Articles | Volume 13, issue 10
https://doi.org/10.5194/gmd-13-5007-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-5007-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A new bias-correction method for precipitation over complex terrain suitable for different climate states: a case study using WRF (version 3.8.1)
Patricio Velasquez
CORRESPONDING AUTHOR
Climate and Environmental Physics Institute, University of Bern, Bern, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Martina Messmer
Climate and Environmental Physics Institute, University of Bern, Bern, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
School of Earth Sciences, University of Melbourne, Melbourne, Victoria, Australia
Christoph C. Raible
Climate and Environmental Physics Institute, University of Bern, Bern, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Related authors
Emmanuele Russo, Jonathan Buzan, Sebastian Lienert, Guillaume Jouvet, Patricio Velasquez Alvarez, Basil Davis, Patrick Ludwig, Fortunat Joos, and Christoph C. Raible
Clim. Past, 20, 449–465, https://doi.org/10.5194/cp-20-449-2024, https://doi.org/10.5194/cp-20-449-2024, 2024
Short summary
Short summary
We present a series of experiments conducted for the Last Glacial Maximum (~21 ka) over Europe using the regional climate Weather Research and Forecasting model (WRF) at convection-permitting resolutions. The model, with new developments better suited to paleo-studies, agrees well with pollen-based climate reconstructions. This agreement is improved when considering different sources of uncertainty. The effect of convection-permitting resolutions is also assessed.
Patricio Velasquez, Martina Messmer, and Christoph C. Raible
Clim. Past, 18, 1579–1600, https://doi.org/10.5194/cp-18-1579-2022, https://doi.org/10.5194/cp-18-1579-2022, 2022
Short summary
Short summary
We investigate the sensitivity of the glacial Alpine hydro-climate to northern hemispheric and local ice-sheet changes. We perform sensitivity simulations of up to 2 km horizontal resolution over the Alps for glacial periods. The findings demonstrate that northern hemispheric and local ice-sheet topography are important role in regulating the Alpine hydro-climate and permits a better understanding of the Alpine precipitation patterns at glacial times.
Patricio Velasquez, Jed O. Kaplan, Martina Messmer, Patrick Ludwig, and Christoph C. Raible
Clim. Past, 17, 1161–1180, https://doi.org/10.5194/cp-17-1161-2021, https://doi.org/10.5194/cp-17-1161-2021, 2021
Short summary
Short summary
This study assesses the importance of resolution and land–atmosphere feedbacks for European climate. We performed an asynchronously coupled experiment that combined a global climate model (~ 100 km), a regional climate model (18 km), and a dynamic vegetation model (18 km). Modelled climate and land cover agree reasonably well with independent reconstructions based on pollen and other paleoenvironmental proxies. The regional climate is significantly influenced by land cover.
Onno Doensen, Martina Messmer, Woon Mi Kim, and Christoph C. Raible
Clim. Past, 21, 1305–1322, https://doi.org/10.5194/cp-21-1305-2025, https://doi.org/10.5194/cp-21-1305-2025, 2025
Short summary
Short summary
Extratropical cyclones are crucial systems in the Mediterranean. While extensively studied, their late Holocene variability is poorly understood. Using a climate model spanning 3350-years, we find Mediterranean cyclones show significant multi-decadal variability. Extreme cyclones tend to be more extreme in the central Mediterranean in terms of wind speed. Our work creates a reference baseline to better understand the impact of climate change on Mediterranean cyclones.
Evelien J. C. van Dijk, Christoph C. Raible, Michael Sigl, Johann Jungclaus, and Heinz Wanner
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-79, https://doi.org/10.5194/cp-2024-79, 2024
Manuscript not accepted for further review
Short summary
Short summary
The temperature in the past 4000 years consisted of warm and cold periods, initiated by external forcing. But, these periods are not consistent through time and space. We use climate models and reconstructions to study to which extent the periods are reflected in the European climate. We find that on local scales, the chaotic nature of the climate system is larger than the external forcing. This study shows that these periods have to be used very carefully when studying a local site.
Emmanuele Russo, Jonathan Buzan, Sebastian Lienert, Guillaume Jouvet, Patricio Velasquez Alvarez, Basil Davis, Patrick Ludwig, Fortunat Joos, and Christoph C. Raible
Clim. Past, 20, 449–465, https://doi.org/10.5194/cp-20-449-2024, https://doi.org/10.5194/cp-20-449-2024, 2024
Short summary
Short summary
We present a series of experiments conducted for the Last Glacial Maximum (~21 ka) over Europe using the regional climate Weather Research and Forecasting model (WRF) at convection-permitting resolutions. The model, with new developments better suited to paleo-studies, agrees well with pollen-based climate reconstructions. This agreement is improved when considering different sources of uncertainty. The effect of convection-permitting resolutions is also assessed.
Woon Mi Kim, Santos J. González-Rojí, and Christoph C. Raible
Clim. Past, 19, 2511–2533, https://doi.org/10.5194/cp-19-2511-2023, https://doi.org/10.5194/cp-19-2511-2023, 2023
Short summary
Short summary
In this study, we investigate circulation patterns associated with Mediterranean droughts during the last millennium using global climate simulations. Different circulation patterns driven by internal interactions in the climate system contribute to the occurrence of droughts in the Mediterranean. The detected patterns are different between the models, and this difference can be a potential source of uncertainty in model–proxy comparison and future projections of Mediterranean droughts.
Eric Samakinwa, Christoph C. Raible, Ralf Hand, Andrew R. Friedman, and Stefan Brönnimann
Clim. Past Discuss., https://doi.org/10.5194/cp-2023-67, https://doi.org/10.5194/cp-2023-67, 2023
Publication in CP not foreseen
Short summary
Short summary
In this study, we nudged a stand-alone ocean model MPI-OM to proxy-reconstructed SST. Based on these model simulations, we introduce new estimates of the AMOC variations during the period 1450–1780 through a 10-member ensemble simulation with a novel nudging technique. Our approach reaffirms the known mechanisms of AMOC variability and also improves existing knowledge of the interplay between the AMOC and the NAO during the AMOC's weak and strong phases.
Jonathan Robert Buzan, Emmanuele Russo, Woon Mi Kim, and Christoph C. Raible
EGUsphere, https://doi.org/10.5194/egusphere-2023-324, https://doi.org/10.5194/egusphere-2023-324, 2023
Preprint archived
Short summary
Short summary
Paleoclimate is used to test climate models to verify that simulations accurately project both future and past climate states. We present fully coupled climate sensitivity simulations of Preindustrial, Last Glacial Maximum, and the Quaternary climate periods. We show distinct climate states derived from non-linear responses to ice sheet heights and orbits. The implication is that as paleo proxy data become more reliable, they may constrain the specific climate states produced by climate models.
Patricio Velasquez, Martina Messmer, and Christoph C. Raible
Clim. Past, 18, 1579–1600, https://doi.org/10.5194/cp-18-1579-2022, https://doi.org/10.5194/cp-18-1579-2022, 2022
Short summary
Short summary
We investigate the sensitivity of the glacial Alpine hydro-climate to northern hemispheric and local ice-sheet changes. We perform sensitivity simulations of up to 2 km horizontal resolution over the Alps for glacial periods. The findings demonstrate that northern hemispheric and local ice-sheet topography are important role in regulating the Alpine hydro-climate and permits a better understanding of the Alpine precipitation patterns at glacial times.
Helen Mackay, Gill Plunkett, Britta J. L. Jensen, Thomas J. Aubry, Christophe Corona, Woon Mi Kim, Matthew Toohey, Michael Sigl, Markus Stoffel, Kevin J. Anchukaitis, Christoph Raible, Matthew S. M. Bolton, Joseph G. Manning, Timothy P. Newfield, Nicola Di Cosmo, Francis Ludlow, Conor Kostick, Zhen Yang, Lisa Coyle McClung, Matthew Amesbury, Alistair Monteath, Paul D. M. Hughes, Pete G. Langdon, Dan Charman, Robert Booth, Kimberley L. Davies, Antony Blundell, and Graeme T. Swindles
Clim. Past, 18, 1475–1508, https://doi.org/10.5194/cp-18-1475-2022, https://doi.org/10.5194/cp-18-1475-2022, 2022
Short summary
Short summary
We assess the climatic and societal impact of the 852/3 CE Alaska Mount Churchill eruption using environmental reconstructions, historical records and climate simulations. The eruption is associated with significant Northern Hemisphere summer cooling, despite having only a moderate sulfate-based climate forcing potential; however, evidence of a widespread societal response is lacking. We discuss the difficulties of confirming volcanic impacts of a single eruption even when it is precisely dated.
Emmanuele Russo, Bijan Fallah, Patrick Ludwig, Melanie Karremann, and Christoph C. Raible
Clim. Past, 18, 895–909, https://doi.org/10.5194/cp-18-895-2022, https://doi.org/10.5194/cp-18-895-2022, 2022
Short summary
Short summary
In this study a set of simulations are performed with the regional climate model COSMO-CLM for Europe, for the mid-Holocene and pre-industrial periods. The main aim is to better understand the drivers of differences between models and pollen-based summer temperatures. Results show that a fundamental role is played by spring soil moisture availability. Additionally, results suggest that model bias is not stationary, and an optimal configuration could not be the best under different forcing.
Santos J. González-Rojí, Martina Messmer, Christoph C. Raible, and Thomas F. Stocker
Geosci. Model Dev., 15, 2859–2879, https://doi.org/10.5194/gmd-15-2859-2022, https://doi.org/10.5194/gmd-15-2859-2022, 2022
Short summary
Short summary
Different configurations of physics parameterizations of a regional climate model are tested over southern Peru at fine resolution. The most challenging regions compared to observational data are the slopes of the Andes. Model configurations for Europe and East Africa are not perfectly suitable for southern Peru. The experiment with the Stony Brook University microphysics scheme and the Grell–Freitas cumulus parameterization provides the most accurate results over Madre de Dios.
Woon Mi Kim, Richard Blender, Michael Sigl, Martina Messmer, and Christoph C. Raible
Clim. Past, 17, 2031–2053, https://doi.org/10.5194/cp-17-2031-2021, https://doi.org/10.5194/cp-17-2031-2021, 2021
Short summary
Short summary
To understand the natural characteristics and future changes of the global extreme daily precipitation, it is necessary to explore the long-term characteristics of extreme daily precipitation. Here, we used climate simulations to analyze the characteristics and long-term changes of extreme precipitation during the past 3351 years. Our findings indicate that extreme precipitation in the past is associated with internal climate variability and regional surface temperatures.
Patricio Velasquez, Jed O. Kaplan, Martina Messmer, Patrick Ludwig, and Christoph C. Raible
Clim. Past, 17, 1161–1180, https://doi.org/10.5194/cp-17-1161-2021, https://doi.org/10.5194/cp-17-1161-2021, 2021
Short summary
Short summary
This study assesses the importance of resolution and land–atmosphere feedbacks for European climate. We performed an asynchronously coupled experiment that combined a global climate model (~ 100 km), a regional climate model (18 km), and a dynamic vegetation model (18 km). Modelled climate and land cover agree reasonably well with independent reconstructions based on pollen and other paleoenvironmental proxies. The regional climate is significantly influenced by land cover.
Martina Messmer, Santos J. González-Rojí, Christoph C. Raible, and Thomas F. Stocker
Geosci. Model Dev., 14, 2691–2711, https://doi.org/10.5194/gmd-14-2691-2021, https://doi.org/10.5194/gmd-14-2691-2021, 2021
Short summary
Short summary
Sensitivity experiments with the WRF model are run to find an optimal parameterization setup for precipitation around Mount Kenya at a scale that resolves convection (1 km). Precipitation is compared against many weather stations and gridded observational data sets. Both the temporal correlation of precipitation sums and pattern correlations show that fewer nests lead to a more constrained simulation with higher correlation. The Grell–Freitas cumulus scheme obtains the most accurate results.
Woon Mi Kim and Christoph C. Raible
Clim. Past, 17, 887–911, https://doi.org/10.5194/cp-17-887-2021, https://doi.org/10.5194/cp-17-887-2021, 2021
Short summary
Short summary
The analysis of the dynamics of western central Mediterranean droughts for 850–2099 CE in the Community Earth System Model indicates that past Mediterranean droughts were driven by the internal variability. This internal variability is more important during the initial years of droughts. During the transition years, the longevity of droughts is defined by the land–atmosphere feedbacks. In the future, this land–atmosphere feedbacks are intensified, causing a constant dryness over the region.
Jakob Zscheischler, Philippe Naveau, Olivia Martius, Sebastian Engelke, and Christoph C. Raible
Earth Syst. Dynam., 12, 1–16, https://doi.org/10.5194/esd-12-1-2021, https://doi.org/10.5194/esd-12-1-2021, 2021
Short summary
Short summary
Compound extremes such as heavy precipitation and extreme winds can lead to large damage. To date it is unclear how well climate models represent such compound extremes. Here we present a new measure to assess differences in the dependence structure of bivariate extremes. This measure is applied to assess differences in the dependence of compound precipitation and wind extremes between three model simulations and one reanalysis dataset in a domain in central Europe.
Emmanuele Russo, Silje Lund Sørland, Ingo Kirchner, Martijn Schaap, Christoph C. Raible, and Ulrich Cubasch
Geosci. Model Dev., 13, 5779–5797, https://doi.org/10.5194/gmd-13-5779-2020, https://doi.org/10.5194/gmd-13-5779-2020, 2020
Short summary
Short summary
The parameter space of the COSMO-CLM RCM is investigated for the Central Asia CORDEX domain using a perturbed physics ensemble (PPE) with different parameter values. Results show that only a subset of model parameters presents relevant changes in model performance and these changes depend on the considered region and variable: objective calibration methods are highly necessary in this case. Additionally, the results suggest the need for calibrating an RCM when targeting different domains.
Cited articles
Allen, M. R. and Ingram, W. J.: Constraints on future changes in climate and
the hydrologic cycle, Nature, 419, 228–232, https://doi.org/10.1038/nature01092, 2002. a
Amengual, A., Homar, V., Romero, R., Alonso, S., and Ramis, C.: A statistical
adjustment of regional climate model outputs to local scales: Application
to Platja de Palma, Spain, J. Climate, 25, 939–957,
https://doi.org/10.1175/JCLI-D-10-05024.1, 2011. a
Andréasson, J., Bergström, S., Carlsson, B., Graham, L. P., and
Lindström, G.: Hydrological change – climate change impact
simulations for Sweden, Ambio, 33, 228–234,
https://doi.org/10.1579/0044-7447-33.4.228, 2004. a
Auer, I., Böhm, R., and Schöner, W.: Austrian long-term climate
1767–2000, Osterreichische Beiträge zu Meteorologie und
Geophysik, 25, 147, ISSN 1016-6254, 2001. a
Ban, N., Schmidli, J., and Schär, C.: Evaluation of the
convection-resolving regional climate modeling approach in decade-long
simulations, J. Geophys. Res.-Atmos., 119, 7889–7907,
https://doi.org/10.1002/2014JD021478, 2014. a, b, c, d
Bartlein, P. J., Harrison, S. P., Brewer, S., Connor, S., Davis, B. A. S.,
Gajewski, K., Guiot, J., Harrison-Prentice, T. I., Henderson, A., Peyron, O.,
Prentice, I. C., Scholze, M., Seppä, H., Shuman, B., Sugita, S.,
Thompson, R. S., Viau, A. E., Williams, J., and Wu, H.: Pollen-based
continental climate reconstructions at 6 and 21 ka: a global synthesis,
Clim. Dynam., 37, 775–802, https://doi.org/10.1007/s00382-010-0904-1, 2011. a
Becker, P., Seguinot, J., Jouvet, G., and Funk, M.: Last Glacial Maximum precipitation pattern in the Alps inferred from glacier modelling, Geogr. Helv., 71, 173–187, https://doi.org/10.5194/gh-71-173-2016, 2016. a
Bennett, J. C., Grose, M. R., Corney, S. P., White, C. J., Holz, G. K.,
Katzfey, J. J., Post, D. A., and Bindoff, N. L.: Performance of an empirical
bias-correction of a high-resolution climate dataset, Int. J. Climatol., 34, 2189–2204, https://doi.org/10.1002/joc.3830, 2014. a
Berg, P., Feldmann, H., and Panitz, H. J.: Bias correction of high resolution
regional climate model data, J. Hydrol., 448-449, 80–92,
https://doi.org/10.1016/j.jhydrol.2012.04.026, 2012. a, b
Berthou, S., Kendon, E. J., Chan, S. C., Ban, N., Leutwyler, D., Schär, C.,
and Fosser, G.: Pan-European climate at convection-permitting scale: a
model intercomparison study, Clim. Dynam., 55, 35–59,
https://doi.org/10.1007/s00382-018-4114-6, 2018. a
Boer, G. J.: Climate change and the regulation of the surface moisture and
energy budgets, Clim. Dynam., 8, 225–239, https://doi.org/10.1007/BF00198617,
1993. a
Burke, A., Kageyama, M., Latombe, G., Fasel, M., Vrac, M., Ramstein, G., and
James, P. M. A.: Risky business: The impact of climate and climate
variability on human population dynamics in Western Europe during the
Last Glacial Maximum, Quaternary Sci. Rev., 164, 217–229,
https://doi.org/10.1016/j.quascirev.2017.04.001, 2017. a, b
Cannon, A. J., Sobie, S. R., and Murdock, T. Q.: Bias correction of GCM
precipitation by quantile mapping: How well do methods preserve changes in
quantiles and extremes?, J. Climate, 28, 6938–6959,
https://doi.org/10.1175/JCLI-D-14-00754.1, 2015. a
Carril, A. F., Menéndez, C. G., Remedio, A. R. C., Robledo, F.,
Sörensson, A., Tencer, B., Boulanger, J.-P., de Castro, M., Jacob, D.,
Le Treut, H., Li, L. Z. X., Penalba, O., Pfeifer, S., Rusticucci, M., Salio,
P., Samuelsson, P., Sanchez, E., and Zaninelli, P.: Performance of a
multi-RCM ensemble for south eastern South America, Clim. Dynam.,
39, 2747–2768, https://doi.org/10.1007/s00382-012-1573-z, 2012. a
Casanueva, A., Kotlarski, S., Herrera, S., Fernández, J., Gutiérrez,
J. M., Boberg, F., Colette, A., Christensen, O. B., Goergen, K., Jacob, D.,
Keuler, K., Nikulin, G., Teichmann, C., and Vautard, R.: Daily precipitation
statistics in a EURO-CORDEX RCM ensemble: Added value of raw and
bias-corrected high-resolution simulations, Clim. Dynam., 47, 719–737,
https://doi.org/10.1007/s00382-015-2865-x, 2016. a, b, c
Chen, H., Xu, C.-Y., and Guo, S.: Comparison and evaluation of multiple GCMs,
statistical downscaling and hydrological models in the study of climate
change impacts on runoff, J. Hydrol., 434–435, 36–45,
https://doi.org/10.1016/j.jhydrol.2012.02.040, 2012. a
Chen, J., Brissette, F. P., Chaumont, D., and Braun, M.: Finding appropriate
bias correction methods in downscaling precipitation for hydrologic impact
studies over North America, Water Resour. Res., 49, 4187–4205,
https://doi.org/10.1002/wrcr.20331, 2013. a
Chen, W., Zhu, D., Ciais, P., Huang, C., Viovy, N., and Kageyama, M.: Response
of vegetation cover to CO2 and climate changes between Last Glacial
Maximum and pre-industrial period in a dynamic global vegetation model,
Quaternary Sci. Rev., 218, 293–305,
https://doi.org/10.1016/j.quascirev.2019.06.003, 2019. a
Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J., Wohlfarth,
B., Mitrovica, J. X., Hostetler, S. W., and McCabe, A. M.: The Last
Glacial Maximum, Science, 325, 710–714, https://doi.org/10.1126/science.1172873,
2009. a
Ehlers, J., Gibbard, P., and Hughes, P.: Quaternary glaciations-extent and
chronology: a closer look, 15, Elsevier, Amsterdam, the Netherlands, 2011. a
Fang, G. H., Yang, J., Chen, Y. N., and Zammit, C.: Comparing bias correction methods in downscaling meteorological variables for a hydrologic impact study in an arid area in China, Hydrol. Earth Syst. Sci., 19, 2547–2559, https://doi.org/10.5194/hess-19-2547-2015, 2015. a, b, c
Felder, G., Gómez-Navarro, J. J., Zischg, A. P., Raible, C. C.,
Röthlisberger, V., Bozhinova, D., Martius, O., and Weingartner, R.: From
global circulation to local flood loss: Coupling models across the scales,
Sci. Total Environ., 635, 1225–1239,
https://doi.org/10.1016/j.scitotenv.2018.04.170, 2018. a
Finney, D. L., Marsham, J. H., Jackson, L. S., Kendon, E. J., Rowell, D. P.,
Boorman, P. M., Keane, R. J., Stratton, R. A., and Senior, C. A.:
Implications of improved representation of convection for the East Africa
water budget using a convection-permitting model, J. Climate, 32,
2109–2129, https://doi.org/10.1175/JCLI-D-18-0387.1, 2019. a
Florineth, D. and Schlüchter, C.: Alpine Evidence for Atmospheric
Circulation Patterns in Europe during the Last Glacial Maximum,
Quaternary Res., 54, 295–308, https://doi.org/10.1006/qres.2000.2169, 2000. a
Fowler, H. J., Blenkinsop, S., and Tebaldi, C.: Linking climate change
modelling to impacts studies: Recent advances in downscaling techniques for
hydrological modelling, Int. J. Climatol., 27, 1547–1578,
https://doi.org/10.1002/joc.1556, 2007a. a
Fowler, H. J., Ekström, M., Blenkinsop, S., and Smith, A. P.: Estimating
change in extreme European precipitation using a multimodel ensemble,
J. Geophys. Res.-Atmos., 112, D18 104,
https://doi.org/10.1029/2007JD008619, 2007b. a, b, c
Frei, C., Christensen, J. H., Déqué, M., Jacob, D., Jones, R. G., and
Vidale, P. L.: Daily precipitation statistics in regional climate models:
Evaluation and intercomparison for the European Alps, J. Geophys. Res.-Atmos., 108, 4124, https://doi.org/10.1029/2002JD002287, 2003. a
Fu, Q.: An accurate parameterization of the solar radiative properties of
cirrus clouds for climate models, J. Climate, 9, 2058–2082,
https://doi.org/10.1175/1520-0442(1996)009<2058:AAPOTS>2.0.CO;2, 1996. a
Ganopolski, A. and Calov, R.: The role of orbital forcing, carbon dioxide and regolith in 100 kyr glacial cycles, Clim. Past, 7, 1415–1425, https://doi.org/10.5194/cp-7-1415-2011, 2011. a
Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C.,
Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J., Vertenstein, M.,
Worley, P. H., Yang, Z.-L., and Zhang, M.: The Community Climate System
Model Version 4, J. Climate, 24, 4973–4991,
https://doi.org/10.1175/2011JCLI4083.1, 2011. a, b
Gianotti, R. L., Zhang, D., and Eltahir, E. A. B.: Assessment of the regional
climate model version 3 over the maritime continent using different cumulus
parameterization and land surface schemes, J. Climate, 25, 638–656,
https://doi.org/10.1175/JCLI-D-11-00025.1, 2011. a
Giorgi, F., Torma, C., Coppola, E., Ban, N., Schär, C., and Somot, S.:
Enhanced summer convective rainfall at Alpine high elevations in response
to climate warming, Nat. Geosci., 9, 584–589, https://doi.org/10.1038/ngeo2761,
2016. a, b
Gómez-Navarro, J. J., Raible, C. C., Bozhinova, D., Martius, O., García Valero, J. A., and Montávez, J. P.: A new region-aware bias-correction method for simulated precipitation in areas of complex orography, Geosci. Model Dev., 11, 2231–2247, https://doi.org/10.5194/gmd-11-2231-2018, 2018. a, b, c, d, e, f, g
Güttler, I., Stepanov, I., Branković, Č., Nikulin, G., and Jones,
C.: Impact of horizontal resolution on precipitation in complex orography
simulated by the regional climate model RCA3, Mon. Weather Rev., 143,
3610–3627, https://doi.org/10.1175/MWR-D-14-00302.1, 2015. a
Haslinger, K., Anders, I., and Hofstätter, M.: Regional climate modelling
over complex terrain: An evaluation study of COSMO-CLM hindcast model
runs for the greater Alpine region, Clim. Dynam., 40, 511–529,
https://doi.org/10.1007/s00382-012-1452-7, 2013. a
Hay, L. E., Wilby, R. L., and Leavesley, G. H.: A Comparison of delta change
and downscaled GCM scenarios for three mountainous basins in the United
States, J. Am. Water Resour. As., 36, 387–397,
https://doi.org/10.1111/j.1752-1688.2000.tb04276.x, 2000. a
Hofer, D., Raible, C. C., Merz, N., Dehnert, A., and Kuhlemann, J.: Simulated
winter circulation types in the North Atlantic and European region for
preindustrial and glacial conditions: Glacial circulation types,
Geophys. Res. Lett., 39, L15805, https://doi.org/10.1029/2012GL052296,
2012b. a, b, c, d, e, f
Hui, P., Tang, J., Wang, S., Wu, J., Niu, X., and Kang, Y.: Impact of
resolution on regional climate modeling in the source region of Yellow
River with complex terrain using RegCM3, Theor. Appl.
Climatol., 125, 365–380, https://doi.org/10.1007/s00704-015-1514-y, 2016. a
Isotta, F. A., Frei, C., Weilguni, V., Perčec Tadić, M.,
Lassègues, P., Rudolf, B., Pavan, V., Cacciamani, C., Antolini, G.,
Ratto, S. M., Munari, M., Micheletti, S., Bonati, V., Lussana, C., Ronchi,
C., Panettieri, E., Marigo, G., and Vertačnik, G.: The climate of daily
precipitation in the Alps: Development and analysis of a high-resolution
grid dataset from pan-Alpine rain-gauge data, Int. J. Climatol., 34, 1657–1675, https://doi.org/10.1002/joc.3794, 2014. a, b, c, d, e, f, g, h, i, j, k, l
Ivanov, M. A., Luterbacher, J., and Kotlarski, S.: Climate model biases and
modification of the climate change signal by intensity-dependent bias
correction, J. Climate, 31, 6591–6610,
https://doi.org/10.1175/JCLI-D-17-0765.1, 2018. a
Jerez, S., Montavez, J. P., Jimenez-Guerrero, P., Gomez-Navarro, J. J.,
Lorente-Plazas, R., and Zorita, E.: A multi-physics ensemble of present-day
climate regional simulations over the Iberian Peninsula, Clim. Dynam., 40, 3023–3046, https://doi.org/10.1007/s00382-012-1539-1, 2013. a
Jouvet, G. and Huss, M.: Future retreat of Great Aletsch Glacier, J. Glaciol., 65, 869–872, https://doi.org/10.1017/jog.2019.52, 2019. a, b, c
Jouvet, G., Seguinot, J., Ivy-Ochs, S., and Funk, M.: Modelling the diversion
of erratic boulders by the Valais Glacier during the last glacial
maximum, J. Glaciol., 63, 487–498, https://doi.org/10.1017/jog.2017.7, 2017. a, b, c
Kageyama, M., Harrison, S. P., Kapsch, M.-L., Löfverström, M., Lora, J. M., Mikolajewicz, U., Sherriff-Tadano, S., Vadsaria, T., Abe-Ouchi, A., Bouttes, N., Chandan, D., LeGrande, A. N., Lhardy, F., Lohmann, G., Morozova, P. A., Ohgaito, R., Peltier, W. R., Quiquet, A., Roche, D. M., Shi, X., Schmittner, A., Tierney, J. E., and Volodin, E.: The PMIP4-CMIP6 Last Glacial Maximum experiments: preliminary results and comparison with the PMIP3-CMIP5 simulations, Clim. Past Discuss., https://doi.org/10.5194/cp-2019-169, in review, 2020. a
Kaplan, J. O., Pfeiffer, M., Kolen, J. C. A., and Davis, B. A. S.: Large scale
anthropogenic reduction of forest cover in Last Glacial Maximum
Europe, PLoS One, 11, e0166 726, https://doi.org/10.1371/journal.pone.0166726, 2016. a, b
Kendon, E. J., Ban, N., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan,
S. C., Evans, J. P., Fosser, G., and Wilkinson, J. M.: Do
convection-permitting regional climate models improve projections of future
precipitation change?, B. Am. Meteorol. Soc., 98,
79–93, https://doi.org/10.1175/BAMS-D-15-0004.1, 2017. a
Knist, S., Goergen, K., and Simmer, C.: Evaluation and projected changes of
precipitation statistics in convection-permitting WRF climate simulations
over Central Europe, Clim. Dynam., 55, 325–341, https://doi.org/10.1007/s00382-018-4147-x,
2018. a
Lambeck, K., Rouby, H., Purcell, A., Sun, Y., and Sambridge, M.: Sea level and
global ice volumes from the Last Glacial Maximum to the Holocene,
P. Natl. Acad. Sci. USA, 111, 15 296–15 303,
https://doi.org/10.1073/pnas.1411762111, 2014. a
Leung, L. R., Mearns, L. O., Giorgi, F., and Wilby, R. L.: Regional climate
research, B. Am. Meteorol. Soc., 84, 89–95,
https://doi.org/10.1175/BAMS-84-1-89, 2003. a
Liu, Z., Wang, Y., Gallimore, R., Notaro, M., and Prentice, I. C.: On the cause
of abrupt vegetation collapse in North Africa during the Holocene:
Climate variability vs. vegetation feedback, Geophys. Res. Lett.,
33, L22709, https://doi.org/10.1029/2006GL028062, 2006. a
Liu, Z., Ballantyne, A. P., Poulter, B., Anderegg, W. R. L., Li, W., Bastos,
A., and Ciais, P.: Precipitation thresholds regulate net carbon exchange at
the continental scale, Nat. Commun., 9, 3596,
https://doi.org/10.1038/s41467-018-05948-1, 2018. a
Ludwig, P., Schaffernicht, E. J., Shao, Y., and Pinto, J. G.: Regional
atmospheric circulation over Europe during the Last Glacial Maximum
and its links to precipitation, J. Geophys. Res.-Atmos.,
121, 2130–2145, https://doi.org/10.1002/2015JD024444, 2016. a
Ludwig, P., Pinto, J. G., Raible, C. C., and Shao, Y.: Impacts of surface
boundary conditions on regional climate model simulations of European
climate during the Last Glacial Maximum, Geophys. Res. Lett.,
44, 5086–5095, https://doi.org/10.1002/2017GL073622, 2017. a
Luetscher, M., Boch, R., Sodemann, H., Spötl, C., Cheng, H., Edwards,
R. L., Frisia, S., Hof, F., and Müller, W.: North Atlantic storm track
changes during the Last Glacial Maximum recorded by Alpine
speleothems, Nat. Commun., 6, 6344, https://doi.org/10.1038/ncomms7344, 2015. a
Maraun, D.: Bias correction, quantile mapping, and downscaling: Revisiting
the inflation issue, J. Climate, 26, 2137–2143,
https://doi.org/10.1175/JCLI-D-12-00821.1, 2013. a, b, c
Maraun, D.: Bias correcting climate change simulations - a critical review,
Curr. Clim. Change Rep., 2, 211–220, https://doi.org/10.1007/s40641-016-0050-x, 2016. a, b
Maraun, D. and Widmann, M.: The representation of location by a regional climate model in complex terrain, Hydrol. Earth Syst. Sci., 19, 3449–3456, https://doi.org/10.5194/hess-19-3449-2015, 2015. a
Maraun, D. and Widmann, M.: Cross-validation of bias-corrected climate simulations is misleading, Hydrol. Earth Syst. Sci., 22, 4867–4873, https://doi.org/10.5194/hess-22-4867-2018, 2018a. a, b
Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon, E. J.,
Widmann, M., Brienen, S., Rust, H. W., Sauter, T., Themeßl, M., Venema,
V. K. C., Chun, K. P., Goodess, C. M., Jones, R. G., Onof, C., Vrac, M., and
Thiele-Eich, I.: Precipitation downscaling under climate change: Recent
developments to bridge the gap between dynamical models and the end user,
Rev. Geophys., 48, RG3003, https://doi.org/10.1029/2009RG000314, 2010. a, b
Maraun, D., Shepherd, T. G., Widmann, M., Zappa, G., Walton, D., Gutiérrez,
J. M., Hagemann, S., Richter, I., Soares, P. M. M., Hall, A., and Mearns,
L. O.: Towards process-informed bias correction of climate change
simulations, Nat. Clim. Change, 7, 764–773, https://doi.org/10.1038/nclimate3418,
2017. a, b, c, d
Mayewski, P. A., Rohling, E. E., Stager, J. C., Karlén, W., Maasch, K. A.,
Meeker, L. D., Meyerson, E. A., Gasse, F., Kreveld, S. v., Holmgren, K.,
Lee-Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R. R., and
Steig, E. J.: Holocene climate variability, Quaternary Res., 62,
243–255, https://doi.org/10.1016/j.yqres.2004.07.001, 2004. a
Menéndez, C. G., de Castro, M., Boulanger, J.-P.,
D'Onofrio, A., Sanchez, E., Sörensson, A. A., Blazquez,
J., Elizalde, A., Jacob, D., Le Treut, H., Li, Z. X., Núñez, M. N.,
Pessacg, N., Pfeiffer, S., Rojas, M., Rolla, A., Samuelsson, P., Solman,
S. A., and Teichmann, C.: Downscaling extreme month-long anomalies in
southern South America, Climatic Change, 98, 379–403,
https://doi.org/10.1007/s10584-009-9739-3, 2010. a
Merz, N., Raible, C. C., Fischer, H., Varma, V., Prange, M., and Stocker, T. F.: Greenland accumulation and its connection to the large-scale atmospheric circulation in ERA-Interim and paleoclimate simulations, Clim. Past, 9, 2433–2450, https://doi.org/10.5194/cp-9-2433-2013, 2013. a
Merz, N., Born, A., Raible, C. C., Fischer, H., and Stocker, T. F.: Dependence of Eemian Greenland temperature reconstructions on the ice sheet topography, Clim. Past, 10, 1221–1238, https://doi.org/10.5194/cp-10-1221-2014, 2014a. a
Merz, N., Gfeller, G., Born, A., Raible, C. C., Stocker, T. F., and Fischer,
H.: Influence of ice sheet topography on Greenland precipitation during the
Eemian interglacial, J. Geophys. Res.-Atmos., 119,
10,749–10,768, https://doi.org/10.1002/2014JD021940, 2014b. a
Merz, N., Raible, C. C., and Woollings, T.: North Atlantic Eddy-Driven
jet in interglacial and glacial winter climates, J. Climate, 28,
3977–3997, https://doi.org/10.1175/JCLI-D-14-00525.1, 2015. a
Messmer, M., Gómez-Navarro, J. J., and Raible, C. C.: Sensitivity experiments on the response of Vb cyclones to sea surface temperature and soil moisture changes, Earth Syst. Dynam., 8, 477–493, https://doi.org/10.5194/esd-8-477-2017, 2017. a
MeteoSwiss: Documentation of MeteoSwiss gridded data product, daily
precipitation: RhiresD, available at:
http://www.meteoschweiz.admin.ch/content/dam/meteoswiss/de/service-und-publikationen/produkt/raeumliche-daten-niederschlag/doc/ProdDoc_RhiresD.pdf (last access: 12 October 2020),
2013. a, b, c, d
Mitchell, D., Davini, P., Harvey, B., Massey, N., Haustein, K., Woollings, T.,
Jones, R., Otto, F., Guillod, B., Sparrow, S., Wallom, D., and Allen, M.:
Assessing mid-latitude dynamics in extreme event attribution systems, Clim. Dynam., 48, 3889–3901, https://doi.org/10.1007/s00382-016-3308-z, 2017. a
Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van
Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A.,
Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer,
R. J., Thomson, A. M., Weyant, J. P., and Wilbanks, T. J.: The next
generation of scenarios for climate change research and assessment, Nature,
463, 747–756, https://doi.org/10.1038/nature08823, 2010. a
Murphy, J.: An evaluation of statistical and dynamical techniques for
downscaling local climate, J. Climate, 12, 2256–2284,
https://doi.org/10.1175/1520-0442(1999)012<2256:AEOSAD>2.0.CO;2, 1999. a, b, c
Neale, R. B., Richter, J. H., Conley, A. J., Park, S., Lauritzen, P. H.,
Gettelman, A., Rasch, P. J., and Vavrus, J.: Description of the NCAR
community atmosphere model (CAM4), National Center for Atmospheric Research
Tech. Rep. NCAR/TN+ STR, available at: http://www.cesm.ucar.edu/models/ccsm4.0/cam/docs/description/cam4_desc.pdf (last access: 12 October 2020), 2010. a
Nešpor, V. and Sevruk, B.: Estimation of wind-induced error of rainfall
gauge measurements using a numerical simulation, J. Atmos. Ocean. Tech., 16, 450–464,
https://doi.org/10.1175/1520-0426(1999)016<0450:EOWIEO>2.0.CO;2, 1999. a
Oleson, W., Lawrence, M., Bonan, B., Flanner, G., Kluzek, E., Lawrence, J.,
Levis, S., Swenson, C., Thornton, E., Dai, A., Decker, M., Dickinson, R.,
Feddema, J., Heald, L., Hoffman, F., Lamarque, J.-F., Mahowald, N., Niu,
G.-Y., Qian, T., Randerson, J., Running, S., Sakaguchi, K., Slater, A.,
Stockli, R., Wang, A., Yang, Z.-L., Zeng, X., and Zeng, X.: Technical
description of version 4.0 of the community land model (CLM), NCAR
Technical Note NCAR/TN-478+STR, National Center for Atmospheric
Research, National Center for Atmospheric Research, Boulder, CO, ISSN 2153-2397, available at: http://www.cesm.ucar.edu/models/cesm1.0/clm/CLM4_Tech_Note.pdf (last access: 12 October 2020), 2010. a
Otto-Bliesner, B. L., Brady, E. C., Clauzet, G., Tomas, R., Levis, S., and
Kothavala, Z.: Last Glacial Maximum and Holocene Climate in CCSM3,
J. Climate, 19, 2526–2544, https://doi.org/10.1175/JCLI3748.1, 2006. a
Peltier, W. R. and Fairbanks, R. G.: Global glacial ice volume and Last
Glacial Maximum duration from an extended Barbados sea level record,
Quaternary Sci. Rev., 25, 3322–3337,
https://doi.org/10.1016/j.quascirev.2006.04.010, 2006. a
Piani, C., Haerter, J. O., and Coppola, E.: Statistical bias correction for
daily precipitation in regional climate models over Europe, Theor.
Appl. Climatol., 99, 187–192, https://doi.org/10.1007/s00704-009-0134-9,
2010a. a
Piani, C., Weedon, G. P., Best, M., Gomes, S. M., Viterbo, P., Hagemann, S.,
and Haerter, J. O.: Statistical bias correction of global simulated daily
precipitation and temperature for the application of hydrological models,
J. Hydrol., 395, 199–215, https://doi.org/10.1016/j.jhydrol.2010.10.024,
2010b. a
Pinto, J. G. and Ludwig, P.: Extratropical cyclones over the North Atlantic and western Europe during the Last Glacial Maximum and implications for proxy interpretation, Clim. Past, 16, 611–626, https://doi.org/10.5194/cp-16-611-2020, 2020. a
Prein, A. F., Langhans, W., Fosser, G., Ferrone, A., Ban, N., Goergen, K.,
Keller, M., Tölle, M., Gutjahr, O., Feser, F., Brisson, E., Kollet, S.,
Schmidli, J., Lipzig, N. P. M. v., and Leung, R.: A review on regional
convection-permitting climate modeling: Demonstrations, prospects, and
challenges, Rev. Geophys., 53, 323–361, https://doi.org/10.1002/2014RG000475,
2015. a
Raible, C. C., Stocker, T. F., Yoshimori, M., Renold, M., Beyerle, U., Casty,
C., and Luterbacher, J.: Northern hemispheric trends of pressure indices and
atmospheric circulation patterns in observations, reconstructions, and
coupled GCM simulations, J. Climate, 18, 3968–3982,
https://doi.org/10.1175/JCLI3511.1, 2005. a
Raible, C. C., Lehner, F., González-Rouco, J. F., and Fernández-Donado, L.: Changing correlation structures of the Northern Hemisphere atmospheric circulation from 1000 to 2100 AD, Clim. Past, 10, 537–550, https://doi.org/10.5194/cp-10-537-2014, 2014. a
Raible, C. C., Brönnimann, S., Auchmann, R., Brohan, P., Frölicher,
T. L., Graf, H.-F., Jones, P., Luterbacher, J., Muthers, S., Neukom, R.,
Robock, A., Self, S., Sudrajat, A., Timmreck, C., and Wegmann, M.: Tambora
1815 as a test case for high impact volcanic eruptions: Earth system
effects, Wiley Interdiscip. Rev. Clim. Change, 7, 569–589,
https://doi.org/10.1002/wcc.407, 2016. a
Rajczak, J. and Schär, C.: Projections of future precipitation extremes
over Europe: A multimodel assessment of climate simulations, J. Geophys. Res.-Atmos., 122, 10 773–10 800,
https://doi.org/10.1002/2017JD027176, 2017. a
Rajczak, J., Kotlarski, S., and Schär, C.: Does quantile mapping of
simulated precipitation correct for biases in transition probabilities and
spell lengths?, J. Climate, 29, 1605–1615,
https://doi.org/10.1175/JCLI-D-15-0162.1, 2016. a, b
Richter, D.: Ergebnisse methodischer untersuchungen zur korrektur des
systematischen messfehlers des hellmann-niederschlagsmessers,
Deutscher Wetterdienst, Offenbach, 1995. a
Rougier, J., Sexton, D. M. H., Murphy, J. M., and Stainforth, D.: Analyzing the
climate sensitivity of the HadSM3 climate model using ensembles from
different but related experiments, J. Climate, 22, 3540–3557,
https://doi.org/10.1175/2008JCLI2533.1, 2009. a
RStudio Team: RStudio: Integrated Development Environment for R,
RStudio, Inc., Boston, MA, available at: http://www.rstudio.com/ (last access: 12 October 2020), 2015. a
Schmidli, J., Schmutz, C., Frei, C., Wanner, H., and Schär, C.: Mesoscale
precipitation variability in the region of the European Alps during the
20th century, Int. J. Climatol., 22, 1049–1074,
https://doi.org/10.1002/joc.769, 2002. a
Schmidli, J., Frei, C., and Vidale, P. L.: Downscaling from GCM
precipitation: A benchmark for dynamical and statistical downscaling
methods, Int. J. Climatol., 26, 679–689, https://doi.org/10.1002/joc.1287,
2006. a
Schulzweida, U.: CDO User Guide (Version 1.9.6), Zenodo,
https://doi.org/10.5281/zenodo.2558193, 2019. a, b
Seguinot, J., Khroulev, C., Rogozhina, I., Stroeven, A. P., and Zhang, Q.: The effect of climate forcing on numerical simulations of the Cordilleran ice sheet at the Last Glacial Maximum, The Cryosphere, 8, 1087–1103, https://doi.org/10.5194/tc-8-1087-2014, 2014. a, b, c
Seguinot, J., Ivy-Ochs, S., Jouvet, G., Huss, M., Funk, M., and Preusser, F.: Modelling last glacial cycle ice dynamics in the Alps, The Cryosphere, 12, 3265–3285, https://doi.org/10.5194/tc-12-3265-2018, 2018. a
Sevruk, B.: Systematischer Niederschlagsmessfehler in der Schweiz, Der Niederschlag in der Schweiz. Beiträge zur Geologie der Schweiz – Hydrologie, 31, 65–75, 1985. a
Shepard, D. S.: Computer mapping: The SYMAP interpolation algorithm, in:
Spatial Statistics and Models, Theory and Decision Library, pp.
133–145, Springer, Dordrecht, https://doi.org/10.1007/978-94-017-3048-8_7, 1984. a
Skamarock, W. C. and Klemp, J. B.: A time-split nonhydrostatic atmospheric
model for weather research and forecasting applications, J.
Comput. Physics, 227, 3465–3485, https://doi.org/10.1016/j.jcp.2007.01.037,
2008. a, b
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., and Powers, J. G.: A description of the advanced research WRF version 2, available at: https://www2.mmm.ucar.edu/wrf/users/index.html (last access: 12 October 2020), National center for atmospheric research, Boulder, CO, USA, 2005. a
Solman, S. A., Nuñez, M. N., and Cabré, M. F.: Regional climate change
experiments over southern South America. I: Present climate, Clim. Dynam., 30, 533–552, https://doi.org/10.1007/s00382-007-0304-3, 2008. a
Stocker, T., Plattner, G.-K., Tignor, M., Allen, S., Boschung, J., Nauels, A.,
Xia, Y., Bex, V., and Midgley, P., eds.: Climate change 2013: The physical
science basis. Contribution of working group I to the fifth assessment
report of IPCC the Intergovernmental Panel on Climate Change,
Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,
https://doi.org/10.1017/CBO9781107415324, 2013. a, b
Su, F., Duan, X., Chen, D., Hao, Z., and Cuo, L.: Evaluation of the global
climate models in the CMIP5 over the Tibetan Plateau, J. Climate, 26, 3187–3208, https://doi.org/10.1175/JCLI-D-12-00321.1, 2012. a
Sun, F., Roderick, M. L., Lim, W. H., and Farquhar, G. D.: Hydroclimatic
projections for the Murray-Darling Basin based on an ensemble derived
from Intergovernmental Panel on Climate Change AR4 climate models,
Water Resour. Res., 47, W00G02, https://doi.org/10.1029/2010WR009829, 2011. a, b
Teutschbein, C. and Seibert, J.: Is bias correction of regional climate model (RCM) simulations possible for non-stationary conditions?, Hydrol. Earth Syst. Sci., 17, 5061–5077, https://doi.org/10.5194/hess-17-5061-2013, 2013. a, b, c
Themessl, M. J., Gobiet, A., and Leuprecht, A.: Empirical-statistical
downscaling and error correction of daily precipitation from regional climate
models, Int. J. Climatol., 31, 1530–1544,
https://doi.org/10.1002/joc.2168, 2011. a, b
Themessl, M. J., Gobiet, A., and Heinrich, G.: Empirical-statistical
downscaling and error correction of regional climate models and its impact on
the climate change signal, Climatic Change, 112, 449–468,
https://doi.org/10.1007/s10584-011-0224-4, 2012. a, b
UCAR/NCAR/CISL/TDD: The NCAR Command Language (Version 6.6.2)
[Software], https://doi.org/10.5065/D6WD3XH5, 2019. a, b
Ungersböck, M., Auer, I., Rubel, F., Schöner, W., and Skomorowski, P.:
Zur Korrektur des systematischen Fehlers bei der Niederschlagsmessung:
Anwendung des Verfahrens für die ÖKLIM Karten, 5, 2001. a
Velasquez, P., Messmer, M., and Raible, C. C.: Code and Dataset,
Zenodo, https://doi.org/10.5281/zenodo.4009101, 2019. a, b
Wang, Z., Wen, X., Lei, X., Tan, Q., Fang, G., and Zhang, X.: Effects of
different statistical distribution and threshold criteria in extreme
precipitation modelling over global land areas, Int. J. Climatol., 40, 1838–1850, https://doi.org/10.1002/joc.6305, 2020. a
Warrach-Sagi, K., Schwitalla, T., Wulfmeyer, V., and Bauer, H.-S.: Evaluation
of a climate simulation in Europe based on the WRF–NOAH
model system: Precipitation in Germany, Clim. Dynam., 41, 755–774,
https://doi.org/10.1007/s00382-013-1727-7, 2013.
a
Wilcke, R. A. I., Mendlik, T., and Gobiet, A.: Multi-variable error correction
of regional climate models, Climatic Change, 120, 871–887,
https://doi.org/10.1007/s10584-013-0845-x, 2013. a
Wilks, D. S.: Statistical methods in the atmospheric sciences, Academic Press, 2011. a
Wren, C. D. and Burke, A.: Habitat suitability and the genetic structure of
human populations during the Last Glacial Maximum (LGM) in Western
Europe, PLoS One, 14, e0217 996, https://doi.org/10.1371/journal.pone.0217996, 2019. a, b
Wu, H., Guiot, J., Brewer, S., and Guo, Z.: Climatic changes in Eurasia and
Africa at the last glacial maximum and mid-Holocene: reconstruction from
pollen data using inverse vegetation modelling, Clim. Dynam., 29,
211–229, https://doi.org/10.1007/s00382-007-0231-3, 2007. a
Xu, C.-y.: Modelling the effects of climate change on water resources in
central sweden, Water Resources Management, 14, 177–189,
https://doi.org/10.1023/A:1026502114663, 2000. a
Xu, C.-y., Widén, E., and Halldin, S.: Modelling hydrological consequences
of climate change – Progress and challenges, Advances in
Atmospheric Sciences, 22, 789–797, https://doi.org/10.1007/BF02918679, 2005. a
Yang, B., Qian, Y., Lin, G., Leung, L. R., Rasch, P. J., Zhang, G. J.,
McFarlane, S. A., Zhao, C., Zhang, Y., Wang, H., Wang, M., and Liu, X.:
Uncertainty quantification and parameter tuning in the CAM5
Zhang-McFarlane convection scheme and impact of improved convection on
the global circulation and climate, J. Geophys. Res.-Atmos., 118, 395–415, https://doi.org/10.1029/2012JD018213, 2013. a
Yang, W., Andréasson, J., Graham, L. P., Olsson, J., Rosberg, J., and
Wetterhall, F.: Distribution-based scaling to improve usability of regional
climate model projections for hydrological climate change impacts studies,
Hydrology Research, 41, 211–229, https://doi.org/10.2166/nh.2010.004, 2010. a
Yokoyama, Y., Lambeck, K., De Deckker, P., Johnston, P., and Fifield, L. K.:
Timing of the Last Glacial Maximum from observed sea-level minima,
Nature, 406, 713–716, https://doi.org/10.1038/35021035, 2000. a
Zhang, G. J. and McFarlane, N. A.: Sensitivity of climate simulations to the
parameterization of cumulus convection in the Canadian climate centre
general circulation model, Atmosphere-Ocean, 33, 407–446,
https://doi.org/10.1080/07055900.1995.9649539, 1995. a
Zhao, Y., Liu, Y., Guo, Z., Fang, K., Li, Q., and Cao, X.: Abrupt vegetation
shifts caused by gradual climate changes in central Asia during the
Holocene, Science China Earth Sciences, 60, 1317–1327,
https://doi.org/10.1007/s11430-017-9047-7, 2017. a
Short summary
This work presents a new bias-correction method for precipitation that considers orographic characteristics, which can be used in studies where the latter strongly changes. The three-step correction method consists of a separation into orographic features, correction of low-intensity precipitation, and application of empirical quantile mapping. Seasonal bias induced by the global climate model is fully corrected. Rigorous cross-validations illustrate the method's applicability and robustness.
This work presents a new bias-correction method for precipitation that considers orographic...