>2.0.CO;2,
1999. a, b
Bohren, C. and Huffman, D. R.: Absorption and Scattering of Light by Small
Particles, John Wiley & Sons, New York, USA, 1983. a
Bozem, H., Fischer, H., Gurk, C., Schiller, C. L., Parchatka, U., Koenigstedt, R., Stickler, A., Martinez, M., Harder, H., Kubistin, D., Williams, J., Eerdekens, G., and Lelieveld, J.: Influence of corona discharge on the ozone budget in the tropical free troposphere: a case study of deep convection during GABRIEL, Atmos. Chem. Phys., 14, 8917–8931, https://doi.org/10.5194/acp-14-8917-2014, 2014. a
Brunner, K. N. and Bitzer, P. M.: A first look at cloud inhomogeneity and its
effect on lightning optical emission, Geophys. Res. Lett., 47,
e2020GL087094, https://doi.org/10.1029/2020GL087094,
2019. a
Cecil, D. J., Buechler, D. E., and Blakeslee, R. J.: Gridded lightning
climatology from TRMM-LIS and OTD: Dataset description, Atmos.
Res., 135, 404, https://doi.org/10.1016/j.atmosres.2012.06.028, 2014. a
Chanrion, O., Neubert, T., Mogensen, A., Yair, Y., Stendel, M.,
Singh, R., and Siingh, D.: Profuse activity of blue electrical
discharges at the tops of thunderstorms, Geophys. Res. Lett., 44, 496,
https://doi.org/10.1002/2016GL071311, 2017. a
Chanrion, O., Neubert, T., Lundgaard Rasmussen, I., Stoltze, C.,
Tcherniak, D., Jessen, N. C., Polny, J., Brauer, P., Balling,
J. E., Savstrup Kristensen, S., Forchhammer, S., Hofmeyer, P.,
Davidsen, P., Mikkelsen, O., Bo Hansen, D., Bhanderi, D. D. V.,
Petersen, C. G., and Lorenzen, M.: The Modular Multispectral Imaging
Array (MMIA) of the ASIM Payload on the International Space Station, Space
Sci. Rev., 215, 28, https://doi.org/10.1007/s11214-019-0593-y, 2019. a
Chern, J. L., Hsu, R. R., Su, H. T., Mende, S. B., Fukunishi, H.,
Takahashi, Y., and Lee, L. C.: Global survey of upper atmospheric
transient luminous events on the ROCSAT-2 satellite, J. Atmos. Solar-Terr.
Phy., 65, 647, https://doi.org/10.1016/S1364-6826(02)00317-6, 2003. a
Christian, H. J., Blakeslee, R. J., Boccippio, D. J., Boeck, W. L.,
Buechler, D. E., Driscoll, K. T., Goodman, S. J., Hall, J. M.,
Koshak, W. J., Mach, D. M., and Stewart, M. F.: Global frequency and
distribution of lightning as observed from space by the Optical Transient
Detector, J. Geophys. Res.-Atmos., 108, 4005, https://doi.org/10.1029/2002JD002347,
2003. a, b
Dwyer, J. R., Smith, D. M., and Cummer, S. A.: High-Energy Atmospheric
Physics: Terrestrial Gamma-Ray Flashes and Related Phenomena, Space Sci.
Rev., 173, 133, https://doi.org/10.1007/s11214-012-9894-0, 2012. a
Ebert, U., Nijdam, S., Li, C., Luque, A., Briels, T., and van
Veldhuizen, E.: Review of recent results on streamer discharges and
discussion of their relevance for sprites and lightning, J. Geophys. Res.-Space Phys., 115, A00E43, https://doi.org/10.1029/2009JA014867, 2010. a
Goodman, S. J., Blakeslee, R. J., Koshak, W. J., Mach, D., Bailey,
J., Buechler, D., Carey, L., Schultz, C., Bateman, M., McCaul, E.,
and Stano, G.: The GOES-R Geostationary Lightning Mapper (GLM),
Atmos. Res., 125, 34, https://doi.org/10.1016/j.atmosres.2013.01.006, 2013. a
Hale, G. M. and Querry, M. R.: Optical constants of water in the 200-nm to
200-micrometer wavelength region, Appl. Optics, 12, 555, https://doi.org/10.1364/AO.12.000555,
1973. a
Haynes, W.: CRC Handbook of Chemistry and Physics, 97th edition, CRC Press, Boca Raton, FL, USA, 2016. a
Iwabuchi, H.: Efficient Monte Carlo Methods for Radiative Transfer
Modeling, J. Atmos. Sci., 63, 2324,
https://doi.org/10.1175/JAS3755.1, 2006. a, b
Kneizys, F. X., Shettle, E. P., Gallery, W. O., Chetwynd, J. H., J.,
Abreu, L. W., McClatchey, R. A., Fenn, R. W., and Selby, J. E. A.:
Atmospheric transmittance/radiance: Computer code LOWTRAN 5, Unknow, 1980. a
Koshak, W. J., Solakiewicz, R. J., Phanord, D. D., and Blakeslee,
R. J.: Diffusion model for lightning radiative transfer, J. Geophys. Res., 99,
14361–14371, https://doi.org/10.1029/94JD00022, 1994. a, b, c
Krapivsky, P., Redner, S., and Ben-Naim, E.: A Kinetic View of Statistical
Physics, Cambridge University Press, Cambridge, UK, 2010. a
Le Vine, D. M.: Sources of the strongest RF radiation from lightning, J. Geophys. Res.,
85, 4091, https://doi.org/10.1029/JC085iC07p04091, 1980. a
Light, T. E., Suszcynsky, D. M., Kirkland, M. W., and Jacobson, A. R.:
Simulations of lightning optical waveforms as seen through clouds by
satellites, J. Geophys. Res., 106, 17103–17114, https://doi.org/10.1029/2001JD900051, 2001. a, b
Liu, F., Zhu, B., Lu, G., Qin, Z., Lei, J., Peng, K.-M., Chen,
A. B., Huang, A., Cummer, S. A., Chen, M., Ma, M., Lyu, F., and
Zhou, H.: Observations of Blue Discharges Associated With Negative Narrow
Bipolar Events in Active Deep Convection, Geophys. Res. Lett., 45, 2842,
https://doi.org/10.1002/2017GL076207, 2018. a
Luque, A.: aluque/CloudScat.jl: 1.0 release candidate 1 (Version 1.0rc1), Zenodo, https://doi.org/10.5281/zenodo.3842787, 2020. a
Mach, D. M., Christian, H. J., Blakeslee, R. J., Boccippio, D. J.,
Goodman, S. J., and Boeck, W. L.: Performance assessment of the Optical
Transient Detector and Lightning Imaging Sensor, J. Geophys. Res.-Atmos.,
112, D09210, https://doi.org/10.1029/2006JD007787, 2007. a
Minschwaner, K., Anderson, G. P., Hall, L. A., and Yoshino, K.:
Polynomial coefficients for calculating O2 Schumann-Runge cross
sections at 0.5 cm−1 resolution, J. Geophys. Res., 97, 10103,
https://doi.org/10.1029/92JD00661, 1992. a
Molina, L. T. and Molina, M. J.: Absolute absorption cross sections of
ozone in the 185- to 350-nm wavelength range, J. Geophys. Res., 91, 14501,
https://doi.org/10.1029/JD091iD13p14501, 1986. a, b
Neubert, T., Østgaard, N., Reglero, V., Chanrion, O., Heumesser,
M., Dimitriadou, K., Christiansen, F., Budtz-Jorgensen, C., Kuvvetli,
I., Rasmussen, I. L., Mezentsev, A., Marisaldi, M., Ullaland, K.,
Genov, G., Yang, S., Kochkin, P., Navarro-Gonzalez, J., Connell,
P. H., and Eyles, C. J.: A terrestrial gamma-ray flash and ionospheric
ultraviolet emissions powered by lightning, Science, 367, 183,
https://doi.org/10.1126/science.aax3872, 2020. a, b, c
Pan, L. L., Homeyer, C. R., Honomichl, S., Ridley, B. A., Weisman,
M., Barth, M. C., Hair, J. W., Fenn, M. A., Butler, C., Diskin,
G. S., Crawford, J. H., Ryerson, T. B., Pollack, I., Peischl, J., and
Huntrieser, H.: Thunderstorms enhance tropospheric ozone by wrapping and
shedding stratospheric air, Geophys. Res. Lett., 41, 7785,
https://doi.org/10.1002/2014GL061921, 2014. a
Pasko, V. P., Yair, Y., and Kuo, C.-L.: Lightning Related Transient
Luminous Events at High Altitude in the Earth's Atmosphere: Phenomenology,
Mechanisms and Effects, Space Sci. Rev., 168, 475,
https://doi.org/10.1007/s11214-011-9813-9, 2012. a
Peck, E. R. and Reeder, K.: Dispersion of Air, J. Opt.
Soc. Am., 62, 958–962, 1972. a
Peterson, M.: Using Lightning Flashes to Image Thunderclouds, J. Geophys.
Res.-Atmos., 124, 10175–10185, https://doi.org/10.1029/2019JD031055, 2019. a, b, c
Peterson, M. and Rudlosky, S.: The Time Evolution of Optical Lightning
Flashes, J. Geophys. Res.-Atmos., 124, 333, https://doi.org/10.1029/2018JD028741,
2019. a
Rison, W., Krehbiel, P. R., Stock, M. G., Edens, H. E., Shao, X.-M.,
Thomas, R. J., Stanley, M. A., and Zhang, Y.: Observations of narrow
bipolar events reveal how lightning is initiated in thunderstorms, Nat.
Commun., 7, 10721, https://doi.org/10.1038/ncomms10721, 2016. a, b
Sato, M., Takahashi, Y., Kikuchi, M., Suzuki, M., Yamazaki, A., and
Ushio, T.: Lightning and Sprite Imager (LSI) Onboard JEM-GLIMS, IEEJ
Transactions on Fundamentals and Materials, 131, 994,
https://doi.org/10.1541/ieejfms.131.994, 2011. a
Smith, D. A., Shao, X. M., Holden, D. N., Rhodes, C. T., Brook, M.,
Krehbiel, P. R., Stanley, M., Rison, W., and Thomas, R. J.: A
distinct class of isolated intracloud lightning discharges and their
associated radio emissions, J. Geophys. Res., 104, 4189, https://doi.org/10.1029/1998JD200045,
1999. a
Soler, S., Pérez-Invernón, F. J., Gordillo-Vázquez, F. J., Luque, A., Li,
D., Malagón-Romero, A., Neubert, T., Chanrion, O., Reglero, V.,
Navarro-Gonzalez, J., Lu, G., Zhang, H., Huang, A., and Østgaard, N.: Blue
Optical Observations of Narrow Bipolar Events by ASIM Suggest Corona Streamer
Activity in Thunderstorms, J. Geophys. Res.-Atmos., 125,
e2020JD032708, https://doi.org/10.1029/2020JD032708, 2020. a
Thomason, L. W. and Krider, E. P.: The Effects of Clouds on the Light
Produced by Lightning., J. Atmos. Sci., 39, 2051,
https://doi.org/10.1175/1520-0469(1982)039<2051:TEOCOT>2.0.CO;2, 1982. a, b, c
Tilles, J. N., Liu, N., Stanley, M. A., Krehbiel, P. R., Rison, W.,
Stock, M. G., Dwyer, J. R., Brown, R., and Wilson, J.: Fast negative
breakdown in thunderstorms, Nat. Commun., 10, 1648,
https://doi.org/10.1038/s41467-019-09621-z, 2019.
a
United States Committee on Extension to the Standard Atmosphere: U.S.
standard atmosphere, 1976, National Oceanic and Amospheric [sic]
Administration: for sale by the Supt. of Docs., U.S. Govt. Print. Off., Washington D.C., USA,
1976. a
van de Hulst, H.: Light Scattering by Small Particles, Dover Books on Physics,
Dover Publications, New York, USA, 1981. a
Warren, S. G. and Brandt, R. E.: Optical constants of ice from the
ultraviolet to the microwave: A revised compilation, J. Geophys. Res.-Atmos., 113, D14220, https://doi.org/10.1029/2007JD009744, 2008. a
Wilkman, O.: MieScatter,
available at: https://github.com/dronir/MieScatter.jl (last access: 10 November 2020), 2013. a
Zhang, D., Cummins, K. L., Bitzer, P., and Koshak, W. J.: Evaluation
of the Performance Characteristics of the Lightning Imaging Sensor, J. Atmos. Ocean. Tech., 36, 1015,
https://doi.org/10.1175/JTECH-D-18-0173.1, 2019. a
Short summary
Lightning flashes are often recorded from space-based platforms. Besides being valuable inputs for weather forecasting, these observations also enable research into fundamental questions regarding lightning physics. To exploit them, it is essential to understand how light propagates from a lightning flash to a space-based observation instrument. Here, we present an open-source software tool to model this process that extends on previous work and overcomes some of the existing limitations.
Lightning flashes are often recorded from space-based platforms. Besides being valuable inputs...