Articles | Volume 13, issue 10
https://doi.org/10.5194/gmd-13-5007-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-5007-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A new bias-correction method for precipitation over complex terrain suitable for different climate states: a case study using WRF (version 3.8.1)
Patricio Velasquez
CORRESPONDING AUTHOR
Climate and Environmental Physics Institute, University of Bern, Bern, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Martina Messmer
Climate and Environmental Physics Institute, University of Bern, Bern, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
School of Earth Sciences, University of Melbourne, Melbourne, Victoria, Australia
Christoph C. Raible
Climate and Environmental Physics Institute, University of Bern, Bern, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Related authors
Emmanuele Russo, Jonathan Buzan, Sebastian Lienert, Guillaume Jouvet, Patricio Velasquez Alvarez, Basil Davis, Patrick Ludwig, Fortunat Joos, and Christoph C. Raible
Clim. Past, 20, 449–465, https://doi.org/10.5194/cp-20-449-2024, https://doi.org/10.5194/cp-20-449-2024, 2024
Short summary
Short summary
We present a series of experiments conducted for the Last Glacial Maximum (~21 ka) over Europe using the regional climate Weather Research and Forecasting model (WRF) at convection-permitting resolutions. The model, with new developments better suited to paleo-studies, agrees well with pollen-based climate reconstructions. This agreement is improved when considering different sources of uncertainty. The effect of convection-permitting resolutions is also assessed.
Patricio Velasquez, Martina Messmer, and Christoph C. Raible
Clim. Past, 18, 1579–1600, https://doi.org/10.5194/cp-18-1579-2022, https://doi.org/10.5194/cp-18-1579-2022, 2022
Short summary
Short summary
We investigate the sensitivity of the glacial Alpine hydro-climate to northern hemispheric and local ice-sheet changes. We perform sensitivity simulations of up to 2 km horizontal resolution over the Alps for glacial periods. The findings demonstrate that northern hemispheric and local ice-sheet topography are important role in regulating the Alpine hydro-climate and permits a better understanding of the Alpine precipitation patterns at glacial times.
Patricio Velasquez, Jed O. Kaplan, Martina Messmer, Patrick Ludwig, and Christoph C. Raible
Clim. Past, 17, 1161–1180, https://doi.org/10.5194/cp-17-1161-2021, https://doi.org/10.5194/cp-17-1161-2021, 2021
Short summary
Short summary
This study assesses the importance of resolution and land–atmosphere feedbacks for European climate. We performed an asynchronously coupled experiment that combined a global climate model (~ 100 km), a regional climate model (18 km), and a dynamic vegetation model (18 km). Modelled climate and land cover agree reasonably well with independent reconstructions based on pollen and other paleoenvironmental proxies. The regional climate is significantly influenced by land cover.
Paolo Laj, Alessandro Bigi, Clémence Rose, Elisabeth Andrews, Cathrine Lund Myhre, Martine Collaud Coen, Yong Lin, Alfred Wiedensohler, Michael Schulz, John A. Ogren, Markus Fiebig, Jonas Gliß, Augustin Mortier, Marco Pandolfi, Tuukka Petäja, Sang-Woo Kim, Wenche Aas, Jean-Philippe Putaud, Olga Mayol-Bracero, Melita Keywood, Lorenzo Labrador, Pasi Aalto, Erik Ahlberg, Lucas Alados Arboledas, Andrés Alastuey, Marcos Andrade, Begoña Artíñano, Stina Ausmeel, Todor Arsov, Eija Asmi, John Backman, Urs Baltensperger, Susanne Bastian, Olaf Bath, Johan Paul Beukes, Benjamin T. Brem, Nicolas Bukowiecki, Sébastien Conil, Cedric Couret, Derek Day, Wan Dayantolis, Anna Degorska, Konstantinos Eleftheriadis, Prodromos Fetfatzis, Olivier Favez, Harald Flentje, Maria I. Gini, Asta Gregorič, Martin Gysel-Beer, A. Gannet Hallar, Jenny Hand, Andras Hoffer, Christoph Hueglin, Rakesh K. Hooda, Antti Hyvärinen, Ivo Kalapov, Nikos Kalivitis, Anne Kasper-Giebl, Jeong Eun Kim, Giorgos Kouvarakis, Irena Kranjc, Radovan Krejci, Markku Kulmala, Casper Labuschagne, Hae-Jung Lee, Heikki Lihavainen, Neng-Huei Lin, Gunter Löschau, Krista Luoma, Angela Marinoni, Sebastiao Martins Dos Santos, Frank Meinhardt, Maik Merkel, Jean-Marc Metzger, Nikolaos Mihalopoulos, Nhat Anh Nguyen, Jakub Ondracek, Noemi Pérez, Maria Rita Perrone, Jean-Eudes Petit, David Picard, Jean-Marc Pichon, Veronique Pont, Natalia Prats, Anthony Prenni, Fabienne Reisen, Salvatore Romano, Karine Sellegri, Sangeeta Sharma, Gerhard Schauer, Patrick Sheridan, James Patrick Sherman, Maik Schütze, Andreas Schwerin, Ralf Sohmer, Mar Sorribas, Martin Steinbacher, Junying Sun, Gloria Titos, Barbara Toczko, Thomas Tuch, Pierre Tulet, Peter Tunved, Ville Vakkari, Fernando Velarde, Patricio Velasquez, Paolo Villani, Sterios Vratolis, Sheng-Hsiang Wang, Kay Weinhold, Rolf Weller, Margarita Yela, Jesus Yus-Diez, Vladimir Zdimal, Paul Zieger, and Nadezda Zikova
Atmos. Meas. Tech., 13, 4353–4392, https://doi.org/10.5194/amt-13-4353-2020, https://doi.org/10.5194/amt-13-4353-2020, 2020
Short summary
Short summary
The paper establishes the fiducial reference of the GAW aerosol network providing the fully characterized value chain to the provision of four climate-relevant aerosol properties from ground-based sites. Data from almost 90 stations worldwide are reported for a reference year, 2017, providing a unique and very robust view of the variability of these variables worldwide. Current gaps in the GAW network are analysed and requirements for the Global Climate Monitoring System are proposed.
Martine Collaud Coen, Elisabeth Andrews, Diego Aliaga, Marcos Andrade, Hristo Angelov, Nicolas Bukowiecki, Marina Ealo, Paulo Fialho, Harald Flentje, A. Gannet Hallar, Rakesh Hooda, Ivo Kalapov, Radovan Krejci, Neng-Huei Lin, Angela Marinoni, Jing Ming, Nhat Anh Nguyen, Marco Pandolfi, Véronique Pont, Ludwig Ries, Sergio Rodríguez, Gerhard Schauer, Karine Sellegri, Sangeeta Sharma, Junying Sun, Peter Tunved, Patricio Velasquez, and Dominique Ruffieux
Atmos. Chem. Phys., 18, 12289–12313, https://doi.org/10.5194/acp-18-12289-2018, https://doi.org/10.5194/acp-18-12289-2018, 2018
Short summary
Short summary
High altitude stations are often emphasized as free tropospheric measuring sites but they remain influenced by atmospheric boundary layer. An ABL-TopoIndex is defined from a topography analysis around the stations. This new index allows ranking stations as a function of the ABL influence due to topography or help to choose a new site to sample FT. The ABL-TopoIndex is validated by aerosol optical properties and number concentration measured at 29 high altitude stations of five continents.
Julien G. Anet, Martin Steinbacher, Laura Gallardo, Patricio A. Velásquez Álvarez, Lukas Emmenegger, and Brigitte Buchmann
Atmos. Chem. Phys., 17, 6477–6492, https://doi.org/10.5194/acp-17-6477-2017, https://doi.org/10.5194/acp-17-6477-2017, 2017
Short summary
Short summary
There are less long-term surface ozone measurements on the Southern than on the Northern Hemisphere, which makes it difficult to thoroughly understand global ozone chemistry. We have analyzed a new, 20-year-long ozone dataset measured at 2200 m asl at El Tololo, Chile, and show that the annual cycle of ozone is mainly driven by ozone transport from the stratosphere to the troposphere. As well, we illustrate that the timing of the annual maximum is regressing to earlier in the year.
Evelien J. C. van Dijk, Christoph C. Raible, Michael Sigl, Johann Jungclaus, and Heinz Wanner
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-79, https://doi.org/10.5194/cp-2024-79, 2024
Preprint under review for CP
Short summary
Short summary
The temperature in the past 4000 years consisted of warm and cold periods, initiated by external forcing. But, these periods are not consistent through time and space. We use climate models and reconstructions to study to which extent the periods are reflected in the European climate. We find that on local scales, the chaotic nature of the climate system is larger than the external forcing. This study shows that these periods have to be used very carefully when studying a local site.
Onno Doensen, Martina Messmer, Christoph C. Raible, and Woon Mi Kim
EGUsphere, https://doi.org/10.5194/egusphere-2024-2731, https://doi.org/10.5194/egusphere-2024-2731, 2024
Short summary
Short summary
Extratropical cyclones are crucial systems in the Mediterranean. While extensively studied, their late Holocene variability is poorly understood. Using a climate model spanning 3350-years, we find Mediterranean cyclones show significant multi-decadal variability. Extreme cyclones tend to be more extreme in the central Mediterranean in terms of wind speed. Our work creates a reference baseline to better understand the impact of climate change on Mediterranean cyclones.
Emmanuele Russo, Jonathan Buzan, Sebastian Lienert, Guillaume Jouvet, Patricio Velasquez Alvarez, Basil Davis, Patrick Ludwig, Fortunat Joos, and Christoph C. Raible
Clim. Past, 20, 449–465, https://doi.org/10.5194/cp-20-449-2024, https://doi.org/10.5194/cp-20-449-2024, 2024
Short summary
Short summary
We present a series of experiments conducted for the Last Glacial Maximum (~21 ka) over Europe using the regional climate Weather Research and Forecasting model (WRF) at convection-permitting resolutions. The model, with new developments better suited to paleo-studies, agrees well with pollen-based climate reconstructions. This agreement is improved when considering different sources of uncertainty. The effect of convection-permitting resolutions is also assessed.
Woon Mi Kim, Santos J. González-Rojí, and Christoph C. Raible
Clim. Past, 19, 2511–2533, https://doi.org/10.5194/cp-19-2511-2023, https://doi.org/10.5194/cp-19-2511-2023, 2023
Short summary
Short summary
In this study, we investigate circulation patterns associated with Mediterranean droughts during the last millennium using global climate simulations. Different circulation patterns driven by internal interactions in the climate system contribute to the occurrence of droughts in the Mediterranean. The detected patterns are different between the models, and this difference can be a potential source of uncertainty in model–proxy comparison and future projections of Mediterranean droughts.
Eric Samakinwa, Christoph C. Raible, Ralf Hand, Andrew R. Friedman, and Stefan Brönnimann
Clim. Past Discuss., https://doi.org/10.5194/cp-2023-67, https://doi.org/10.5194/cp-2023-67, 2023
Publication in CP not foreseen
Short summary
Short summary
In this study, we nudged a stand-alone ocean model MPI-OM to proxy-reconstructed SST. Based on these model simulations, we introduce new estimates of the AMOC variations during the period 1450–1780 through a 10-member ensemble simulation with a novel nudging technique. Our approach reaffirms the known mechanisms of AMOC variability and also improves existing knowledge of the interplay between the AMOC and the NAO during the AMOC's weak and strong phases.
Jonathan Robert Buzan, Emmanuele Russo, Woon Mi Kim, and Christoph C. Raible
EGUsphere, https://doi.org/10.5194/egusphere-2023-324, https://doi.org/10.5194/egusphere-2023-324, 2023
Preprint archived
Short summary
Short summary
Paleoclimate is used to test climate models to verify that simulations accurately project both future and past climate states. We present fully coupled climate sensitivity simulations of Preindustrial, Last Glacial Maximum, and the Quaternary climate periods. We show distinct climate states derived from non-linear responses to ice sheet heights and orbits. The implication is that as paleo proxy data become more reliable, they may constrain the specific climate states produced by climate models.
Patricio Velasquez, Martina Messmer, and Christoph C. Raible
Clim. Past, 18, 1579–1600, https://doi.org/10.5194/cp-18-1579-2022, https://doi.org/10.5194/cp-18-1579-2022, 2022
Short summary
Short summary
We investigate the sensitivity of the glacial Alpine hydro-climate to northern hemispheric and local ice-sheet changes. We perform sensitivity simulations of up to 2 km horizontal resolution over the Alps for glacial periods. The findings demonstrate that northern hemispheric and local ice-sheet topography are important role in regulating the Alpine hydro-climate and permits a better understanding of the Alpine precipitation patterns at glacial times.
Helen Mackay, Gill Plunkett, Britta J. L. Jensen, Thomas J. Aubry, Christophe Corona, Woon Mi Kim, Matthew Toohey, Michael Sigl, Markus Stoffel, Kevin J. Anchukaitis, Christoph Raible, Matthew S. M. Bolton, Joseph G. Manning, Timothy P. Newfield, Nicola Di Cosmo, Francis Ludlow, Conor Kostick, Zhen Yang, Lisa Coyle McClung, Matthew Amesbury, Alistair Monteath, Paul D. M. Hughes, Pete G. Langdon, Dan Charman, Robert Booth, Kimberley L. Davies, Antony Blundell, and Graeme T. Swindles
Clim. Past, 18, 1475–1508, https://doi.org/10.5194/cp-18-1475-2022, https://doi.org/10.5194/cp-18-1475-2022, 2022
Short summary
Short summary
We assess the climatic and societal impact of the 852/3 CE Alaska Mount Churchill eruption using environmental reconstructions, historical records and climate simulations. The eruption is associated with significant Northern Hemisphere summer cooling, despite having only a moderate sulfate-based climate forcing potential; however, evidence of a widespread societal response is lacking. We discuss the difficulties of confirming volcanic impacts of a single eruption even when it is precisely dated.
Emmanuele Russo, Bijan Fallah, Patrick Ludwig, Melanie Karremann, and Christoph C. Raible
Clim. Past, 18, 895–909, https://doi.org/10.5194/cp-18-895-2022, https://doi.org/10.5194/cp-18-895-2022, 2022
Short summary
Short summary
In this study a set of simulations are performed with the regional climate model COSMO-CLM for Europe, for the mid-Holocene and pre-industrial periods. The main aim is to better understand the drivers of differences between models and pollen-based summer temperatures. Results show that a fundamental role is played by spring soil moisture availability. Additionally, results suggest that model bias is not stationary, and an optimal configuration could not be the best under different forcing.
Santos J. González-Rojí, Martina Messmer, Christoph C. Raible, and Thomas F. Stocker
Geosci. Model Dev., 15, 2859–2879, https://doi.org/10.5194/gmd-15-2859-2022, https://doi.org/10.5194/gmd-15-2859-2022, 2022
Short summary
Short summary
Different configurations of physics parameterizations of a regional climate model are tested over southern Peru at fine resolution. The most challenging regions compared to observational data are the slopes of the Andes. Model configurations for Europe and East Africa are not perfectly suitable for southern Peru. The experiment with the Stony Brook University microphysics scheme and the Grell–Freitas cumulus parameterization provides the most accurate results over Madre de Dios.
Woon Mi Kim, Richard Blender, Michael Sigl, Martina Messmer, and Christoph C. Raible
Clim. Past, 17, 2031–2053, https://doi.org/10.5194/cp-17-2031-2021, https://doi.org/10.5194/cp-17-2031-2021, 2021
Short summary
Short summary
To understand the natural characteristics and future changes of the global extreme daily precipitation, it is necessary to explore the long-term characteristics of extreme daily precipitation. Here, we used climate simulations to analyze the characteristics and long-term changes of extreme precipitation during the past 3351 years. Our findings indicate that extreme precipitation in the past is associated with internal climate variability and regional surface temperatures.
Patricio Velasquez, Jed O. Kaplan, Martina Messmer, Patrick Ludwig, and Christoph C. Raible
Clim. Past, 17, 1161–1180, https://doi.org/10.5194/cp-17-1161-2021, https://doi.org/10.5194/cp-17-1161-2021, 2021
Short summary
Short summary
This study assesses the importance of resolution and land–atmosphere feedbacks for European climate. We performed an asynchronously coupled experiment that combined a global climate model (~ 100 km), a regional climate model (18 km), and a dynamic vegetation model (18 km). Modelled climate and land cover agree reasonably well with independent reconstructions based on pollen and other paleoenvironmental proxies. The regional climate is significantly influenced by land cover.
Martina Messmer, Santos J. González-Rojí, Christoph C. Raible, and Thomas F. Stocker
Geosci. Model Dev., 14, 2691–2711, https://doi.org/10.5194/gmd-14-2691-2021, https://doi.org/10.5194/gmd-14-2691-2021, 2021
Short summary
Short summary
Sensitivity experiments with the WRF model are run to find an optimal parameterization setup for precipitation around Mount Kenya at a scale that resolves convection (1 km). Precipitation is compared against many weather stations and gridded observational data sets. Both the temporal correlation of precipitation sums and pattern correlations show that fewer nests lead to a more constrained simulation with higher correlation. The Grell–Freitas cumulus scheme obtains the most accurate results.
Woon Mi Kim and Christoph C. Raible
Clim. Past, 17, 887–911, https://doi.org/10.5194/cp-17-887-2021, https://doi.org/10.5194/cp-17-887-2021, 2021
Short summary
Short summary
The analysis of the dynamics of western central Mediterranean droughts for 850–2099 CE in the Community Earth System Model indicates that past Mediterranean droughts were driven by the internal variability. This internal variability is more important during the initial years of droughts. During the transition years, the longevity of droughts is defined by the land–atmosphere feedbacks. In the future, this land–atmosphere feedbacks are intensified, causing a constant dryness over the region.
Jakob Zscheischler, Philippe Naveau, Olivia Martius, Sebastian Engelke, and Christoph C. Raible
Earth Syst. Dynam., 12, 1–16, https://doi.org/10.5194/esd-12-1-2021, https://doi.org/10.5194/esd-12-1-2021, 2021
Short summary
Short summary
Compound extremes such as heavy precipitation and extreme winds can lead to large damage. To date it is unclear how well climate models represent such compound extremes. Here we present a new measure to assess differences in the dependence structure of bivariate extremes. This measure is applied to assess differences in the dependence of compound precipitation and wind extremes between three model simulations and one reanalysis dataset in a domain in central Europe.
Emmanuele Russo, Silje Lund Sørland, Ingo Kirchner, Martijn Schaap, Christoph C. Raible, and Ulrich Cubasch
Geosci. Model Dev., 13, 5779–5797, https://doi.org/10.5194/gmd-13-5779-2020, https://doi.org/10.5194/gmd-13-5779-2020, 2020
Short summary
Short summary
The parameter space of the COSMO-CLM RCM is investigated for the Central Asia CORDEX domain using a perturbed physics ensemble (PPE) with different parameter values. Results show that only a subset of model parameters presents relevant changes in model performance and these changes depend on the considered region and variable: objective calibration methods are highly necessary in this case. Additionally, the results suggest the need for calibrating an RCM when targeting different domains.
Paolo Laj, Alessandro Bigi, Clémence Rose, Elisabeth Andrews, Cathrine Lund Myhre, Martine Collaud Coen, Yong Lin, Alfred Wiedensohler, Michael Schulz, John A. Ogren, Markus Fiebig, Jonas Gliß, Augustin Mortier, Marco Pandolfi, Tuukka Petäja, Sang-Woo Kim, Wenche Aas, Jean-Philippe Putaud, Olga Mayol-Bracero, Melita Keywood, Lorenzo Labrador, Pasi Aalto, Erik Ahlberg, Lucas Alados Arboledas, Andrés Alastuey, Marcos Andrade, Begoña Artíñano, Stina Ausmeel, Todor Arsov, Eija Asmi, John Backman, Urs Baltensperger, Susanne Bastian, Olaf Bath, Johan Paul Beukes, Benjamin T. Brem, Nicolas Bukowiecki, Sébastien Conil, Cedric Couret, Derek Day, Wan Dayantolis, Anna Degorska, Konstantinos Eleftheriadis, Prodromos Fetfatzis, Olivier Favez, Harald Flentje, Maria I. Gini, Asta Gregorič, Martin Gysel-Beer, A. Gannet Hallar, Jenny Hand, Andras Hoffer, Christoph Hueglin, Rakesh K. Hooda, Antti Hyvärinen, Ivo Kalapov, Nikos Kalivitis, Anne Kasper-Giebl, Jeong Eun Kim, Giorgos Kouvarakis, Irena Kranjc, Radovan Krejci, Markku Kulmala, Casper Labuschagne, Hae-Jung Lee, Heikki Lihavainen, Neng-Huei Lin, Gunter Löschau, Krista Luoma, Angela Marinoni, Sebastiao Martins Dos Santos, Frank Meinhardt, Maik Merkel, Jean-Marc Metzger, Nikolaos Mihalopoulos, Nhat Anh Nguyen, Jakub Ondracek, Noemi Pérez, Maria Rita Perrone, Jean-Eudes Petit, David Picard, Jean-Marc Pichon, Veronique Pont, Natalia Prats, Anthony Prenni, Fabienne Reisen, Salvatore Romano, Karine Sellegri, Sangeeta Sharma, Gerhard Schauer, Patrick Sheridan, James Patrick Sherman, Maik Schütze, Andreas Schwerin, Ralf Sohmer, Mar Sorribas, Martin Steinbacher, Junying Sun, Gloria Titos, Barbara Toczko, Thomas Tuch, Pierre Tulet, Peter Tunved, Ville Vakkari, Fernando Velarde, Patricio Velasquez, Paolo Villani, Sterios Vratolis, Sheng-Hsiang Wang, Kay Weinhold, Rolf Weller, Margarita Yela, Jesus Yus-Diez, Vladimir Zdimal, Paul Zieger, and Nadezda Zikova
Atmos. Meas. Tech., 13, 4353–4392, https://doi.org/10.5194/amt-13-4353-2020, https://doi.org/10.5194/amt-13-4353-2020, 2020
Short summary
Short summary
The paper establishes the fiducial reference of the GAW aerosol network providing the fully characterized value chain to the provision of four climate-relevant aerosol properties from ground-based sites. Data from almost 90 stations worldwide are reported for a reference year, 2017, providing a unique and very robust view of the variability of these variables worldwide. Current gaps in the GAW network are analysed and requirements for the Global Climate Monitoring System are proposed.
Thomas L. Frölicher, Luca Ramseyer, Christoph C. Raible, Keith B. Rodgers, and John Dunne
Biogeosciences, 17, 2061–2083, https://doi.org/10.5194/bg-17-2061-2020, https://doi.org/10.5194/bg-17-2061-2020, 2020
Short summary
Short summary
Climate variations can have profound impacts on marine ecosystems. Here we show that on global scales marine ecosystem drivers such as temperature, pH, O2 and NPP are potentially predictable 3 (at the surface) and more than 10 years (subsurface) in advance. However, there are distinct regional differences in the potential predictability of these drivers. Our study suggests that physical–biogeochemical forecast systems have considerable potential for use in marine resource management.
Peter Stucki, Paul Froidevaux, Marcelo Zamuriano, Francesco Alessandro Isotta, Martina Messmer, and Andrey Martynov
Nat. Hazards Earth Syst. Sci., 20, 35–57, https://doi.org/10.5194/nhess-20-35-2020, https://doi.org/10.5194/nhess-20-35-2020, 2020
Short summary
Short summary
In 1876, 1910, and 2005, Switzerland was impacted by extreme rainfall and floods. All events were linked to a Vb cyclone. We test a range of weather model setups (short spinup and standard physics are best) to understand the sensitivity of atmospheric dynamics. The simulated Vb cyclones are (not) well defined for 2005 and 1910 (1876). To reproduce the events, intense moisture flux from the right direction is needed. Storms that slightly deviate from an ideal path produce erroneous precipitation.
Christoph C. Raible, Martina Messmer, Flavio Lehner, Thomas F. Stocker, and Richard Blender
Clim. Past, 14, 1499–1514, https://doi.org/10.5194/cp-14-1499-2018, https://doi.org/10.5194/cp-14-1499-2018, 2018
Short summary
Short summary
Extratropical cyclones in winter and their characteristics are investigated in depth for the Atlantic European region from 850 to 2100 CE. During the Common Era, cyclone characteristics show pronounced variations mainly caused by internal variability of the coupled climate system. When anthropogenic forcing becomes dominant, a strong increase of extreme cyclone-related precipitation is found due to thermodynamics, though dynamical processes can play an important role during the last millennium.
Martine Collaud Coen, Elisabeth Andrews, Diego Aliaga, Marcos Andrade, Hristo Angelov, Nicolas Bukowiecki, Marina Ealo, Paulo Fialho, Harald Flentje, A. Gannet Hallar, Rakesh Hooda, Ivo Kalapov, Radovan Krejci, Neng-Huei Lin, Angela Marinoni, Jing Ming, Nhat Anh Nguyen, Marco Pandolfi, Véronique Pont, Ludwig Ries, Sergio Rodríguez, Gerhard Schauer, Karine Sellegri, Sangeeta Sharma, Junying Sun, Peter Tunved, Patricio Velasquez, and Dominique Ruffieux
Atmos. Chem. Phys., 18, 12289–12313, https://doi.org/10.5194/acp-18-12289-2018, https://doi.org/10.5194/acp-18-12289-2018, 2018
Short summary
Short summary
High altitude stations are often emphasized as free tropospheric measuring sites but they remain influenced by atmospheric boundary layer. An ABL-TopoIndex is defined from a topography analysis around the stations. This new index allows ranking stations as a function of the ABL influence due to topography or help to choose a new site to sample FT. The ABL-TopoIndex is validated by aerosol optical properties and number concentration measured at 29 high altitude stations of five continents.
Stefan Brönnimann, Jan Rajczak, Erich M. Fischer, Christoph C. Raible, Marco Rohrer, and Christoph Schär
Nat. Hazards Earth Syst. Sci., 18, 2047–2056, https://doi.org/10.5194/nhess-18-2047-2018, https://doi.org/10.5194/nhess-18-2047-2018, 2018
Short summary
Short summary
Heavy precipitation events in Switzerland are expected to become more intense, but the seasonality also changes. Analysing a large set of model simulations, we find that annual maximum rainfall events become less frequent in late summer and more frequent in early summer and early autumn. The seasonality shift is arguably related to summer drying. Results suggest that changes in the seasonal cycle need to be accounted for when preparing for moderately extreme precipitation events.
Juan José Gómez-Navarro, Christoph C. Raible, Denica Bozhinova, Olivia Martius, Juan Andrés García Valero, and Juan Pedro Montávez
Geosci. Model Dev., 11, 2231–2247, https://doi.org/10.5194/gmd-11-2231-2018, https://doi.org/10.5194/gmd-11-2231-2018, 2018
Short summary
Short summary
We carry out and compare two high-resolution simulations of the Alpine region in the period 1979–2005. We aim to improve the understanding of the local mechanisms leading to extreme events in this complex region. We compare both simulations to precipitation observations to assess the model performance, and attribute major biases to either model or boundary conditions. Further, we develop a new bias correction technique to remove systematic errors in simulated precipitation for impact studies.
PAGES Hydro2k Consortium
Clim. Past, 13, 1851–1900, https://doi.org/10.5194/cp-13-1851-2017, https://doi.org/10.5194/cp-13-1851-2017, 2017
Short summary
Short summary
Water availability is fundamental to societies and ecosystems, but our understanding of variations in hydroclimate (including extreme events, flooding, and decadal periods of drought) is limited due to a paucity of modern instrumental observations. We review how proxy records of past climate and climate model simulations can be used in tandem to understand hydroclimate variability over the last 2000 years and how these tools can also inform risk assessments of future hydroclimatic extremes.
Martina Messmer, Juan José Gómez-Navarro, and Christoph C. Raible
Earth Syst. Dynam., 8, 477–493, https://doi.org/10.5194/esd-8-477-2017, https://doi.org/10.5194/esd-8-477-2017, 2017
Short summary
Short summary
Low-pressure systems of type Vb may trigger heavy rainfall events over central Europe. This study aims at analysing the relative role of their moisture sources. For this, a set of sensitivity experiments encompassing changes in soil moisture and Atlantic Ocean and Mediterranean Sea SSTs are carried out with WRF. The latter moisture source stands out as the most relevant one. Furthermore, the regions most affected by Vb events in the future might be shifted from the Alps to the Balkan Peninsula.
Juan José Gómez-Navarro, Eduardo Zorita, Christoph C. Raible, and Raphael Neukom
Clim. Past, 13, 629–648, https://doi.org/10.5194/cp-13-629-2017, https://doi.org/10.5194/cp-13-629-2017, 2017
Short summary
Short summary
This contribution aims at assessing to what extent the analogue method, a classic technique used in other branches of meteorology and climatology, can be used to perform gridded reconstructions of annual temperature based on the limited information from available but un-calibrated proxies spread across different locations of the world. We conclude that it is indeed possible, albeit with certain limitations that render the method comparable to more classic techniques.
Julien G. Anet, Martin Steinbacher, Laura Gallardo, Patricio A. Velásquez Álvarez, Lukas Emmenegger, and Brigitte Buchmann
Atmos. Chem. Phys., 17, 6477–6492, https://doi.org/10.5194/acp-17-6477-2017, https://doi.org/10.5194/acp-17-6477-2017, 2017
Short summary
Short summary
There are less long-term surface ozone measurements on the Southern than on the Northern Hemisphere, which makes it difficult to thoroughly understand global ozone chemistry. We have analyzed a new, 20-year-long ozone dataset measured at 2200 m asl at El Tololo, Chile, and show that the annual cycle of ozone is mainly driven by ozone transport from the stratosphere to the troposphere. As well, we illustrate that the timing of the annual maximum is regressing to earlier in the year.
Stefan Brönnimann, Abdul Malik, Alexander Stickler, Martin Wegmann, Christoph C. Raible, Stefan Muthers, Julien Anet, Eugene Rozanov, and Werner Schmutz
Atmos. Chem. Phys., 16, 15529–15543, https://doi.org/10.5194/acp-16-15529-2016, https://doi.org/10.5194/acp-16-15529-2016, 2016
Short summary
Short summary
The Quasi-Biennial Oscillation is a wind oscillation in the equatorial stratosphere. Effects on climate have been found, which is relevant for seasonal forecasts. However, up to now only relatively short records were available, and even within these the climate imprints were intermittent. Here we analyze a 108-year long reconstruction as well as four 405-year long simulations. We confirm most of the claimed QBO effects on climate, but they are small, which explains apparently variable effects.
Chantal Camenisch, Kathrin M. Keller, Melanie Salvisberg, Benjamin Amann, Martin Bauch, Sandro Blumer, Rudolf Brázdil, Stefan Brönnimann, Ulf Büntgen, Bruce M. S. Campbell, Laura Fernández-Donado, Dominik Fleitmann, Rüdiger Glaser, Fidel González-Rouco, Martin Grosjean, Richard C. Hoffmann, Heli Huhtamaa, Fortunat Joos, Andrea Kiss, Oldřich Kotyza, Flavio Lehner, Jürg Luterbacher, Nicolas Maughan, Raphael Neukom, Theresa Novy, Kathleen Pribyl, Christoph C. Raible, Dirk Riemann, Maximilian Schuh, Philip Slavin, Johannes P. Werner, and Oliver Wetter
Clim. Past, 12, 2107–2126, https://doi.org/10.5194/cp-12-2107-2016, https://doi.org/10.5194/cp-12-2107-2016, 2016
Short summary
Short summary
Throughout the last millennium, several cold periods occurred which affected humanity. Here, we investigate an exceptionally cold decade during the 15th century. The cold conditions challenged the food production and led to increasing food prices and a famine in parts of Europe. In contrast to periods such as the “Year Without Summer” after the eruption of Tambora, these extreme climatic conditions seem to have occurred by chance and in relation to the internal variability of the climate system.
Stefan Muthers, Christoph C. Raible, Eugene Rozanov, and Thomas F. Stocker
Earth Syst. Dynam., 7, 877–892, https://doi.org/10.5194/esd-7-877-2016, https://doi.org/10.5194/esd-7-877-2016, 2016
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is an important oceanic circulation system which transports large amounts of heat from the tropics to the north. This circulation is strengthened when less solar irradiance reaches the Earth, e.g. due to reduced solar activity or geoengineering techniques. In climate models, however, this response is overestimated when chemistry–climate interactions and the following shift in the atmospheric circulation systems are not considered.
Niklaus Merz, Andreas Born, Christoph C. Raible, and Thomas F. Stocker
Clim. Past, 12, 2011–2031, https://doi.org/10.5194/cp-12-2011-2016, https://doi.org/10.5194/cp-12-2011-2016, 2016
Short summary
Short summary
The last (Eemian) interglacial is studied with a global climate model focusing on Greenland and the adjacent high latitudes. A set of model experiments demonstrates the crucial role of changes in sea ice and sea surface temperatures for the magnitude of Eemian atmospheric warming. Greenland temperatures are found highly sensitive to sea ice changes in the Nordic Seas but rather insensitive to changes in the Labrador Sea. This behavior has important implications for Greenland ice core signals.
Amaelle Landais, Valérie Masson-Delmotte, Emilie Capron, Petra M. Langebroek, Pepijn Bakker, Emma J. Stone, Niklaus Merz, Christoph C. Raible, Hubertus Fischer, Anaïs Orsi, Frédéric Prié, Bo Vinther, and Dorthe Dahl-Jensen
Clim. Past, 12, 1933–1948, https://doi.org/10.5194/cp-12-1933-2016, https://doi.org/10.5194/cp-12-1933-2016, 2016
Short summary
Short summary
The last lnterglacial (LIG; 116 000 to 129 000 years before present) surface temperature at the upstream Greenland NEEM deposition site is estimated to be warmer by +7 to +11 °C compared to the preindustrial period. We show that under such warm temperatures, melting of snow probably led to a significant surface melting. There is a paradox between the extent of the Greenland ice sheet during the LIG and the strong warming during this period that models cannot solve.
J. J. Gómez-Navarro, C. C. Raible, and S. Dierer
Geosci. Model Dev., 8, 3349–3363, https://doi.org/10.5194/gmd-8-3349-2015, https://doi.org/10.5194/gmd-8-3349-2015, 2015
S. Muthers, F. Arfeuille, C. C. Raible, and E. Rozanov
Atmos. Chem. Phys., 15, 11461–11476, https://doi.org/10.5194/acp-15-11461-2015, https://doi.org/10.5194/acp-15-11461-2015, 2015
Short summary
Short summary
After volcanic eruptions different radiative and chemical processes take place in the stratosphere which perturb the ozone layer and cause pronounced dynamical changes. In idealized chemistry-climate model simulations the importance of these processes and the modulating role of the climate state is analysed. The chemical effect strongly differs between a preindustrial and present-day climate, but the effect on the dynamics is weak. Radiative processes dominate the dynamics in all climate states.
M. Messmer, J. J. Gómez-Navarro, and C. C. Raible
Earth Syst. Dynam., 6, 541–553, https://doi.org/10.5194/esd-6-541-2015, https://doi.org/10.5194/esd-6-541-2015, 2015
J. J. Gómez-Navarro, O. Bothe, S. Wagner, E. Zorita, J. P. Werner, J. Luterbacher, C. C. Raible, and J. P Montávez
Clim. Past, 11, 1077–1095, https://doi.org/10.5194/cp-11-1077-2015, https://doi.org/10.5194/cp-11-1077-2015, 2015
F. Lehner, F. Joos, C. C. Raible, J. Mignot, A. Born, K. M. Keller, and T. F. Stocker
Earth Syst. Dynam., 6, 411–434, https://doi.org/10.5194/esd-6-411-2015, https://doi.org/10.5194/esd-6-411-2015, 2015
Short summary
Short summary
We present the first last-millennium simulation with the Community Earth System Model (CESM) including an interactive carbon cycle in both ocean and land component. Volcanic eruptions emerge as the strongest forcing factor for the preindustrial climate and carbon cycle. We estimate the climate-carbon-cycle feedback in CESM to be at the lower bounds of empirical estimates (1.3ppm/°C). The time of emergence for interannual global land and ocean carbon uptake rates are 1947 and 1877, respectively.
D. Zanchettin, O. Bothe, F. Lehner, P. Ortega, C. C. Raible, and D. Swingedouw
Clim. Past, 11, 939–958, https://doi.org/10.5194/cp-11-939-2015, https://doi.org/10.5194/cp-11-939-2015, 2015
Short summary
Short summary
A discrepancy exists between reconstructed and simulated Pacific North American pattern (PNA) features during the early 19th century. Pseudo-reconstructions demonstrate that the available PNA reconstruction is potentially skillful but also potentially affected by a number of sources of uncertainty and deficiencies especially at multidecadal and centennial timescales. Simulations and reconstructions can be reconciled by attributing the reconstructed PNA features to internal variability.
S. Muthers, J. G. Anet, A. Stenke, C. C. Raible, E. Rozanov, S. Brönnimann, T. Peter, F. X. Arfeuille, A. I. Shapiro, J. Beer, F. Steinhilber, Y. Brugnara, and W. Schmutz
Geosci. Model Dev., 7, 2157–2179, https://doi.org/10.5194/gmd-7-2157-2014, https://doi.org/10.5194/gmd-7-2157-2014, 2014
K. M. Keller, F. Joos, and C. C. Raible
Biogeosciences, 11, 3647–3659, https://doi.org/10.5194/bg-11-3647-2014, https://doi.org/10.5194/bg-11-3647-2014, 2014
N. Merz, A. Born, C. C. Raible, H. Fischer, and T. F. Stocker
Clim. Past, 10, 1221–1238, https://doi.org/10.5194/cp-10-1221-2014, https://doi.org/10.5194/cp-10-1221-2014, 2014
J. G. Anet, S. Muthers, E. V. Rozanov, C. C. Raible, A. Stenke, A. I. Shapiro, S. Brönnimann, F. Arfeuille, Y. Brugnara, J. Beer, F. Steinhilber, W. Schmutz, and T. Peter
Clim. Past, 10, 921–938, https://doi.org/10.5194/cp-10-921-2014, https://doi.org/10.5194/cp-10-921-2014, 2014
C. C. Raible, F. Lehner, J. F. González-Rouco, and L. Fernández-Donado
Clim. Past, 10, 537–550, https://doi.org/10.5194/cp-10-537-2014, https://doi.org/10.5194/cp-10-537-2014, 2014
J. G. Anet, S. Muthers, E. Rozanov, C. C. Raible, T. Peter, A. Stenke, A. I. Shapiro, J. Beer, F. Steinhilber, S. Brönnimann, F. Arfeuille, Y. Brugnara, and W. Schmutz
Atmos. Chem. Phys., 13, 10951–10967, https://doi.org/10.5194/acp-13-10951-2013, https://doi.org/10.5194/acp-13-10951-2013, 2013
N. Merz, C. C. Raible, H. Fischer, V. Varma, M. Prange, and T. F. Stocker
Clim. Past, 9, 2433–2450, https://doi.org/10.5194/cp-9-2433-2013, https://doi.org/10.5194/cp-9-2433-2013, 2013
Related subject area
Climate and Earth system modeling
Architectural insights into and training methodology optimization of Pangu-Weather
Evaluation of global fire simulations in CMIP6 Earth system models
Evaluating downscaled products with expected hydroclimatic co-variances
Software sustainability of global impact models
fair-calibrate v1.4.1: calibration, constraining, and validation of the FaIR simple climate model for reliable future climate projections
ISOM 1.0: a fully mesoscale-resolving idealized Southern Ocean model and the diversity of multiscale eddy interactions
A computationally lightweight model for ensemble forecasting of environmental hazards: General TAMSAT-ALERT v1.2.1
Introducing the MESMER-M-TPv0.1.0 module: spatially explicit Earth system model emulation for monthly precipitation and temperature
The need for carbon-emissions-driven climate projections in CMIP7
Robust handling of extremes in quantile mapping – “Murder your darlings”
A protocol for model intercomparison of impacts of marine cloud brightening climate intervention
An extensible perturbed parameter ensemble for the Community Atmosphere Model version 6
Coupling the regional climate model ICON-CLM v2.6.6 to the Earth system model GCOAST-AHOI v2.0 using OASIS3-MCT v4.0
A fully coupled solid-particle microphysics scheme for stratospheric aerosol injections within the aerosol–chemistry–climate model SOCOL-AERv2
An improved representation of aerosol in the ECMWF IFS-COMPO 49R1 through the integration of EQSAM4Climv12 – a first attempt at simulating aerosol acidity
At-scale Model Output Statistics in mountain environments (AtsMOS v1.0)
Impact of ocean vertical-mixing parameterization on Arctic sea ice and upper-ocean properties using the NEMO-SI3 model
Bridging the gap: a new module for human water use in the Community Earth System Model version 2.2.1
A new lightning scheme in the Canadian Atmospheric Model (CanAM5.1): implementation, evaluation, and projections of lightning and fire in future climates
Methane dynamics in the Baltic Sea: investigating concentration, flux, and isotopic composition patterns using the coupled physical–biogeochemical model BALTSEM-CH4 v1.0
ICON ComIn – The ICON Community Interface (ComIn version 0.1.0, with ICON version 2024.01-01)
Split-explicit external mode solver in the finite volume sea ice–ocean model FESOM2
Applying double cropping and interactive irrigation in the North China Plain using WRF4.5
The sea ice component of GC5: coupling SI3 to HadGEM3 using conductive fluxes
CICE on a C-grid: new momentum, stress, and transport schemes for CICEv6.5
HyPhAICC v1.0: a hybrid physics–AI approach for probability fields advection shown through an application to cloud cover nowcasting
CICERO Simple Climate Model (CICERO-SCM v1.1.1) – an improved simple climate model with a parameter calibration tool
Development of a plant carbon–nitrogen interface coupling framework in a coupled biophysical-ecosystem–biogeochemical model (SSiB5/TRIFFID/DayCent-SOM v1.0)
Dynamical Madden–Julian Oscillation forecasts using an ensemble subseasonal-to-seasonal forecast system of the IAP-CAS model
Implementation of a brittle sea ice rheology in an Eulerian, finite-difference, C-grid modeling framework: impact on the simulated deformation of sea ice in the Arctic
HSW-V v1.0: localized injections of interactive volcanic aerosols and their climate impacts in a simple general circulation model
A 3D-Var assimilation scheme for vertical velocity with CMA-MESO v5.0
Updating the radiation infrastructure in MESSy (based on MESSy version 2.55)
An urban module coupled with the Variable Infiltration Capacity model to improve hydrothermal simulations in urban systems
Bayesian hierarchical model for bias-correcting climate models
Evaluation of the coupling of EMACv2.55 to the land surface and vegetation model JSBACHv4
Reduced floating-point precision in regional climate simulations: an ensemble-based statistical verification
TorchClim v1.0: a deep-learning plugin for climate model physics
The very-high resolution configuration of the EC-Earth global model for HighResMIP
ZEMBA v1.0: An energy and moisture balance climate model to investigate Quaternary climate
Linking global terrestrial and ocean biogeochemistry with process-based, coupled freshwater algae–nutrient–solid dynamics in LM3-FANSY v1.0
Validating a microphysical prognostic stratospheric aerosol implementation in E3SMv2 using observations after the Mount Pinatubo eruption
Implementing detailed nucleation predictions in the Earth system model EC-Earth3.3.4: sulfuric acid–ammonia nucleation
Modeling biochar effects on soil organic carbon on croplands in a microbial decomposition model (MIMICS-BC_v1.0)
Hector V3.2.0: functionality and performance of a reduced-complexity climate model
Evaluation of CMIP6 model simulations of PM2.5 and its components over China
Assessment of a tiling energy budget approach in a land surface model, ORCHIDEE-MICT (r8205)
Virtual Integration of Satellite and In-situ Observation Networks (VISION) v1.0: In-Situ Observations Simulator
Multivariate adjustment of drizzle bias using machine learning in European climate projections
Development and evaluation of the interactive Model for Air Pollution and Land Ecosystems (iMAPLE) version 1.0
Deifilia To, Julian Quinting, Gholam Ali Hoshyaripour, Markus Götz, Achim Streit, and Charlotte Debus
Geosci. Model Dev., 17, 8873–8884, https://doi.org/10.5194/gmd-17-8873-2024, https://doi.org/10.5194/gmd-17-8873-2024, 2024
Short summary
Short summary
Pangu-Weather is a breakthrough machine learning model in medium-range weather forecasting that considers 3D atmospheric information. We show that using a simpler 2D framework improves robustness, speeds up training, and reduces computational needs by 20 %–30 %. We introduce a training procedure that varies the importance of atmospheric variables over time to speed up training convergence. Decreasing computational demand increases the accessibility of training and working with the model.
Fang Li, Xiang Song, Sandy P. Harrison, Jennifer R. Marlon, Zhongda Lin, L. Ruby Leung, Jörg Schwinger, Virginie Marécal, Shiyu Wang, Daniel S. Ward, Xiao Dong, Hanna Lee, Lars Nieradzik, Sam S. Rabin, and Roland Séférian
Geosci. Model Dev., 17, 8751–8771, https://doi.org/10.5194/gmd-17-8751-2024, https://doi.org/10.5194/gmd-17-8751-2024, 2024
Short summary
Short summary
This study provides the first comprehensive assessment of historical fire simulations from 19 Earth system models in phase 6 of the Coupled Model Intercomparison Project (CMIP6). Most models reproduce global totals, spatial patterns, seasonality, and regional historical changes well but fail to simulate the recent decline in global burned area and underestimate the fire response to climate variability. CMIP6 simulations address three critical issues of phase-5 models.
Seung H. Baek, Paul A. Ullrich, Bo Dong, and Jiwoo Lee
Geosci. Model Dev., 17, 8665–8681, https://doi.org/10.5194/gmd-17-8665-2024, https://doi.org/10.5194/gmd-17-8665-2024, 2024
Short summary
Short summary
We evaluate downscaled products by examining locally relevant co-variances during precipitation events. Common statistical downscaling techniques preserve expected co-variances during convective precipitation (a stationary phenomenon). However, they dampen future intensification of frontal precipitation (a non-stationary phenomenon) captured in global climate models and dynamical downscaling. Our study quantifies a ramification of the stationarity assumption underlying statistical downscaling.
Emmanuel Nyenah, Petra Döll, Daniel S. Katz, and Robert Reinecke
Geosci. Model Dev., 17, 8593–8611, https://doi.org/10.5194/gmd-17-8593-2024, https://doi.org/10.5194/gmd-17-8593-2024, 2024
Short summary
Short summary
Research software is vital for scientific progress but is often developed by scientists with limited skills, time, and funding, leading to challenges in usability and maintenance. Our study across 10 sectors shows strengths in version control, open-source licensing, and documentation while emphasizing the need for containerization and code quality. We recommend workshops; code quality metrics; funding; and following the findable, accessible, interoperable, and reusable (FAIR) standards.
Chris Smith, Donald P. Cummins, Hege-Beate Fredriksen, Zebedee Nicholls, Malte Meinshausen, Myles Allen, Stuart Jenkins, Nicholas Leach, Camilla Mathison, and Antti-Ilari Partanen
Geosci. Model Dev., 17, 8569–8592, https://doi.org/10.5194/gmd-17-8569-2024, https://doi.org/10.5194/gmd-17-8569-2024, 2024
Short summary
Short summary
Climate projections are only useful if the underlying models that produce them are well calibrated and can reproduce observed climate change. We formalise a software package that calibrates the open-source FaIR simple climate model to full-complexity Earth system models. Observations, including historical warming, and assessments of key climate variables such as that of climate sensitivity are used to constrain the model output.
Jingwei Xie, Xi Wang, Hailong Liu, Pengfei Lin, Jiangfeng Yu, Zipeng Yu, Junlin Wei, and Xiang Han
Geosci. Model Dev., 17, 8469–8493, https://doi.org/10.5194/gmd-17-8469-2024, https://doi.org/10.5194/gmd-17-8469-2024, 2024
Short summary
Short summary
We propose the concept of mesoscale ocean direct numerical simulation (MODNS), which should resolve the first baroclinic deformation radius and ensure the numerical dissipative effects do not directly contaminate the mesoscale motions. It can be a benchmark for testing mesoscale ocean large eddy simulation (MOLES) methods in ocean models. We build an idealized Southern Ocean model using MITgcm to generate a type of MODNS. We also illustrate the diversity of multiscale eddy interactions.
Emily Black, John Ellis, and Ross I. Maidment
Geosci. Model Dev., 17, 8353–8372, https://doi.org/10.5194/gmd-17-8353-2024, https://doi.org/10.5194/gmd-17-8353-2024, 2024
Short summary
Short summary
We present General TAMSAT-ALERT, a computationally lightweight and versatile tool for generating ensemble forecasts from time series data. General TAMSAT-ALERT is capable of combining multiple streams of monitoring and meteorological forecasting data into probabilistic hazard assessments. In this way, it complements existing systems and enhances their utility for actionable hazard assessment.
Sarah Schöngart, Lukas Gudmundsson, Mathias Hauser, Peter Pfleiderer, Quentin Lejeune, Shruti Nath, Sonia Isabelle Seneviratne, and Carl-Friedrich Schleussner
Geosci. Model Dev., 17, 8283–8320, https://doi.org/10.5194/gmd-17-8283-2024, https://doi.org/10.5194/gmd-17-8283-2024, 2024
Short summary
Short summary
Precipitation and temperature are two of the most impact-relevant climatic variables. Yet, projecting future precipitation and temperature data under different emission scenarios relies on complex models that are computationally expensive. In this study, we propose a method that allows us to generate monthly means of local precipitation and temperature at low computational costs. Our modelling framework is particularly useful for all downstream applications of climate model data.
Benjamin M. Sanderson, Ben B. B. Booth, John Dunne, Veronika Eyring, Rosie A. Fisher, Pierre Friedlingstein, Matthew J. Gidden, Tomohiro Hajima, Chris D. Jones, Colin G. Jones, Andrew King, Charles D. Koven, David M. Lawrence, Jason Lowe, Nadine Mengis, Glen P. Peters, Joeri Rogelj, Chris Smith, Abigail C. Snyder, Isla R. Simpson, Abigail L. S. Swann, Claudia Tebaldi, Tatiana Ilyina, Carl-Friedrich Schleussner, Roland Séférian, Bjørn H. Samset, Detlef van Vuuren, and Sönke Zaehle
Geosci. Model Dev., 17, 8141–8172, https://doi.org/10.5194/gmd-17-8141-2024, https://doi.org/10.5194/gmd-17-8141-2024, 2024
Short summary
Short summary
We discuss how, in order to provide more relevant guidance for climate policy, coordinated climate experiments should adopt a greater focus on simulations where Earth system models are provided with carbon emissions from fossil fuels together with land use change instructions, rather than past approaches that have largely focused on experiments with prescribed atmospheric carbon dioxide concentrations. We discuss how these goals might be achieved in coordinated climate modeling experiments.
Peter Berg, Thomas Bosshard, Denica Bozhinova, Lars Bärring, Joakim Löw, Carolina Nilsson, Gustav Strandberg, Johan Södling, Johan Thuresson, Renate Wilcke, and Wei Yang
Geosci. Model Dev., 17, 8173–8179, https://doi.org/10.5194/gmd-17-8173-2024, https://doi.org/10.5194/gmd-17-8173-2024, 2024
Short summary
Short summary
When bias adjusting climate model data using quantile mapping, one needs to prescribe what to do at the tails of the distribution, where a larger data range is likely encountered outside of the calibration period. The end result is highly dependent on the method used. We show that, to avoid discontinuities in the time series, one needs to exclude data in the calibration range to also activate the extrapolation functionality in that time period.
Philip J. Rasch, Haruki Hirasawa, Mingxuan Wu, Sarah J. Doherty, Robert Wood, Hailong Wang, Andy Jones, James Haywood, and Hansi Singh
Geosci. Model Dev., 17, 7963–7994, https://doi.org/10.5194/gmd-17-7963-2024, https://doi.org/10.5194/gmd-17-7963-2024, 2024
Short summary
Short summary
We introduce a protocol to compare computer climate simulations to better understand a proposed strategy intended to counter warming and climate impacts from greenhouse gas increases. This slightly changes clouds in six ocean regions to reflect more sunlight and cool the Earth. Example changes in clouds and climate are shown for three climate models. Cloud changes differ between the models, but precipitation and surface temperature changes are similar when their cooling effects are made similar.
Trude Eidhammer, Andrew Gettelman, Katherine Thayer-Calder, Duncan Watson-Parris, Gregory Elsaesser, Hugh Morrison, Marcus van Lier-Walqui, Ci Song, and Daniel McCoy
Geosci. Model Dev., 17, 7835–7853, https://doi.org/10.5194/gmd-17-7835-2024, https://doi.org/10.5194/gmd-17-7835-2024, 2024
Short summary
Short summary
We describe a dataset where 45 parameters related to cloud processes in the Community Earth System Model version 2 (CESM2) Community Atmosphere Model version 6 (CAM6) are perturbed. Three sets of perturbed parameter ensembles (263 members) were created: current climate, preindustrial aerosol loading and future climate with sea surface temperature increased by 4 K.
Ha Thi Minh Ho-Hagemann, Vera Maurer, Stefan Poll, and Irina Fast
Geosci. Model Dev., 17, 7815–7834, https://doi.org/10.5194/gmd-17-7815-2024, https://doi.org/10.5194/gmd-17-7815-2024, 2024
Short summary
Short summary
The regional Earth system model GCOAST-AHOI v2.0 that includes the regional climate model ICON-CLM coupled to the ocean model NEMO and the hydrological discharge model HD via the OASIS3-MCT coupler can be a useful tool for conducting long-term regional climate simulations over the EURO-CORDEX domain. The new OASIS3-MCT coupling interface implemented in ICON-CLM makes it more flexible for coupling to an external ocean model and an external hydrological discharge model.
Sandro Vattioni, Rahel Weber, Aryeh Feinberg, Andrea Stenke, John A. Dykema, Beiping Luo, Georgios A. Kelesidis, Christian A. Bruun, Timofei Sukhodolov, Frank N. Keutsch, Thomas Peter, and Gabriel Chiodo
Geosci. Model Dev., 17, 7767–7793, https://doi.org/10.5194/gmd-17-7767-2024, https://doi.org/10.5194/gmd-17-7767-2024, 2024
Short summary
Short summary
We quantified impacts and efficiency of stratospheric solar climate intervention via solid particle injection. Microphysical interactions of solid particles with the sulfur cycle were interactively coupled to the heterogeneous chemistry scheme and the radiative transfer code of an aerosol–chemistry–climate model. Compared to injection of SO2 we only find a stronger cooling efficiency for solid particles when normalizing to the aerosol load but not when normalizing to the injection rate.
Samuel Rémy, Swen Metzger, Vincent Huijnen, Jason E. Williams, and Johannes Flemming
Geosci. Model Dev., 17, 7539–7567, https://doi.org/10.5194/gmd-17-7539-2024, https://doi.org/10.5194/gmd-17-7539-2024, 2024
Short summary
Short summary
In this paper we describe the development of the future operational cycle 49R1 of the IFS-COMPO system, used for operational forecasts of atmospheric composition in the CAMS project, and focus on the implementation of the thermodynamical model EQSAM4Clim version 12. The implementation of EQSAM4Clim significantly improves the simulated secondary inorganic aerosol surface concentration. The new aerosol and precipitation acidity diagnostics showed good agreement against observational datasets.
Maximillian Van Wyk de Vries, Tom Matthews, L. Baker Perry, Nirakar Thapa, and Rob Wilby
Geosci. Model Dev., 17, 7629–7643, https://doi.org/10.5194/gmd-17-7629-2024, https://doi.org/10.5194/gmd-17-7629-2024, 2024
Short summary
Short summary
This paper introduces the AtsMOS workflow, a new tool for improving weather forecasts in mountainous areas. By combining advanced statistical techniques with local weather data, AtsMOS can provide more accurate predictions of weather conditions. Using data from Mount Everest as an example, AtsMOS has shown promise in better forecasting hazardous weather conditions, making it a valuable tool for communities in mountainous regions and beyond.
Sofia Allende, Anne Marie Treguier, Camille Lique, Clément de Boyer Montégut, François Massonnet, Thierry Fichefet, and Antoine Barthélemy
Geosci. Model Dev., 17, 7445–7466, https://doi.org/10.5194/gmd-17-7445-2024, https://doi.org/10.5194/gmd-17-7445-2024, 2024
Short summary
Short summary
We study the parameters of the turbulent-kinetic-energy mixed-layer-penetration scheme in the NEMO model with regard to sea-ice-covered regions of the Arctic Ocean. This evaluation reveals the impact of these parameters on mixed-layer depth, sea surface temperature and salinity, and ocean stratification. Our findings demonstrate significant impacts on sea ice thickness and sea ice concentration, emphasizing the need for accurately representing ocean mixing to understand Arctic climate dynamics.
Sabin I. Taranu, David M. Lawrence, Yoshihide Wada, Ting Tang, Erik Kluzek, Sam Rabin, Yi Yao, Steven J. De Hertog, Inne Vanderkelen, and Wim Thiery
Geosci. Model Dev., 17, 7365–7399, https://doi.org/10.5194/gmd-17-7365-2024, https://doi.org/10.5194/gmd-17-7365-2024, 2024
Short summary
Short summary
In this study, we improved a climate model by adding the representation of water use sectors such as domestic, industry, and agriculture. This new feature helps us understand how water is used and supplied in various areas. We tested our model from 1971 to 2010 and found that it accurately identifies areas with water scarcity. By modelling the competition between sectors when water availability is limited, the model helps estimate the intensity and extent of individual sectors' water shortages.
Cynthia Whaley, Montana Etten-Bohm, Courtney Schumacher, Ayodeji Akingunola, Vivek Arora, Jason Cole, Michael Lazare, David Plummer, Knut von Salzen, and Barbara Winter
Geosci. Model Dev., 17, 7141–7155, https://doi.org/10.5194/gmd-17-7141-2024, https://doi.org/10.5194/gmd-17-7141-2024, 2024
Short summary
Short summary
This paper describes how lightning was added as a process in the Canadian Earth System Model in order to interactively respond to climate changes. As lightning is an important cause of global wildfires, this new model development allows for more realistic projections of how wildfires may change in the future, responding to a changing climate.
Erik Gustafsson, Bo G. Gustafsson, Martijn Hermans, Christoph Humborg, and Christian Stranne
Geosci. Model Dev., 17, 7157–7179, https://doi.org/10.5194/gmd-17-7157-2024, https://doi.org/10.5194/gmd-17-7157-2024, 2024
Short summary
Short summary
Methane (CH4) cycling in the Baltic Proper is studied through model simulations, enabling a first estimate of key CH4 fluxes. A preliminary budget identifies benthic CH4 release as the dominant source and two main sinks: CH4 oxidation in the water (92 % of sinks) and outgassing to the atmosphere (8 % of sinks). This study addresses CH4 emissions from coastal seas and is a first step toward understanding the relative importance of open-water outgassing compared with local coastal hotspots.
Kerstin Hartung, Bastian Kern, Nils-Arne Dreier, Jörn Geisbüsch, Mahnoosh Haghighatnasab, Patrick Jöckel, Astrid Kerkweg, Wilton Jaciel Loch, Florian Prill, and Daniel Rieger
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-135, https://doi.org/10.5194/gmd-2024-135, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
The Icosahedral Nonhydrostatic (ICON) Model Community Interface (ComIn) library supports connecting third-party modules to the ICON model. Third-party modules can range from simple diagnostic Python scripts to full chemistry models. ComIn offers a low barrier for code extensions to ICON, provides multi-language support (Fortran, C/C++ and Python) and reduces the migration effort in response to new ICON releases. This paper presents the ComIn design principles and a range of use cases.
Tridib Banerjee, Patrick Scholz, Sergey Danilov, Knut Klingbeil, and Dmitry Sidorenko
Geosci. Model Dev., 17, 7051–7065, https://doi.org/10.5194/gmd-17-7051-2024, https://doi.org/10.5194/gmd-17-7051-2024, 2024
Short summary
Short summary
In this paper we propose a new alternative to one of the functionalities of the sea ice model FESOM2. The alternative we propose allows the model to capture and simulate fast changes in quantities like sea surface elevation more accurately. We also demonstrate that the new alternative is faster and more adept at taking advantages of highly parallelized computing infrastructure. We therefore show that this new alternative is a great addition to the sea ice model FESOM2.
Yuwen Fan, Zhao Yang, Min-Hui Lo, Jina Hur, and Eun-Soon Im
Geosci. Model Dev., 17, 6929–6947, https://doi.org/10.5194/gmd-17-6929-2024, https://doi.org/10.5194/gmd-17-6929-2024, 2024
Short summary
Short summary
Irrigated agriculture in the North China Plain (NCP) has a significant impact on the local climate. To better understand this impact, we developed a specialized model specifically for the NCP region. This model allows us to simulate the double-cropping vegetation and the dynamic irrigation practices that are commonly employed in the NCP. This model shows improved performance in capturing the general crop growth, such as crop stages, biomass, crop yield, and vegetation greenness.
Ed Blockley, Emma Fiedler, Jeff Ridley, Luke Roberts, Alex West, Dan Copsey, Daniel Feltham, Tim Graham, David Livings, Clement Rousset, David Schroeder, and Martin Vancoppenolle
Geosci. Model Dev., 17, 6799–6817, https://doi.org/10.5194/gmd-17-6799-2024, https://doi.org/10.5194/gmd-17-6799-2024, 2024
Short summary
Short summary
This paper documents the sea ice model component of the latest Met Office coupled model configuration, which will be used as the physical basis for UK contributions to CMIP7. Documentation of science options used in the configuration are given along with a brief model evaluation. This is the first UK configuration to use NEMO’s new SI3 sea ice model. We provide details on how SI3 was adapted to work with Met Office coupling methodology and documentation of coupling processes in the model.
Jean-François Lemieux, William H. Lipscomb, Anthony Craig, David A. Bailey, Elizabeth C. Hunke, Philippe Blain, Till A. S. Rasmussen, Mats Bentsen, Frédéric Dupont, David Hebert, and Richard Allard
Geosci. Model Dev., 17, 6703–6724, https://doi.org/10.5194/gmd-17-6703-2024, https://doi.org/10.5194/gmd-17-6703-2024, 2024
Short summary
Short summary
We present the latest version of the CICE model. It solves equations that describe the dynamics and the growth and melt of sea ice. To do so, the domain is divided into grid cells and variables are positioned at specific locations in the cells. A new implementation (C-grid) is presented, with the velocity located on cell edges. Compared to the previous B-grid, the C-grid allows for a natural coupling with some oceanic and atmospheric models. It also allows for ice transport in narrow channels.
Rachid El Montassir, Olivier Pannekoucke, and Corentin Lapeyre
Geosci. Model Dev., 17, 6657–6681, https://doi.org/10.5194/gmd-17-6657-2024, https://doi.org/10.5194/gmd-17-6657-2024, 2024
Short summary
Short summary
This study introduces a novel approach that combines physics and artificial intelligence (AI) for improved cloud cover forecasting. This approach outperforms traditional deep learning (DL) methods in producing realistic and physically consistent results while requiring less training data. This architecture provides a promising solution to overcome the limitations of classical AI methods and contributes to open up new possibilities for combining physical knowledge with deep learning models.
Marit Sandstad, Borgar Aamaas, Ane Nordlie Johansen, Marianne Tronstad Lund, Glen Philip Peters, Bjørn Hallvard Samset, Benjamin Mark Sanderson, and Ragnhild Bieltvedt Skeie
Geosci. Model Dev., 17, 6589–6625, https://doi.org/10.5194/gmd-17-6589-2024, https://doi.org/10.5194/gmd-17-6589-2024, 2024
Short summary
Short summary
The CICERO-SCM has existed as a Fortran model since 1999 that calculates the radiative forcing and concentrations from emissions and is an upwelling diffusion energy balance model of the ocean that calculates temperature change. In this paper, we describe an updated version ported to Python and publicly available at https://github.com/ciceroOslo/ciceroscm (https://doi.org/10.5281/zenodo.10548720). This version contains functionality for parallel runs and automatic calibration.
Zheng Xiang, Yongkang Xue, Weidong Guo, Melannie D. Hartman, Ye Liu, and William J. Parton
Geosci. Model Dev., 17, 6437–6464, https://doi.org/10.5194/gmd-17-6437-2024, https://doi.org/10.5194/gmd-17-6437-2024, 2024
Short summary
Short summary
A process-based plant carbon (C)–nitrogen (N) interface coupling framework has been developed which mainly focuses on plant resistance and N-limitation effects on photosynthesis, plant respiration, and plant phenology. A dynamic C / N ratio is introduced to represent plant resistance and self-adjustment. The framework has been implemented in a coupled biophysical-ecosystem–biogeochemical model, and testing results show a general improvement in simulating plant properties with this framework.
Yangke Liu, Qing Bao, Bian He, Xiaofei Wu, Jing Yang, Yimin Liu, Guoxiong Wu, Tao Zhu, Siyuan Zhou, Yao Tang, Ankang Qu, Yalan Fan, Anling Liu, Dandan Chen, Zhaoming Luo, Xing Hu, and Tongwen Wu
Geosci. Model Dev., 17, 6249–6275, https://doi.org/10.5194/gmd-17-6249-2024, https://doi.org/10.5194/gmd-17-6249-2024, 2024
Short summary
Short summary
We give an overview of the Institute of Atmospheric Physics–Chinese Academy of Sciences subseasonal-to-seasonal ensemble forecasting system and Madden–Julian Oscillation forecast evaluation of the system. Compared to other S2S models, the IAP-CAS model has its benefits but also biases, i.e., underdispersive ensemble, overestimated amplitude, and faster propagation speed when forecasting MJO. We provide a reason for these biases and prospects for further improvement of this system in the future.
Laurent Brodeau, Pierre Rampal, Einar Ólason, and Véronique Dansereau
Geosci. Model Dev., 17, 6051–6082, https://doi.org/10.5194/gmd-17-6051-2024, https://doi.org/10.5194/gmd-17-6051-2024, 2024
Short summary
Short summary
A new brittle sea ice rheology, BBM, has been implemented into the sea ice component of NEMO. We describe how a new spatial discretization framework was introduced to achieve this. A set of idealized and realistic ocean and sea ice simulations of the Arctic have been performed using BBM and the standard viscous–plastic rheology of NEMO. When compared to satellite data, our simulations show that our implementation of BBM leads to a fairly good representation of sea ice deformations.
Joseph P. Hollowed, Christiane Jablonowski, Hunter Y. Brown, Benjamin R. Hillman, Diana L. Bull, and Joseph L. Hart
Geosci. Model Dev., 17, 5913–5938, https://doi.org/10.5194/gmd-17-5913-2024, https://doi.org/10.5194/gmd-17-5913-2024, 2024
Short summary
Short summary
Large volcanic eruptions deposit material in the upper atmosphere, which is capable of altering temperature and wind patterns of Earth's atmosphere for subsequent years. This research describes a new method of simulating these effects in an idealized, efficient atmospheric model. A volcanic eruption of sulfur dioxide is described with a simplified set of physical rules, which eventually cools the planetary surface. This model has been designed as a test bed for climate attribution studies.
Hong Li, Yi Yang, Jian Sun, Yuan Jiang, Ruhui Gan, and Qian Xie
Geosci. Model Dev., 17, 5883–5896, https://doi.org/10.5194/gmd-17-5883-2024, https://doi.org/10.5194/gmd-17-5883-2024, 2024
Short summary
Short summary
Vertical atmospheric motions play a vital role in convective-scale precipitation forecasts by connecting atmospheric dynamics with cloud development. A three-dimensional variational vertical velocity assimilation scheme is developed within the high-resolution CMA-MESO model, utilizing the adiabatic Richardson equation as the observation operator. A 10 d continuous run and an individual case study demonstrate improved forecasts, confirming the scheme's effectiveness.
Matthias Nützel, Laura Stecher, Patrick Jöckel, Franziska Winterstein, Martin Dameris, Michael Ponater, Phoebe Graf, and Markus Kunze
Geosci. Model Dev., 17, 5821–5849, https://doi.org/10.5194/gmd-17-5821-2024, https://doi.org/10.5194/gmd-17-5821-2024, 2024
Short summary
Short summary
We extended the infrastructure of our modelling system to enable the use of an additional radiation scheme. After calibrating the model setups to the old and the new radiation scheme, we find that the simulation with the new scheme shows considerable improvements, e.g. concerning the cold-point temperature and stratospheric water vapour. Furthermore, perturbations of radiative fluxes associated with greenhouse gas changes, e.g. of methane, tend to be improved when the new scheme is employed.
Yibing Wang, Xianhong Xie, Bowen Zhu, Arken Tursun, Fuxiao Jiang, Yao Liu, Dawei Peng, and Buyun Zheng
Geosci. Model Dev., 17, 5803–5819, https://doi.org/10.5194/gmd-17-5803-2024, https://doi.org/10.5194/gmd-17-5803-2024, 2024
Short summary
Short summary
Urban expansion intensifies challenges like urban heat and urban dry islands. To address this, we developed an urban module, VIC-urban, in the Variable Infiltration Capacity (VIC) model. Tested in Beijing, VIC-urban accurately simulated turbulent heat fluxes, runoff, and land surface temperature. We provide a reliable tool for large-scale simulations considering urban environment and a systematic urban modelling framework within VIC, offering crucial insights for urban planners and designers.
Jeremy Carter, Erick A. Chacón-Montalván, and Amber Leeson
Geosci. Model Dev., 17, 5733–5757, https://doi.org/10.5194/gmd-17-5733-2024, https://doi.org/10.5194/gmd-17-5733-2024, 2024
Short summary
Short summary
Climate models are essential tools in the study of climate change and its wide-ranging impacts on life on Earth. However, the output is often afflicted with some bias. In this paper, a novel model is developed to predict and correct bias in the output of climate models. The model captures uncertainty in the correction and explicitly models underlying spatial correlation between points. These features are of key importance for climate change impact assessments and resulting decision-making.
Anna Martin, Veronika Gayler, Benedikt Steil, Klaus Klingmüller, Patrick Jöckel, Holger Tost, Jos Lelieveld, and Andrea Pozzer
Geosci. Model Dev., 17, 5705–5732, https://doi.org/10.5194/gmd-17-5705-2024, https://doi.org/10.5194/gmd-17-5705-2024, 2024
Short summary
Short summary
The study evaluates the land surface and vegetation model JSBACHv4 as a replacement for the simplified submodel SURFACE in EMAC. JSBACH mitigates earlier problems of soil dryness, which are critical for vegetation modelling. When analysed using different datasets, the coupled model shows strong correlations of key variables, such as land surface temperature, surface albedo and radiation flux. The versatility of the model increases significantly, while the overall performance does not degrade.
Hugo Banderier, Christian Zeman, David Leutwyler, Stefan Rüdisühli, and Christoph Schär
Geosci. Model Dev., 17, 5573–5586, https://doi.org/10.5194/gmd-17-5573-2024, https://doi.org/10.5194/gmd-17-5573-2024, 2024
Short summary
Short summary
We investigate the effects of reduced-precision arithmetic in a state-of-the-art regional climate model by studying the results of 10-year-long simulations. After this time, the results of the reduced precision and the standard implementation are hardly different. This should encourage the use of reduced precision in climate models to exploit the speedup and memory savings it brings. The methodology used in this work can help researchers verify reduced-precision implementations of their model.
David Fuchs, Steven C. Sherwood, Abhnil Prasad, Kirill Trapeznikov, and Jim Gimlett
Geosci. Model Dev., 17, 5459–5475, https://doi.org/10.5194/gmd-17-5459-2024, https://doi.org/10.5194/gmd-17-5459-2024, 2024
Short summary
Short summary
Machine learning (ML) of unresolved processes offers many new possibilities for improving weather and climate models, but integrating ML into the models has been an engineering challenge, and there are performance issues. We present a new software plugin for this integration, TorchClim, that is scalable and flexible and thereby allows a new level of experimentation with the ML approach. We also provide guidance on ML training and demonstrate a skillful hybrid ML atmosphere model.
Eduardo Moreno-Chamarro, Thomas Arsouze, Mario Acosta, Pierre-Antoine Bretonnière, Miguel Castrillo, Eric Ferrer, Amanda Frigola, Daria Kuznetsova, Eneko Martin-Martinez, Pablo Ortega, and Sergi Palomas
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-119, https://doi.org/10.5194/gmd-2024-119, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
We present the high-resolution model version of the EC-Earth global climate model to contribute to HighResMIP. The combined model resolution is about 10-15 km in both the ocean and atmosphere, which makes it one of the finest ever used to complete historical and scenario simulations. This model is compared with two lower-resolution versions, with a 100-km and a 25-km grid. The three models are compared with observations to study the improvements thanks to the increased in the resolution.
Daniel Francis James Gunning, Kerim Hestnes Nisancioglu, Emilie Capron, and Roderik van de Wal
EGUsphere, https://doi.org/10.5194/egusphere-2024-1384, https://doi.org/10.5194/egusphere-2024-1384, 2024
Short summary
Short summary
This work documents the first results from ZEMBA: an energy balance model of the climate system. The model is a computationally efficient tool designed to study the response of climate to changes in the Earth’s orbit. We demonstrate ZEMBA reproduces many features of the Earth’s climate for both the pre-industrial period and the Earth’s most recent cold extreme- the Last Glacial Maximum. We intend to develop ZEMBA further and investigate the glacial cycles of the last 2.5 million years.
Minjin Lee, Charles A. Stock, John P. Dunne, and Elena Shevliakova
Geosci. Model Dev., 17, 5191–5224, https://doi.org/10.5194/gmd-17-5191-2024, https://doi.org/10.5194/gmd-17-5191-2024, 2024
Short summary
Short summary
Modeling global freshwater solid and nutrient loads, in both magnitude and form, is imperative for understanding emerging eutrophication problems. Such efforts, however, have been challenged by the difficulty of balancing details of freshwater biogeochemical processes with limited knowledge, input, and validation datasets. Here we develop a global freshwater model that resolves intertwined algae, solid, and nutrient dynamics and provide performance assessment against measurement-based estimates.
Hunter York Brown, Benjamin Wagman, Diana Bull, Kara Peterson, Benjamin Hillman, Xiaohong Liu, Ziming Ke, and Lin Lin
Geosci. Model Dev., 17, 5087–5121, https://doi.org/10.5194/gmd-17-5087-2024, https://doi.org/10.5194/gmd-17-5087-2024, 2024
Short summary
Short summary
Explosive volcanic eruptions lead to long-lived, microscopic particles in the upper atmosphere which act to cool the Earth's surface by reflecting the Sun's light back to space. We include and test this process in a global climate model, E3SM. E3SM is tested against satellite and balloon observations of the 1991 eruption of Mt. Pinatubo, showing that with these particles in the model we reasonably recreate Pinatubo and its global effects. We also explore how particle size leads to these effects.
Carl Svenhag, Moa K. Sporre, Tinja Olenius, Daniel Yazgi, Sara M. Blichner, Lars P. Nieradzik, and Pontus Roldin
Geosci. Model Dev., 17, 4923–4942, https://doi.org/10.5194/gmd-17-4923-2024, https://doi.org/10.5194/gmd-17-4923-2024, 2024
Short summary
Short summary
Our research shows the importance of modeling new particle formation (NPF) and growth of particles in the atmosphere on a global scale, as they influence the outcomes of clouds and our climate. With the global model EC-Earth3 we show that using a new method for NPF modeling, which includes new detailed processes with NH3 and H2SO4, significantly impacts the number of particles in the air and clouds and changes the radiation balance of the same magnitude as anthropogenic greenhouse emissions.
Mengjie Han, Qing Zhao, Xili Wang, Ying-Ping Wang, Philippe Ciais, Haicheng Zhang, Daniel S. Goll, Lei Zhu, Zhe Zhao, Zhixuan Guo, Chen Wang, Wei Zhuang, Fengchang Wu, and Wei Li
Geosci. Model Dev., 17, 4871–4890, https://doi.org/10.5194/gmd-17-4871-2024, https://doi.org/10.5194/gmd-17-4871-2024, 2024
Short summary
Short summary
The impact of biochar (BC) on soil organic carbon (SOC) dynamics is not represented in most land carbon models used for assessing land-based climate change mitigation. Our study develops a BC model that incorporates our current understanding of BC effects on SOC based on a soil carbon model (MIMICS). The BC model can reproduce the SOC changes after adding BC, providing a useful tool to couple dynamic land models to evaluate the effectiveness of BC application for CO2 removal from the atmosphere.
Kalyn Dorheim, Skylar Gering, Robert Gieseke, Corinne Hartin, Leeya Pressburger, Alexey N. Shiklomanov, Steven J. Smith, Claudia Tebaldi, Dawn L. Woodard, and Ben Bond-Lamberty
Geosci. Model Dev., 17, 4855–4869, https://doi.org/10.5194/gmd-17-4855-2024, https://doi.org/10.5194/gmd-17-4855-2024, 2024
Short summary
Short summary
Hector is an easy-to-use, global climate–carbon cycle model. With its quick run time, Hector can provide climate information from a run in a fraction of a second. Hector models on a global and annual basis. Here, we present an updated version of the model, Hector V3. In this paper, we document Hector’s new features. Hector V3 is capable of reproducing historical observations, and its future temperature projections are consistent with those of more complex models.
Fangxuan Ren, Jintai Lin, Chenghao Xu, Jamiu A. Adeniran, Jingxu Wang, Randall V. Martin, Aaron van Donkelaar, Melanie S. Hammer, Larry W. Horowitz, Steven T. Turnock, Naga Oshima, Jie Zhang, Susanne Bauer, Kostas Tsigaridis, Øyvind Seland, Pierre Nabat, David Neubauer, Gary Strand, Twan van Noije, Philippe Le Sager, and Toshihiko Takemura
Geosci. Model Dev., 17, 4821–4836, https://doi.org/10.5194/gmd-17-4821-2024, https://doi.org/10.5194/gmd-17-4821-2024, 2024
Short summary
Short summary
We evaluate the performance of 14 CMIP6 ESMs in simulating total PM2.5 and its 5 components over China during 2000–2014. PM2.5 and its components are underestimated in almost all models, except that black carbon (BC) and sulfate are overestimated in two models, respectively. The underestimation is the largest for organic carbon (OC) and the smallest for BC. Models reproduce the observed spatial pattern for OC, sulfate, nitrate and ammonium well, yet the agreement is poorer for BC.
Yi Xi, Chunjing Qiu, Yuan Zhang, Dan Zhu, Shushi Peng, Gustaf Hugelius, Jinfeng Chang, Elodie Salmon, and Philippe Ciais
Geosci. Model Dev., 17, 4727–4754, https://doi.org/10.5194/gmd-17-4727-2024, https://doi.org/10.5194/gmd-17-4727-2024, 2024
Short summary
Short summary
The ORCHIDEE-MICT model can simulate the carbon cycle and hydrology at a sub-grid scale but energy budgets only at a grid scale. This paper assessed the implementation of a multi-tiling energy budget approach in ORCHIDEE-MICT and found warmer surface and soil temperatures, higher soil moisture, and more soil organic carbon across the Northern Hemisphere compared with the original version.
Maria Rosa Russo, Sadie L. Bartholomew, David Hassell, Alex M. Mason, Erica Neininger, A. James Perman, David A. J. Sproson, Duncan Watson-Parris, and Nathan Luke Abraham
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-73, https://doi.org/10.5194/gmd-2024-73, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Observational data and modelling capabilities are expanding in recent years, but there are still barriers preventing these two data sources to be used in synergy. Proper comparison requires generating, storing and handling a large amount of data. This manuscript describes the first step in the development of a new set of software tools, the ‘VISION toolkit’, which can enable the easy and efficient integration of observational and model data required for model evaluation.
Georgia Lazoglou, Theo Economou, Christina Anagnostopoulou, George Zittis, Anna Tzyrkalli, Pantelis Georgiades, and Jos Lelieveld
Geosci. Model Dev., 17, 4689–4703, https://doi.org/10.5194/gmd-17-4689-2024, https://doi.org/10.5194/gmd-17-4689-2024, 2024
Short summary
Short summary
This study focuses on the important issue of the drizzle bias effect in regional climate models, described by an over-prediction of the number of rainy days while underestimating associated precipitation amounts. For this purpose, two distinct methodologies are applied and rigorously evaluated. These results are encouraging for using the multivariate machine learning method random forest to increase the accuracy of climate models concerning the projection of the number of wet days.
Xu Yue, Hao Zhou, Chenguang Tian, Yimian Ma, Yihan Hu, Cheng Gong, Hui Zheng, and Hong Liao
Geosci. Model Dev., 17, 4621–4642, https://doi.org/10.5194/gmd-17-4621-2024, https://doi.org/10.5194/gmd-17-4621-2024, 2024
Short summary
Short summary
We develop the interactive Model for Air Pollution and Land Ecosystems (iMAPLE). The model considers the full coupling between carbon and water cycles, dynamic fire emissions, wetland methane emissions, biogenic volatile organic compound emissions, and trait-based ozone vegetation damage. Evaluations show that iMAPLE is a useful tool for the study of the interactions among climate, chemistry, and ecosystems.
Cited articles
Allen, M. R. and Ingram, W. J.: Constraints on future changes in climate and
the hydrologic cycle, Nature, 419, 228–232, https://doi.org/10.1038/nature01092, 2002. a
Amengual, A., Homar, V., Romero, R., Alonso, S., and Ramis, C.: A statistical
adjustment of regional climate model outputs to local scales: Application
to Platja de Palma, Spain, J. Climate, 25, 939–957,
https://doi.org/10.1175/JCLI-D-10-05024.1, 2011. a
Andréasson, J., Bergström, S., Carlsson, B., Graham, L. P., and
Lindström, G.: Hydrological change – climate change impact
simulations for Sweden, Ambio, 33, 228–234,
https://doi.org/10.1579/0044-7447-33.4.228, 2004. a
Auer, I., Böhm, R., and Schöner, W.: Austrian long-term climate
1767–2000, Osterreichische Beiträge zu Meteorologie und
Geophysik, 25, 147, ISSN 1016-6254, 2001. a
Ban, N., Schmidli, J., and Schär, C.: Evaluation of the
convection-resolving regional climate modeling approach in decade-long
simulations, J. Geophys. Res.-Atmos., 119, 7889–7907,
https://doi.org/10.1002/2014JD021478, 2014. a, b, c, d
Bartlein, P. J., Harrison, S. P., Brewer, S., Connor, S., Davis, B. A. S.,
Gajewski, K., Guiot, J., Harrison-Prentice, T. I., Henderson, A., Peyron, O.,
Prentice, I. C., Scholze, M., Seppä, H., Shuman, B., Sugita, S.,
Thompson, R. S., Viau, A. E., Williams, J., and Wu, H.: Pollen-based
continental climate reconstructions at 6 and 21 ka: a global synthesis,
Clim. Dynam., 37, 775–802, https://doi.org/10.1007/s00382-010-0904-1, 2011. a
Becker, P., Seguinot, J., Jouvet, G., and Funk, M.: Last Glacial Maximum precipitation pattern in the Alps inferred from glacier modelling, Geogr. Helv., 71, 173–187, https://doi.org/10.5194/gh-71-173-2016, 2016. a
Bennett, J. C., Grose, M. R., Corney, S. P., White, C. J., Holz, G. K.,
Katzfey, J. J., Post, D. A., and Bindoff, N. L.: Performance of an empirical
bias-correction of a high-resolution climate dataset, Int. J. Climatol., 34, 2189–2204, https://doi.org/10.1002/joc.3830, 2014. a
Berg, P., Feldmann, H., and Panitz, H. J.: Bias correction of high resolution
regional climate model data, J. Hydrol., 448-449, 80–92,
https://doi.org/10.1016/j.jhydrol.2012.04.026, 2012. a, b
Berthou, S., Kendon, E. J., Chan, S. C., Ban, N., Leutwyler, D., Schär, C.,
and Fosser, G.: Pan-European climate at convection-permitting scale: a
model intercomparison study, Clim. Dynam., 55, 35–59,
https://doi.org/10.1007/s00382-018-4114-6, 2018. a
Boer, G. J.: Climate change and the regulation of the surface moisture and
energy budgets, Clim. Dynam., 8, 225–239, https://doi.org/10.1007/BF00198617,
1993. a
Burke, A., Kageyama, M., Latombe, G., Fasel, M., Vrac, M., Ramstein, G., and
James, P. M. A.: Risky business: The impact of climate and climate
variability on human population dynamics in Western Europe during the
Last Glacial Maximum, Quaternary Sci. Rev., 164, 217–229,
https://doi.org/10.1016/j.quascirev.2017.04.001, 2017. a, b
Cannon, A. J., Sobie, S. R., and Murdock, T. Q.: Bias correction of GCM
precipitation by quantile mapping: How well do methods preserve changes in
quantiles and extremes?, J. Climate, 28, 6938–6959,
https://doi.org/10.1175/JCLI-D-14-00754.1, 2015. a
Carril, A. F., Menéndez, C. G., Remedio, A. R. C., Robledo, F.,
Sörensson, A., Tencer, B., Boulanger, J.-P., de Castro, M., Jacob, D.,
Le Treut, H., Li, L. Z. X., Penalba, O., Pfeifer, S., Rusticucci, M., Salio,
P., Samuelsson, P., Sanchez, E., and Zaninelli, P.: Performance of a
multi-RCM ensemble for south eastern South America, Clim. Dynam.,
39, 2747–2768, https://doi.org/10.1007/s00382-012-1573-z, 2012. a
Casanueva, A., Kotlarski, S., Herrera, S., Fernández, J., Gutiérrez,
J. M., Boberg, F., Colette, A., Christensen, O. B., Goergen, K., Jacob, D.,
Keuler, K., Nikulin, G., Teichmann, C., and Vautard, R.: Daily precipitation
statistics in a EURO-CORDEX RCM ensemble: Added value of raw and
bias-corrected high-resolution simulations, Clim. Dynam., 47, 719–737,
https://doi.org/10.1007/s00382-015-2865-x, 2016. a, b, c
Chen, H., Xu, C.-Y., and Guo, S.: Comparison and evaluation of multiple GCMs,
statistical downscaling and hydrological models in the study of climate
change impacts on runoff, J. Hydrol., 434–435, 36–45,
https://doi.org/10.1016/j.jhydrol.2012.02.040, 2012. a
Chen, J., Brissette, F. P., Chaumont, D., and Braun, M.: Finding appropriate
bias correction methods in downscaling precipitation for hydrologic impact
studies over North America, Water Resour. Res., 49, 4187–4205,
https://doi.org/10.1002/wrcr.20331, 2013. a
Chen, W., Zhu, D., Ciais, P., Huang, C., Viovy, N., and Kageyama, M.: Response
of vegetation cover to CO2 and climate changes between Last Glacial
Maximum and pre-industrial period in a dynamic global vegetation model,
Quaternary Sci. Rev., 218, 293–305,
https://doi.org/10.1016/j.quascirev.2019.06.003, 2019. a
Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J., Wohlfarth,
B., Mitrovica, J. X., Hostetler, S. W., and McCabe, A. M.: The Last
Glacial Maximum, Science, 325, 710–714, https://doi.org/10.1126/science.1172873,
2009. a
Ehlers, J., Gibbard, P., and Hughes, P.: Quaternary glaciations-extent and
chronology: a closer look, 15, Elsevier, Amsterdam, the Netherlands, 2011. a
Fang, G. H., Yang, J., Chen, Y. N., and Zammit, C.: Comparing bias correction methods in downscaling meteorological variables for a hydrologic impact study in an arid area in China, Hydrol. Earth Syst. Sci., 19, 2547–2559, https://doi.org/10.5194/hess-19-2547-2015, 2015. a, b, c
Felder, G., Gómez-Navarro, J. J., Zischg, A. P., Raible, C. C.,
Röthlisberger, V., Bozhinova, D., Martius, O., and Weingartner, R.: From
global circulation to local flood loss: Coupling models across the scales,
Sci. Total Environ., 635, 1225–1239,
https://doi.org/10.1016/j.scitotenv.2018.04.170, 2018. a
Finney, D. L., Marsham, J. H., Jackson, L. S., Kendon, E. J., Rowell, D. P.,
Boorman, P. M., Keane, R. J., Stratton, R. A., and Senior, C. A.:
Implications of improved representation of convection for the East Africa
water budget using a convection-permitting model, J. Climate, 32,
2109–2129, https://doi.org/10.1175/JCLI-D-18-0387.1, 2019. a
Florineth, D. and Schlüchter, C.: Alpine Evidence for Atmospheric
Circulation Patterns in Europe during the Last Glacial Maximum,
Quaternary Res., 54, 295–308, https://doi.org/10.1006/qres.2000.2169, 2000. a
Fowler, H. J., Blenkinsop, S., and Tebaldi, C.: Linking climate change
modelling to impacts studies: Recent advances in downscaling techniques for
hydrological modelling, Int. J. Climatol., 27, 1547–1578,
https://doi.org/10.1002/joc.1556, 2007a. a
Fowler, H. J., Ekström, M., Blenkinsop, S., and Smith, A. P.: Estimating
change in extreme European precipitation using a multimodel ensemble,
J. Geophys. Res.-Atmos., 112, D18 104,
https://doi.org/10.1029/2007JD008619, 2007b. a, b, c
Frei, C., Christensen, J. H., Déqué, M., Jacob, D., Jones, R. G., and
Vidale, P. L.: Daily precipitation statistics in regional climate models:
Evaluation and intercomparison for the European Alps, J. Geophys. Res.-Atmos., 108, 4124, https://doi.org/10.1029/2002JD002287, 2003. a
Fu, Q.: An accurate parameterization of the solar radiative properties of
cirrus clouds for climate models, J. Climate, 9, 2058–2082,
https://doi.org/10.1175/1520-0442(1996)009<2058:AAPOTS>2.0.CO;2, 1996. a
Ganopolski, A. and Calov, R.: The role of orbital forcing, carbon dioxide and regolith in 100 kyr glacial cycles, Clim. Past, 7, 1415–1425, https://doi.org/10.5194/cp-7-1415-2011, 2011. a
Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C.,
Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J., Vertenstein, M.,
Worley, P. H., Yang, Z.-L., and Zhang, M.: The Community Climate System
Model Version 4, J. Climate, 24, 4973–4991,
https://doi.org/10.1175/2011JCLI4083.1, 2011. a, b
Gianotti, R. L., Zhang, D., and Eltahir, E. A. B.: Assessment of the regional
climate model version 3 over the maritime continent using different cumulus
parameterization and land surface schemes, J. Climate, 25, 638–656,
https://doi.org/10.1175/JCLI-D-11-00025.1, 2011. a
Giorgi, F., Torma, C., Coppola, E., Ban, N., Schär, C., and Somot, S.:
Enhanced summer convective rainfall at Alpine high elevations in response
to climate warming, Nat. Geosci., 9, 584–589, https://doi.org/10.1038/ngeo2761,
2016. a, b
Gómez-Navarro, J. J., Raible, C. C., Bozhinova, D., Martius, O., García Valero, J. A., and Montávez, J. P.: A new region-aware bias-correction method for simulated precipitation in areas of complex orography, Geosci. Model Dev., 11, 2231–2247, https://doi.org/10.5194/gmd-11-2231-2018, 2018. a, b, c, d, e, f, g
Güttler, I., Stepanov, I., Branković, Č., Nikulin, G., and Jones,
C.: Impact of horizontal resolution on precipitation in complex orography
simulated by the regional climate model RCA3, Mon. Weather Rev., 143,
3610–3627, https://doi.org/10.1175/MWR-D-14-00302.1, 2015. a
Haslinger, K., Anders, I., and Hofstätter, M.: Regional climate modelling
over complex terrain: An evaluation study of COSMO-CLM hindcast model
runs for the greater Alpine region, Clim. Dynam., 40, 511–529,
https://doi.org/10.1007/s00382-012-1452-7, 2013. a
Hay, L. E., Wilby, R. L., and Leavesley, G. H.: A Comparison of delta change
and downscaled GCM scenarios for three mountainous basins in the United
States, J. Am. Water Resour. As., 36, 387–397,
https://doi.org/10.1111/j.1752-1688.2000.tb04276.x, 2000. a
Hofer, D., Raible, C. C., Merz, N., Dehnert, A., and Kuhlemann, J.: Simulated
winter circulation types in the North Atlantic and European region for
preindustrial and glacial conditions: Glacial circulation types,
Geophys. Res. Lett., 39, L15805, https://doi.org/10.1029/2012GL052296,
2012b. a, b, c, d, e, f
Hui, P., Tang, J., Wang, S., Wu, J., Niu, X., and Kang, Y.: Impact of
resolution on regional climate modeling in the source region of Yellow
River with complex terrain using RegCM3, Theor. Appl.
Climatol., 125, 365–380, https://doi.org/10.1007/s00704-015-1514-y, 2016. a
Isotta, F. A., Frei, C., Weilguni, V., Perčec Tadić, M.,
Lassègues, P., Rudolf, B., Pavan, V., Cacciamani, C., Antolini, G.,
Ratto, S. M., Munari, M., Micheletti, S., Bonati, V., Lussana, C., Ronchi,
C., Panettieri, E., Marigo, G., and Vertačnik, G.: The climate of daily
precipitation in the Alps: Development and analysis of a high-resolution
grid dataset from pan-Alpine rain-gauge data, Int. J. Climatol., 34, 1657–1675, https://doi.org/10.1002/joc.3794, 2014. a, b, c, d, e, f, g, h, i, j, k, l
Ivanov, M. A., Luterbacher, J., and Kotlarski, S.: Climate model biases and
modification of the climate change signal by intensity-dependent bias
correction, J. Climate, 31, 6591–6610,
https://doi.org/10.1175/JCLI-D-17-0765.1, 2018. a
Jerez, S., Montavez, J. P., Jimenez-Guerrero, P., Gomez-Navarro, J. J.,
Lorente-Plazas, R., and Zorita, E.: A multi-physics ensemble of present-day
climate regional simulations over the Iberian Peninsula, Clim. Dynam., 40, 3023–3046, https://doi.org/10.1007/s00382-012-1539-1, 2013. a
Jouvet, G. and Huss, M.: Future retreat of Great Aletsch Glacier, J. Glaciol., 65, 869–872, https://doi.org/10.1017/jog.2019.52, 2019. a, b, c
Jouvet, G., Seguinot, J., Ivy-Ochs, S., and Funk, M.: Modelling the diversion
of erratic boulders by the Valais Glacier during the last glacial
maximum, J. Glaciol., 63, 487–498, https://doi.org/10.1017/jog.2017.7, 2017. a, b, c
Kageyama, M., Harrison, S. P., Kapsch, M.-L., Löfverström, M., Lora, J. M., Mikolajewicz, U., Sherriff-Tadano, S., Vadsaria, T., Abe-Ouchi, A., Bouttes, N., Chandan, D., LeGrande, A. N., Lhardy, F., Lohmann, G., Morozova, P. A., Ohgaito, R., Peltier, W. R., Quiquet, A., Roche, D. M., Shi, X., Schmittner, A., Tierney, J. E., and Volodin, E.: The PMIP4-CMIP6 Last Glacial Maximum experiments: preliminary results and comparison with the PMIP3-CMIP5 simulations, Clim. Past Discuss., https://doi.org/10.5194/cp-2019-169, in review, 2020. a
Kaplan, J. O., Pfeiffer, M., Kolen, J. C. A., and Davis, B. A. S.: Large scale
anthropogenic reduction of forest cover in Last Glacial Maximum
Europe, PLoS One, 11, e0166 726, https://doi.org/10.1371/journal.pone.0166726, 2016. a, b
Kendon, E. J., Ban, N., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan,
S. C., Evans, J. P., Fosser, G., and Wilkinson, J. M.: Do
convection-permitting regional climate models improve projections of future
precipitation change?, B. Am. Meteorol. Soc., 98,
79–93, https://doi.org/10.1175/BAMS-D-15-0004.1, 2017. a
Knist, S., Goergen, K., and Simmer, C.: Evaluation and projected changes of
precipitation statistics in convection-permitting WRF climate simulations
over Central Europe, Clim. Dynam., 55, 325–341, https://doi.org/10.1007/s00382-018-4147-x,
2018. a
Lambeck, K., Rouby, H., Purcell, A., Sun, Y., and Sambridge, M.: Sea level and
global ice volumes from the Last Glacial Maximum to the Holocene,
P. Natl. Acad. Sci. USA, 111, 15 296–15 303,
https://doi.org/10.1073/pnas.1411762111, 2014. a
Leung, L. R., Mearns, L. O., Giorgi, F., and Wilby, R. L.: Regional climate
research, B. Am. Meteorol. Soc., 84, 89–95,
https://doi.org/10.1175/BAMS-84-1-89, 2003. a
Liu, Z., Wang, Y., Gallimore, R., Notaro, M., and Prentice, I. C.: On the cause
of abrupt vegetation collapse in North Africa during the Holocene:
Climate variability vs. vegetation feedback, Geophys. Res. Lett.,
33, L22709, https://doi.org/10.1029/2006GL028062, 2006. a
Liu, Z., Ballantyne, A. P., Poulter, B., Anderegg, W. R. L., Li, W., Bastos,
A., and Ciais, P.: Precipitation thresholds regulate net carbon exchange at
the continental scale, Nat. Commun., 9, 3596,
https://doi.org/10.1038/s41467-018-05948-1, 2018. a
Ludwig, P., Schaffernicht, E. J., Shao, Y., and Pinto, J. G.: Regional
atmospheric circulation over Europe during the Last Glacial Maximum
and its links to precipitation, J. Geophys. Res.-Atmos.,
121, 2130–2145, https://doi.org/10.1002/2015JD024444, 2016. a
Ludwig, P., Pinto, J. G., Raible, C. C., and Shao, Y.: Impacts of surface
boundary conditions on regional climate model simulations of European
climate during the Last Glacial Maximum, Geophys. Res. Lett.,
44, 5086–5095, https://doi.org/10.1002/2017GL073622, 2017. a
Luetscher, M., Boch, R., Sodemann, H., Spötl, C., Cheng, H., Edwards,
R. L., Frisia, S., Hof, F., and Müller, W.: North Atlantic storm track
changes during the Last Glacial Maximum recorded by Alpine
speleothems, Nat. Commun., 6, 6344, https://doi.org/10.1038/ncomms7344, 2015. a
Maraun, D.: Bias correction, quantile mapping, and downscaling: Revisiting
the inflation issue, J. Climate, 26, 2137–2143,
https://doi.org/10.1175/JCLI-D-12-00821.1, 2013. a, b, c
Maraun, D.: Bias correcting climate change simulations - a critical review,
Curr. Clim. Change Rep., 2, 211–220, https://doi.org/10.1007/s40641-016-0050-x, 2016. a, b
Maraun, D. and Widmann, M.: The representation of location by a regional climate model in complex terrain, Hydrol. Earth Syst. Sci., 19, 3449–3456, https://doi.org/10.5194/hess-19-3449-2015, 2015. a
Maraun, D. and Widmann, M.: Cross-validation of bias-corrected climate simulations is misleading, Hydrol. Earth Syst. Sci., 22, 4867–4873, https://doi.org/10.5194/hess-22-4867-2018, 2018a. a, b
Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon, E. J.,
Widmann, M., Brienen, S., Rust, H. W., Sauter, T., Themeßl, M., Venema,
V. K. C., Chun, K. P., Goodess, C. M., Jones, R. G., Onof, C., Vrac, M., and
Thiele-Eich, I.: Precipitation downscaling under climate change: Recent
developments to bridge the gap between dynamical models and the end user,
Rev. Geophys., 48, RG3003, https://doi.org/10.1029/2009RG000314, 2010. a, b
Maraun, D., Shepherd, T. G., Widmann, M., Zappa, G., Walton, D., Gutiérrez,
J. M., Hagemann, S., Richter, I., Soares, P. M. M., Hall, A., and Mearns,
L. O.: Towards process-informed bias correction of climate change
simulations, Nat. Clim. Change, 7, 764–773, https://doi.org/10.1038/nclimate3418,
2017. a, b, c, d
Mayewski, P. A., Rohling, E. E., Stager, J. C., Karlén, W., Maasch, K. A.,
Meeker, L. D., Meyerson, E. A., Gasse, F., Kreveld, S. v., Holmgren, K.,
Lee-Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R. R., and
Steig, E. J.: Holocene climate variability, Quaternary Res., 62,
243–255, https://doi.org/10.1016/j.yqres.2004.07.001, 2004. a
Menéndez, C. G., de Castro, M., Boulanger, J.-P.,
D'Onofrio, A., Sanchez, E., Sörensson, A. A., Blazquez,
J., Elizalde, A., Jacob, D., Le Treut, H., Li, Z. X., Núñez, M. N.,
Pessacg, N., Pfeiffer, S., Rojas, M., Rolla, A., Samuelsson, P., Solman,
S. A., and Teichmann, C.: Downscaling extreme month-long anomalies in
southern South America, Climatic Change, 98, 379–403,
https://doi.org/10.1007/s10584-009-9739-3, 2010. a
Merz, N., Raible, C. C., Fischer, H., Varma, V., Prange, M., and Stocker, T. F.: Greenland accumulation and its connection to the large-scale atmospheric circulation in ERA-Interim and paleoclimate simulations, Clim. Past, 9, 2433–2450, https://doi.org/10.5194/cp-9-2433-2013, 2013. a
Merz, N., Born, A., Raible, C. C., Fischer, H., and Stocker, T. F.: Dependence of Eemian Greenland temperature reconstructions on the ice sheet topography, Clim. Past, 10, 1221–1238, https://doi.org/10.5194/cp-10-1221-2014, 2014a. a
Merz, N., Gfeller, G., Born, A., Raible, C. C., Stocker, T. F., and Fischer,
H.: Influence of ice sheet topography on Greenland precipitation during the
Eemian interglacial, J. Geophys. Res.-Atmos., 119,
10,749–10,768, https://doi.org/10.1002/2014JD021940, 2014b. a
Merz, N., Raible, C. C., and Woollings, T.: North Atlantic Eddy-Driven
jet in interglacial and glacial winter climates, J. Climate, 28,
3977–3997, https://doi.org/10.1175/JCLI-D-14-00525.1, 2015. a
Messmer, M., Gómez-Navarro, J. J., and Raible, C. C.: Sensitivity experiments on the response of Vb cyclones to sea surface temperature and soil moisture changes, Earth Syst. Dynam., 8, 477–493, https://doi.org/10.5194/esd-8-477-2017, 2017. a
MeteoSwiss: Documentation of MeteoSwiss gridded data product, daily
precipitation: RhiresD, available at:
http://www.meteoschweiz.admin.ch/content/dam/meteoswiss/de/service-und-publikationen/produkt/raeumliche-daten-niederschlag/doc/ProdDoc_RhiresD.pdf (last access: 12 October 2020),
2013. a, b, c, d
Mitchell, D., Davini, P., Harvey, B., Massey, N., Haustein, K., Woollings, T.,
Jones, R., Otto, F., Guillod, B., Sparrow, S., Wallom, D., and Allen, M.:
Assessing mid-latitude dynamics in extreme event attribution systems, Clim. Dynam., 48, 3889–3901, https://doi.org/10.1007/s00382-016-3308-z, 2017. a
Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van
Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A.,
Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer,
R. J., Thomson, A. M., Weyant, J. P., and Wilbanks, T. J.: The next
generation of scenarios for climate change research and assessment, Nature,
463, 747–756, https://doi.org/10.1038/nature08823, 2010. a
Murphy, J.: An evaluation of statistical and dynamical techniques for
downscaling local climate, J. Climate, 12, 2256–2284,
https://doi.org/10.1175/1520-0442(1999)012<2256:AEOSAD>2.0.CO;2, 1999. a, b, c
Neale, R. B., Richter, J. H., Conley, A. J., Park, S., Lauritzen, P. H.,
Gettelman, A., Rasch, P. J., and Vavrus, J.: Description of the NCAR
community atmosphere model (CAM4), National Center for Atmospheric Research
Tech. Rep. NCAR/TN+ STR, available at: http://www.cesm.ucar.edu/models/ccsm4.0/cam/docs/description/cam4_desc.pdf (last access: 12 October 2020), 2010. a
Nešpor, V. and Sevruk, B.: Estimation of wind-induced error of rainfall
gauge measurements using a numerical simulation, J. Atmos. Ocean. Tech., 16, 450–464,
https://doi.org/10.1175/1520-0426(1999)016<0450:EOWIEO>2.0.CO;2, 1999. a
Oleson, W., Lawrence, M., Bonan, B., Flanner, G., Kluzek, E., Lawrence, J.,
Levis, S., Swenson, C., Thornton, E., Dai, A., Decker, M., Dickinson, R.,
Feddema, J., Heald, L., Hoffman, F., Lamarque, J.-F., Mahowald, N., Niu,
G.-Y., Qian, T., Randerson, J., Running, S., Sakaguchi, K., Slater, A.,
Stockli, R., Wang, A., Yang, Z.-L., Zeng, X., and Zeng, X.: Technical
description of version 4.0 of the community land model (CLM), NCAR
Technical Note NCAR/TN-478+STR, National Center for Atmospheric
Research, National Center for Atmospheric Research, Boulder, CO, ISSN 2153-2397, available at: http://www.cesm.ucar.edu/models/cesm1.0/clm/CLM4_Tech_Note.pdf (last access: 12 October 2020), 2010. a
Otto-Bliesner, B. L., Brady, E. C., Clauzet, G., Tomas, R., Levis, S., and
Kothavala, Z.: Last Glacial Maximum and Holocene Climate in CCSM3,
J. Climate, 19, 2526–2544, https://doi.org/10.1175/JCLI3748.1, 2006. a
Peltier, W. R. and Fairbanks, R. G.: Global glacial ice volume and Last
Glacial Maximum duration from an extended Barbados sea level record,
Quaternary Sci. Rev., 25, 3322–3337,
https://doi.org/10.1016/j.quascirev.2006.04.010, 2006. a
Piani, C., Haerter, J. O., and Coppola, E.: Statistical bias correction for
daily precipitation in regional climate models over Europe, Theor.
Appl. Climatol., 99, 187–192, https://doi.org/10.1007/s00704-009-0134-9,
2010a. a
Piani, C., Weedon, G. P., Best, M., Gomes, S. M., Viterbo, P., Hagemann, S.,
and Haerter, J. O.: Statistical bias correction of global simulated daily
precipitation and temperature for the application of hydrological models,
J. Hydrol., 395, 199–215, https://doi.org/10.1016/j.jhydrol.2010.10.024,
2010b. a
Pinto, J. G. and Ludwig, P.: Extratropical cyclones over the North Atlantic and western Europe during the Last Glacial Maximum and implications for proxy interpretation, Clim. Past, 16, 611–626, https://doi.org/10.5194/cp-16-611-2020, 2020. a
Prein, A. F., Langhans, W., Fosser, G., Ferrone, A., Ban, N., Goergen, K.,
Keller, M., Tölle, M., Gutjahr, O., Feser, F., Brisson, E., Kollet, S.,
Schmidli, J., Lipzig, N. P. M. v., and Leung, R.: A review on regional
convection-permitting climate modeling: Demonstrations, prospects, and
challenges, Rev. Geophys., 53, 323–361, https://doi.org/10.1002/2014RG000475,
2015. a
Raible, C. C., Stocker, T. F., Yoshimori, M., Renold, M., Beyerle, U., Casty,
C., and Luterbacher, J.: Northern hemispheric trends of pressure indices and
atmospheric circulation patterns in observations, reconstructions, and
coupled GCM simulations, J. Climate, 18, 3968–3982,
https://doi.org/10.1175/JCLI3511.1, 2005. a
Raible, C. C., Lehner, F., González-Rouco, J. F., and Fernández-Donado, L.: Changing correlation structures of the Northern Hemisphere atmospheric circulation from 1000 to 2100 AD, Clim. Past, 10, 537–550, https://doi.org/10.5194/cp-10-537-2014, 2014. a
Raible, C. C., Brönnimann, S., Auchmann, R., Brohan, P., Frölicher,
T. L., Graf, H.-F., Jones, P., Luterbacher, J., Muthers, S., Neukom, R.,
Robock, A., Self, S., Sudrajat, A., Timmreck, C., and Wegmann, M.: Tambora
1815 as a test case for high impact volcanic eruptions: Earth system
effects, Wiley Interdiscip. Rev. Clim. Change, 7, 569–589,
https://doi.org/10.1002/wcc.407, 2016. a
Rajczak, J. and Schär, C.: Projections of future precipitation extremes
over Europe: A multimodel assessment of climate simulations, J. Geophys. Res.-Atmos., 122, 10 773–10 800,
https://doi.org/10.1002/2017JD027176, 2017. a
Rajczak, J., Kotlarski, S., and Schär, C.: Does quantile mapping of
simulated precipitation correct for biases in transition probabilities and
spell lengths?, J. Climate, 29, 1605–1615,
https://doi.org/10.1175/JCLI-D-15-0162.1, 2016. a, b
Richter, D.: Ergebnisse methodischer untersuchungen zur korrektur des
systematischen messfehlers des hellmann-niederschlagsmessers,
Deutscher Wetterdienst, Offenbach, 1995. a
Rougier, J., Sexton, D. M. H., Murphy, J. M., and Stainforth, D.: Analyzing the
climate sensitivity of the HadSM3 climate model using ensembles from
different but related experiments, J. Climate, 22, 3540–3557,
https://doi.org/10.1175/2008JCLI2533.1, 2009. a
RStudio Team: RStudio: Integrated Development Environment for R,
RStudio, Inc., Boston, MA, available at: http://www.rstudio.com/ (last access: 12 October 2020), 2015. a
Schmidli, J., Schmutz, C., Frei, C., Wanner, H., and Schär, C.: Mesoscale
precipitation variability in the region of the European Alps during the
20th century, Int. J. Climatol., 22, 1049–1074,
https://doi.org/10.1002/joc.769, 2002. a
Schmidli, J., Frei, C., and Vidale, P. L.: Downscaling from GCM
precipitation: A benchmark for dynamical and statistical downscaling
methods, Int. J. Climatol., 26, 679–689, https://doi.org/10.1002/joc.1287,
2006. a
Schulzweida, U.: CDO User Guide (Version 1.9.6), Zenodo,
https://doi.org/10.5281/zenodo.2558193, 2019. a, b
Seguinot, J., Khroulev, C., Rogozhina, I., Stroeven, A. P., and Zhang, Q.: The effect of climate forcing on numerical simulations of the Cordilleran ice sheet at the Last Glacial Maximum, The Cryosphere, 8, 1087–1103, https://doi.org/10.5194/tc-8-1087-2014, 2014. a, b, c
Seguinot, J., Ivy-Ochs, S., Jouvet, G., Huss, M., Funk, M., and Preusser, F.: Modelling last glacial cycle ice dynamics in the Alps, The Cryosphere, 12, 3265–3285, https://doi.org/10.5194/tc-12-3265-2018, 2018. a
Sevruk, B.: Systematischer Niederschlagsmessfehler in der Schweiz, Der Niederschlag in der Schweiz. Beiträge zur Geologie der Schweiz – Hydrologie, 31, 65–75, 1985. a
Shepard, D. S.: Computer mapping: The SYMAP interpolation algorithm, in:
Spatial Statistics and Models, Theory and Decision Library, pp.
133–145, Springer, Dordrecht, https://doi.org/10.1007/978-94-017-3048-8_7, 1984. a
Skamarock, W. C. and Klemp, J. B.: A time-split nonhydrostatic atmospheric
model for weather research and forecasting applications, J.
Comput. Physics, 227, 3465–3485, https://doi.org/10.1016/j.jcp.2007.01.037,
2008. a, b
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., and Powers, J. G.: A description of the advanced research WRF version 2, available at: https://www2.mmm.ucar.edu/wrf/users/index.html (last access: 12 October 2020), National center for atmospheric research, Boulder, CO, USA, 2005. a
Solman, S. A., Nuñez, M. N., and Cabré, M. F.: Regional climate change
experiments over southern South America. I: Present climate, Clim. Dynam., 30, 533–552, https://doi.org/10.1007/s00382-007-0304-3, 2008. a
Stocker, T., Plattner, G.-K., Tignor, M., Allen, S., Boschung, J., Nauels, A.,
Xia, Y., Bex, V., and Midgley, P., eds.: Climate change 2013: The physical
science basis. Contribution of working group I to the fifth assessment
report of IPCC the Intergovernmental Panel on Climate Change,
Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,
https://doi.org/10.1017/CBO9781107415324, 2013. a, b
Su, F., Duan, X., Chen, D., Hao, Z., and Cuo, L.: Evaluation of the global
climate models in the CMIP5 over the Tibetan Plateau, J. Climate, 26, 3187–3208, https://doi.org/10.1175/JCLI-D-12-00321.1, 2012. a
Sun, F., Roderick, M. L., Lim, W. H., and Farquhar, G. D.: Hydroclimatic
projections for the Murray-Darling Basin based on an ensemble derived
from Intergovernmental Panel on Climate Change AR4 climate models,
Water Resour. Res., 47, W00G02, https://doi.org/10.1029/2010WR009829, 2011. a, b
Teutschbein, C. and Seibert, J.: Is bias correction of regional climate model (RCM) simulations possible for non-stationary conditions?, Hydrol. Earth Syst. Sci., 17, 5061–5077, https://doi.org/10.5194/hess-17-5061-2013, 2013. a, b, c
Themessl, M. J., Gobiet, A., and Leuprecht, A.: Empirical-statistical
downscaling and error correction of daily precipitation from regional climate
models, Int. J. Climatol., 31, 1530–1544,
https://doi.org/10.1002/joc.2168, 2011. a, b
Themessl, M. J., Gobiet, A., and Heinrich, G.: Empirical-statistical
downscaling and error correction of regional climate models and its impact on
the climate change signal, Climatic Change, 112, 449–468,
https://doi.org/10.1007/s10584-011-0224-4, 2012. a, b
UCAR/NCAR/CISL/TDD: The NCAR Command Language (Version 6.6.2)
[Software], https://doi.org/10.5065/D6WD3XH5, 2019. a, b
Ungersböck, M., Auer, I., Rubel, F., Schöner, W., and Skomorowski, P.:
Zur Korrektur des systematischen Fehlers bei der Niederschlagsmessung:
Anwendung des Verfahrens für die ÖKLIM Karten, 5, 2001. a
Velasquez, P., Messmer, M., and Raible, C. C.: Code and Dataset,
Zenodo, https://doi.org/10.5281/zenodo.4009101, 2019. a, b
Wang, Z., Wen, X., Lei, X., Tan, Q., Fang, G., and Zhang, X.: Effects of
different statistical distribution and threshold criteria in extreme
precipitation modelling over global land areas, Int. J. Climatol., 40, 1838–1850, https://doi.org/10.1002/joc.6305, 2020. a
Warrach-Sagi, K., Schwitalla, T., Wulfmeyer, V., and Bauer, H.-S.: Evaluation
of a climate simulation in Europe based on the WRF–NOAH
model system: Precipitation in Germany, Clim. Dynam., 41, 755–774,
https://doi.org/10.1007/s00382-013-1727-7, 2013.
a
Wilcke, R. A. I., Mendlik, T., and Gobiet, A.: Multi-variable error correction
of regional climate models, Climatic Change, 120, 871–887,
https://doi.org/10.1007/s10584-013-0845-x, 2013. a
Wilks, D. S.: Statistical methods in the atmospheric sciences, Academic Press, 2011. a
Wren, C. D. and Burke, A.: Habitat suitability and the genetic structure of
human populations during the Last Glacial Maximum (LGM) in Western
Europe, PLoS One, 14, e0217 996, https://doi.org/10.1371/journal.pone.0217996, 2019. a, b
Wu, H., Guiot, J., Brewer, S., and Guo, Z.: Climatic changes in Eurasia and
Africa at the last glacial maximum and mid-Holocene: reconstruction from
pollen data using inverse vegetation modelling, Clim. Dynam., 29,
211–229, https://doi.org/10.1007/s00382-007-0231-3, 2007. a
Xu, C.-y.: Modelling the effects of climate change on water resources in
central sweden, Water Resources Management, 14, 177–189,
https://doi.org/10.1023/A:1026502114663, 2000. a
Xu, C.-y., Widén, E., and Halldin, S.: Modelling hydrological consequences
of climate change – Progress and challenges, Advances in
Atmospheric Sciences, 22, 789–797, https://doi.org/10.1007/BF02918679, 2005. a
Yang, B., Qian, Y., Lin, G., Leung, L. R., Rasch, P. J., Zhang, G. J.,
McFarlane, S. A., Zhao, C., Zhang, Y., Wang, H., Wang, M., and Liu, X.:
Uncertainty quantification and parameter tuning in the CAM5
Zhang-McFarlane convection scheme and impact of improved convection on
the global circulation and climate, J. Geophys. Res.-Atmos., 118, 395–415, https://doi.org/10.1029/2012JD018213, 2013. a
Yang, W., Andréasson, J., Graham, L. P., Olsson, J., Rosberg, J., and
Wetterhall, F.: Distribution-based scaling to improve usability of regional
climate model projections for hydrological climate change impacts studies,
Hydrology Research, 41, 211–229, https://doi.org/10.2166/nh.2010.004, 2010. a
Yokoyama, Y., Lambeck, K., De Deckker, P., Johnston, P., and Fifield, L. K.:
Timing of the Last Glacial Maximum from observed sea-level minima,
Nature, 406, 713–716, https://doi.org/10.1038/35021035, 2000. a
Zhang, G. J. and McFarlane, N. A.: Sensitivity of climate simulations to the
parameterization of cumulus convection in the Canadian climate centre
general circulation model, Atmosphere-Ocean, 33, 407–446,
https://doi.org/10.1080/07055900.1995.9649539, 1995. a
Zhao, Y., Liu, Y., Guo, Z., Fang, K., Li, Q., and Cao, X.: Abrupt vegetation
shifts caused by gradual climate changes in central Asia during the
Holocene, Science China Earth Sciences, 60, 1317–1327,
https://doi.org/10.1007/s11430-017-9047-7, 2017. a
Short summary
This work presents a new bias-correction method for precipitation that considers orographic characteristics, which can be used in studies where the latter strongly changes. The three-step correction method consists of a separation into orographic features, correction of low-intensity precipitation, and application of empirical quantile mapping. Seasonal bias induced by the global climate model is fully corrected. Rigorous cross-validations illustrate the method's applicability and robustness.
This work presents a new bias-correction method for precipitation that considers orographic...