Articles | Volume 13, issue 11
https://doi.org/10.5194/gmd-13-5549-2020
https://doi.org/10.5194/gmd-13-5549-2020
Model description paper
 | 
12 Nov 2020
Model description paper |  | 12 Nov 2020

Modeling lightning observations from space-based platforms (CloudScat.jl 1.0)

Alejandro Luque, Francisco José Gordillo-Vázquez, Dongshuai Li, Alejandro Malagón-Romero, Francisco Javier Pérez-Invernón, Anthony Schmalzried, Sergio Soler, Olivier Chanrion, Matthias Heumesser, Torsten Neubert, Víctor Reglero, and Nikolai Østgaard

Related authors

Evaluation of Monte Carlo tools for high-energy atmospheric physics II: relativistic runaway electron avalanches
David Sarria, Casper Rutjes, Gabriel Diniz, Alejandro Luque, Kevin M. A. Ihaddadene, Joseph R. Dwyer, Nikolai Østgaard, Alexander B. Skeltved, Ivan S. Ferreira, and Ute Ebert
Geosci. Model Dev., 11, 4515–4535, https://doi.org/10.5194/gmd-11-4515-2018,https://doi.org/10.5194/gmd-11-4515-2018, 2018
Short summary
Evaluation of Monte Carlo tools for high energy atmospheric physics
Casper Rutjes, David Sarria, Alexander Broberg Skeltved, Alejandro Luque, Gabriel Diniz, Nikolai Østgaard, and Ute Ebert
Geosci. Model Dev., 9, 3961–3974, https://doi.org/10.5194/gmd-9-3961-2016,https://doi.org/10.5194/gmd-9-3961-2016, 2016
Short summary

Related subject area

Atmospheric sciences
WRF-Comfort: simulating microscale variability in outdoor heat stress at the city scale with a mesoscale model
Alberto Martilli, Negin Nazarian, E. Scott Krayenhoff, Jacob Lachapelle, Jiachen Lu, Esther Rivas, Alejandro Rodriguez-Sanchez, Beatriz Sanchez, and José Luis Santiago
Geosci. Model Dev., 17, 5023–5039, https://doi.org/10.5194/gmd-17-5023-2024,https://doi.org/10.5194/gmd-17-5023-2024, 2024
Short summary
Representing effects of surface heterogeneity in a multi-plume eddy diffusivity mass flux boundary layer parameterization
Nathan P. Arnold
Geosci. Model Dev., 17, 5041–5056, https://doi.org/10.5194/gmd-17-5041-2024,https://doi.org/10.5194/gmd-17-5041-2024, 2024
Short summary
Can TROPOMI NO2 satellite data be used to track the drop in and resurgence of NOx emissions in Germany between 2019–2021 using the multi-source plume method (MSPM)?
Enrico Dammers, Janot Tokaya, Christian Mielke, Kevin Hausmann, Debora Griffin, Chris McLinden, Henk Eskes, and Renske Timmermans
Geosci. Model Dev., 17, 4983–5007, https://doi.org/10.5194/gmd-17-4983-2024,https://doi.org/10.5194/gmd-17-4983-2024, 2024
Short summary
A spatiotemporally separated framework for reconstructing the sources of atmospheric radionuclide releases
Yuhan Xu, Sheng Fang, Xinwen Dong, and Shuhan Zhuang
Geosci. Model Dev., 17, 4961–4982, https://doi.org/10.5194/gmd-17-4961-2024,https://doi.org/10.5194/gmd-17-4961-2024, 2024
Short summary
A parameterization scheme for the floating wind farm in a coupled atmosphere–wave model (COAWST v3.7)
Shaokun Deng, Shengmu Yang, Shengli Chen, Daoyi Chen, Xuefeng Yang, and Shanshan Cui
Geosci. Model Dev., 17, 4891–4909, https://doi.org/10.5194/gmd-17-4891-2024,https://doi.org/10.5194/gmd-17-4891-2024, 2024
Short summary

Cited articles

Adachi, T., Sato, M., Ushio, T., Yamazaki, A., Suzuki, M., Kikuchi, M., Takahashi, Y., Inan, U. S., Linscott, I., Hobara, Y., Frey, H. U., Mende, S. B., Chen, A. B., Hsu, R.-R., and Kusunoki, K.: Identifying the occurrence of lightning and transient luminous events by nadir spectrophotometric observation, J. Atmos. Solar-Terr. Phy., 145, 85, https://doi.org/10.1016/j.jastp.2016.04.010, 2016. a
Bates, D. R.: Rayleigh scattering by air, Planet. Space Sci., 32, 785, https://doi.org/10.1016/0032-0633(84)90102-8, 1984. a
Berk, A., Anderson, G. P., Acharya, P. K., Bernstein, L. S., Muratov, L., Lee, J., Fox, M., Adler-Golden, S. M., Chetwynd, J. H., Hoke, M. L., Lockwood, R. B., Gardner, J. A., Cooley, T. W., Borel, C. C., and Lewis, P. E.: MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update, vol. 5806 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, p. 662, https://doi.org/10.1117/12.606026, 2005. a
Blakeslee, R. J.: Non-Quality Controlled Lightning Imaging Sensor (LIS) on International Space Station (ISS) Science Data, NASA Earth Data, https://doi.org/10.5067/LIS/ISSLIS/DATA107, 2019. a
Blakeslee, R. J., Christian, H. J., J., Mach, D. M., Buechler, D. E., Koshak, W. J., Walker, T. D., Bateman, M. G., Stewart, M. F., O'Brien, S., Wilson, T. O., Pavelitz, S. D., and Coker, C.: Lightning Imaging Sensor (LIS) on the International Space Station (ISS): Launch, Installation, Activation, and First Results, in: AGU Fall Meeting Abstracts, vol. 2016, p. AE23A, 2016. a
Download
Short summary
Lightning flashes are often recorded from space-based platforms. Besides being valuable inputs for weather forecasting, these observations also enable research into fundamental questions regarding lightning physics. To exploit them, it is essential to understand how light propagates from a lightning flash to a space-based observation instrument. Here, we present an open-source software tool to model this process that extends on previous work and overcomes some of the existing limitations.