the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Efficient ensemble data assimilation for coupled models with the Parallel Data Assimilation Framework: example of AWI-CM (AWI-CM-PDAF 1.0)
Longjiang Mu
Related authors
The East Siberian Sea has nearly 80 % of the subsea permafrost worldwide. The cold layer with a temperature around −1.5 ºC above the seafloor prevents heat transporting from above to melt permafrost and release methane from sediments. However, we observed a warming trend at the seafloor caused by wave-induced vertical mixing in the shelf. The intensified mixing can transport enormous heat downward, leading to warming of more than 3 °C at the bottom, putting the subsea permafrost at high risk.
Related subject area
Inaccuracies in air–sea heat fluxes severely degrade the accuracy of ocean numerical simulations. Here, we use artificial neural networks to correct air–sea heat fluxes as a function of oceanic and atmospheric state predictors. The correction successfully improves surface and subsurface ocean temperatures beyond the training period and in prediction experiments.
FINAM is not a model), a new coupling framework written in Python to dynamically connect independently developed models. Python, as the ultimate glue language, enables the use of codes from nearly any programming language like Fortran, C++, Rust, and others. FINAM is designed to simplify the integration of various models with minimal effort, as demonstrated through various examples ranging from simple to complex systems.
This study introduces a new 3D lake–ice–atmosphere coupled model that significantly improves winter climate simulations for the Great Lakes compared to traditional 1D lake model coupling. The key contribution is the identification of critical hydrodynamic processes – ice transport, heat advection, and shear-driven turbulence production – that influence lake thermal structure and ice cover and explain the superior performance of 3D lake models to their 1D counterparts.