Development and technical paper 16 Sep 2020
Development and technical paper | 16 Sep 2020
Efficient ensemble data assimilation for coupled models with the Parallel Data Assimilation Framework: example of AWI-CM (AWI-CM-PDAF 1.0)
Lars Nerger et al.
Related authors
Qinghua Yang, Martin Losch, Svetlana N. Losa, Thomas Jung, Lars Nerger, and Thomas Lavergne
The Cryosphere, 10, 761–774, https://doi.org/10.5194/tc-10-761-2016, https://doi.org/10.5194/tc-10-761-2016, 2016
Short summary
Short summary
We assimilate the summer SICCI sea ice concentration data with an ensemble-based Kalman Filter. Comparing with the approach using a constant data uncertainty, the sea ice concentration estimates are further improved when the SICCI-provided uncertainty are taken into account, but the sea ice thickness cannot be improved. We find the data assimilation system cannot give a reasonable ensemble spread of sea ice concentration and thickness if the provided uncertainty are directly used.
Qiang Wang, Sergey Danilov, Longjiang Mu, Dmitry Sidorenko, and Claudia Wekerle
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-50, https://doi.org/10.5194/tc-2021-50, 2021
Preprint under review for TC
Short summary
Short summary
Using simulations we found that changes in ocean freshwater content induced by wind perturbations can significantly affect the Arctic sea ice drift, thickness, concentration and deformation rates even years after the wind perturbations. The impact is through changes in sea surface height and surface geostrophic currents and the most pronounced in warm seasons. Such lasting impact might become stronger in a warming climate, and implies the importance of ocean initialization in sea ice prediction.
Xuewei Li, Qinghua Yang, Lejiang Yu, Paul R. Holland, Chao Min, Longjiang Mu, and Dake Chen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-359, https://doi.org/10.5194/tc-2020-359, 2021
Preprint under review for TC
Short summary
Short summary
The Arctic sea ice thickness record minimum is confirmed occurring in autumn 2011. The dynamic and thermodynamic processes leading to the minimum thickness is analyzed based on a daily sea ice thickness reanalysis data covering the melting season. The results demonstrate that the dynamic transport of multiyear ice and the subsequent surface energy budget response is a critical mechanism actively contributing to the evolution of Arctic sea ice thickness in 2011.
Chao Min, Qinghua Yang, Longjiang Mu, Frank Kauker, and Robert Ricker
The Cryosphere, 15, 169–181, https://doi.org/10.5194/tc-15-169-2021, https://doi.org/10.5194/tc-15-169-2021, 2021
Short summary
Short summary
An ensemble of four estimates of the sea-ice volume (SIV) variations in Baffin Bay from 2011 to 2016 is generated from the locally merged satellite observations, three modeled sea ice thickness sources (CMST, NAOSIM, and PIOMAS) and NSIDC ice drift data (V4). Results show that the net increase of the ensemble mean SIV occurs from October to April with the largest SIV increase in December, and the reduction occurs from May to September with the largest SIV decline in July.
Qian Shi, Qinghua Yang, Longjiang Mu, Jinfei Wang, François Massonnet, and Matthew R. Mazloff
The Cryosphere, 15, 31–47, https://doi.org/10.5194/tc-15-31-2021, https://doi.org/10.5194/tc-15-31-2021, 2021
Short summary
Short summary
The ice thickness from four state-of-the-art reanalyses (GECCO2, SOSE, NEMO-EnKF and GIOMAS) are evaluated against that from remote sensing and in situ observations in the Weddell Sea, Antarctica. Most of the reanalyses can reproduce ice thickness in the central and eastern Weddell Sea but failed to capture the thick and deformed ice in the western Weddell Sea. These results demonstrate the possibilities and limitations of using current sea-ice reanalysis in Antarctic climate research.
Chao Min, Longjiang Mu, Qinghua Yang, Robert Ricker, Qian Shi, Bo Han, Renhao Wu, and Jiping Liu
The Cryosphere, 13, 3209–3224, https://doi.org/10.5194/tc-13-3209-2019, https://doi.org/10.5194/tc-13-3209-2019, 2019
Short summary
Short summary
Sea ice volume export through the Fram Strait has been studied using varied methods, however, mostly in winter months. Here we report sea ice volume estimates that extend over summer seasons. A recent developed sea ice thickness dataset, in which CryoSat-2 and SMOS sea ice thickness together with SSMI/SSMIS sea ice concentration are assimilated, is used and evaluated in the paper. Results show our estimate is more reasonable than that calculated by satellite data only.
Qinghua Yang, Martin Losch, Svetlana N. Losa, Thomas Jung, Lars Nerger, and Thomas Lavergne
The Cryosphere, 10, 761–774, https://doi.org/10.5194/tc-10-761-2016, https://doi.org/10.5194/tc-10-761-2016, 2016
Short summary
Short summary
We assimilate the summer SICCI sea ice concentration data with an ensemble-based Kalman Filter. Comparing with the approach using a constant data uncertainty, the sea ice concentration estimates are further improved when the SICCI-provided uncertainty are taken into account, but the sea ice thickness cannot be improved. We find the data assimilation system cannot give a reasonable ensemble spread of sea ice concentration and thickness if the provided uncertainty are directly used.
Related subject area
Climate and Earth system modeling
A process-based evaluation of the Intermediate Complexity Atmospheric Research Model (ICAR) 1.0.1
Effects of coupling a stochastic convective parameterization with the Zhang–McFarlane scheme on precipitation simulation in the DOE E3SMv1.0 atmosphere model
Sensitivity of surface solar radiation to aerosol–radiation and aerosol–cloud interactions over Europe in WRFv3.6.1 climatic runs with fully interactive aerosols
Evaluation of regional climate models ALARO-0 and REMO2015 at 0.22° resolution over the CORDEX Central Asia domain
Using the anomaly forcing Community Land Model (CLM 4.5) for crop yield projections
PMIP4 experiments using MIROC-ES2L Earth system model
Simulating the mid-Holocene, last interglacial and mid-Pliocene climate with EC-Earth3-LR
Understanding the development of systematic errors in the Asian summer monsoon
ICON in Climate Limited-area Mode (ICON release version 2.6.1): a new regional climate model
Evaluation of polar stratospheric clouds in the global chemistry–climate model SOCOLv3.1 by comparison with CALIPSO spaceborne lidar measurements
Lossy compression of Earth system model data based on a hierarchical tensor with Adaptive-HGFDR (v1.0)
Methane chemistry in a nutshell – the new submodels CH4 (v1.0) and TRSYNC (v1.0) in MESSy (v2.54.0)
Coordinating an operational data distribution network for CMIP6 data
Implementation of sequential cropping into JULESvn5.2 land-surface model
Development of four-dimensional variational assimilation system based on the GRAPES–CUACE adjoint model (GRAPES–CUACE-4D-Var V1.0) and its application in emission inversion
HIRM v1.0: a hybrid impulse response model for climate modeling and uncertainty analyses
CLIMADA v1.4.1: towards a globally consistent adaptation options appraisal tool
FORTE 2.0: a fast, parallel and flexible coupled climate model
Optimization of the sulfate aerosol hygroscopicity parameter in WRF-Chem
Updated European hydraulic pedotransfer functions with communicated uncertainties in the predicted variables (euptfv2)
Spin-up characteristics with three types of initial fields and the restart effects on forecast accuracy in the GRAPES global forecast system
GTS v1.0: a macrophysics scheme for climate models based on a probability density function
Calibration of temperature-dependent ocean microbial processes in the cGENIE.muffin (v0.9.13) Earth system model
Description and evaluation of aerosol in UKESM1 and HadGEM3-GC3.1 CMIP6 historical simulations
SimCloud version 1.0: a simple diagnostic cloud scheme for idealized climate models
DiRong1.0: a distributed implementation for improving routing network generation in model coupling
Unstructured global to coastal wave modeling for the Energy Exascale Earth System Model using WAVEWATCHIII version 6.07
Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations
Geospatial input data for the PALM model system 6.0: model requirements, data sources and processing
Exploring the parameter space of the COSMO-CLM v5.0 regional climate model for the Central Asia CORDEX domain
The benefits of increasing resolution in global and regional climate simulations for European climate extremes
Ensemble prediction using a new dataset of ECMWF initial states – OpenEnsemble 1.0
Sensitivity of precipitation and temperature over Mount Kenya area to physics parameterization options in a high-resolution model simulation performed with WRFV3.8.1
European daily precipitation according to EURO-CORDEX regional climate models (RCMs) and high-resolution global climate models (GCMs) from the High-Resolution Model Intercomparison Project (HighResMIP)
Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6
A computationally efficient method for probabilistic local warming projections constrained by history matching and pattern scaling, demonstrated by WASP–LGRTC-1.0
R2D2 v2.0: accounting for temporal dependences in multivariate bias correction via analogue rank resampling
Extending the Modular Earth Submodel System (MESSy v2.54) model hierarchy: the ECHAM/MESSy IdeaLized (EMIL) model setup
Boreal summer intraseasonal oscillation in a superparameterized general circulation model: effects of air–sea coupling and ocean mean state
Reduced Complexity Model Intercomparison Project Phase 1: introduction and evaluation of global-mean temperature response
Modeling land surface processes over a mountainous rainforest in Costa Rica using CLM4.5 and CLM5
A new bias-correction method for precipitation over complex terrain suitable for different climate states: a case study using WRF (version 3.8.1)
Quantifying and attributing time step sensitivities in present-day climate simulations conducted with EAMv1
ISSM-SLPS: geodetically compliant Sea-Level Projection System for the Ice-sheet and Sea-level System Model v4.17
Newly developed aircraft routing options for air traffic simulation in the chemistry–climate model EMAC 2.53: AirTraf 2.0
Quantifying CanESM5 and EAMv1 sensitivities to Mt. Pinatubo volcanic forcing for the CMIP6 historical experiment
TransEBM v. 1.0: Description, tuning, and validation of a transient model of the Earth’s energy balance in two dimensions
Optimizing high-resolution Community Earth System Model on a heterogeneous many-core supercomputing platform
MIROC-INTEG-LAND version 1: a global biogeochemical land surface model with human water management, crop growth, and land-use change
Optimality-based non-Redfield plankton–ecosystem model (OPEM v1.1) in UVic-ESCM 2.9 – Part 2: Sensitivity analysis and model calibration
Johannes Horak, Marlis Hofer, Ethan Gutmann, Alexander Gohm, and Mathias W. Rotach
Geosci. Model Dev., 14, 1657–1680, https://doi.org/10.5194/gmd-14-1657-2021, https://doi.org/10.5194/gmd-14-1657-2021, 2021
Short summary
Short summary
This process-based evaluation of the atmospheric model ICAR is conducted to derive recommendations to increase the likelihood of its results being correct for the right reasons. We conclude that a different diagnosis of the atmospheric background state is necessary, as well as a model top at an elevation of at least 10 km. Alternative boundary conditions at the top were not found to be effective in reducing this model top elevation. The results have wide implications for future ICAR studies.
Yong Wang, Guang J. Zhang, Shaocheng Xie, Wuyin Lin, George C. Craig, Qi Tang, and Hsi-Yen Ma
Geosci. Model Dev., 14, 1575–1593, https://doi.org/10.5194/gmd-14-1575-2021, https://doi.org/10.5194/gmd-14-1575-2021, 2021
Short summary
Short summary
A stochastic deep convection parameterization is implemented into the US Department of Energy Energy Exascale Earth System Model Atmosphere Model version 1 (EAMv1). Compared to the default model, the well-known problem of
too much light rain and too little heavy rainis largely alleviated over the tropics with the stochastic scheme. Results from this study provide important insights into the model performance of EAMv1 when stochasticity is included in the deep convective parameterization.
Sonia Jerez, Laura Palacios-Peña, Claudia Gutiérrez, Pedro Jiménez-Guerrero, Jose María López-Romero, Enrique Pravia-Sarabia, and Juan Pedro Montávez
Geosci. Model Dev., 14, 1533–1551, https://doi.org/10.5194/gmd-14-1533-2021, https://doi.org/10.5194/gmd-14-1533-2021, 2021
Short summary
Short summary
This research explores the role of aerosols when modeling surface solar radiation at regional scales (over Europe). A set of model experiments was performed with and without dynamical modeling of atmospheric aerosols and their direct and indirect effects on radiation. Results showed significant differences in the simulated solar radiation, mainly driven by the aerosol impact on cloudiness, which calls for caution when interpreting model experiments that do not include aerosols.
Sara Top, Lola Kotova, Lesley De Cruz, Svetlana Aniskevich, Leonid Bobylev, Rozemien De Troch, Natalia Gnatiuk, Anne Gobin, Rafiq Hamdi, Arne Kriegsmann, Armelle Reca Remedio, Abdulla Sakalli, Hans Van De Vyver, Bert Van Schaeybroeck, Viesturs Zandersons, Philippe De Maeyer, Piet Termonia, and Steven Caluwaerts
Geosci. Model Dev., 14, 1267–1293, https://doi.org/10.5194/gmd-14-1267-2021, https://doi.org/10.5194/gmd-14-1267-2021, 2021
Short summary
Short summary
Detailed climate data are needed to assess the impact of climate change on human and natural systems. The performance of two high-resolution regional climate models, ALARO-0 and REMO2015, was investigated over central Asia, a vulnerable region where detailed climate information is scarce. In certain subregions the produced climate data are suitable for impact studies, but bias adjustment is required for subregions where significant biases have been identified.
Yaqiong Lu and Xianyu Yang
Geosci. Model Dev., 14, 1253–1265, https://doi.org/10.5194/gmd-14-1253-2021, https://doi.org/10.5194/gmd-14-1253-2021, 2021
Short summary
Short summary
Crop growth in land surface models normally requires high-temporal-resolution climate data, but such high-temporal-resolution climate data are not provided by many climate model simulations due to expensive storage, which limits modeling choices if there is an interest in a particular climate simulation that only saved monthly outputs. Our work provides an alternative way to use the monthly climate for crop yield projections. Such an approach could be easily adopted by other crop models.
Rumi Ohgaito, Akitomo Yamamoto, Tomohiro Hajima, Ryouta O'ishi, Manabu Abe, Hiroaki Tatebe, Ayako Abe-Ouchi, and Michio Kawamiya
Geosci. Model Dev., 14, 1195–1217, https://doi.org/10.5194/gmd-14-1195-2021, https://doi.org/10.5194/gmd-14-1195-2021, 2021
Short summary
Short summary
Using the MIROC-ES2L Earth system model, selected time periods of the past were simulated. The ability to simulate the past is also an evaluation of the performance of the model in projecting global warming. Simulations for 21 000, 6000, and 127 000 years ago, and a simulation for 1000 years starting in 850 CE were simulated. The results showed that the model can generally describe past climate change.
Qiong Zhang, Ellen Berntell, Josefine Axelsson, Jie Chen, Zixuan Han, Wesley de Nooijer, Zhengyao Lu, Qiang Li, Qiang Zhang, Klaus Wyser, and Shuting Yang
Geosci. Model Dev., 14, 1147–1169, https://doi.org/10.5194/gmd-14-1147-2021, https://doi.org/10.5194/gmd-14-1147-2021, 2021
Short summary
Short summary
Paleoclimate modelling has long been regarded as a strong out-of-sample test bed of the climate models that are used for the projection of future climate changes. Here, we document the model experimental setups for the three past warm periods with EC-Earth3-LR and present the results on the large-scale features. The simulations demonstrate good performance of the model in capturing the climate response under different climate forcings.
Gill M. Martin, Richard C. Levine, José M. Rodriguez, and Michael Vellinga
Geosci. Model Dev., 14, 1007–1035, https://doi.org/10.5194/gmd-14-1007-2021, https://doi.org/10.5194/gmd-14-1007-2021, 2021
Short summary
Short summary
Our study highlights a number of different techniques that can be employed to investigate the sources of model error. We demonstrate how this methodology can be used to identify the regions and model components responsible for the development of long-standing errors in the Asian summer monsoon. Once these are known, further work can be done to explore the local processes contributing to this behaviour and their sensitivity to changes in physical parameterisations and/or model resolution.
Trang Van Pham, Christian Steger, Burkhardt Rockel, Klaus Keuler, Ingo Kirchner, Mariano Mertens, Daniel Rieger, Günther Zängl, and Barbara Früh
Geosci. Model Dev., 14, 985–1005, https://doi.org/10.5194/gmd-14-985-2021, https://doi.org/10.5194/gmd-14-985-2021, 2021
Short summary
Short summary
A new regional climate model was prepared based on a weather forecast model. Slow processes of the climate system such as ocean state development and greenhouse gas emissions were implemented. A model infrastructure and evaluation tools were also prepared to facilitate long-term simulations and model evalution. The first ICON-CLM results were close to observations and comparable to those from COSMO-CLM, the recommended model being used at the Deutscher Wetterdienst and CLM Community.
Michael Steiner, Beiping Luo, Thomas Peter, Michael C. Pitts, and Andrea Stenke
Geosci. Model Dev., 14, 935–959, https://doi.org/10.5194/gmd-14-935-2021, https://doi.org/10.5194/gmd-14-935-2021, 2021
Short summary
Short summary
We evaluate polar stratospheric clouds (PSCs) as simulated by the chemistry–climate model (CCM) SOCOLv3.1 in comparison with measurements by the CALIPSO satellite. A cold bias results in an overestimated PSC area and mountain-wave ice is underestimated, but we find overall good temporal and spatial agreement of PSC occurrence and composition. This work confirms previous studies indicating that simplified PSC schemes may also achieve good approximations of the fundamental properties of PSCs.
Zhaoyuan Yu, Dongshuang Li, Zhengfang Zhang, Wen Luo, Yuan Liu, Zengjie Wang, and Linwang Yuan
Geosci. Model Dev., 14, 875–887, https://doi.org/10.5194/gmd-14-875-2021, https://doi.org/10.5194/gmd-14-875-2021, 2021
Short summary
Short summary
Few lossy compression methods consider both the global and local multidimensional coupling correlations, which could lead to information loss in data compression. Here we develop an adaptive lossy compression method, Adaptive-HGFDR, to capture both the global and local variation of multidimensional coupling correlations and improve approximation accuracy. The method can achieve good compression performances for most flux variables with significant spatiotemporal heterogeneity.
Franziska Winterstein and Patrick Jöckel
Geosci. Model Dev., 14, 661–674, https://doi.org/10.5194/gmd-14-661-2021, https://doi.org/10.5194/gmd-14-661-2021, 2021
Short summary
Short summary
Atmospheric methane is currently a hot topic in climate research. This is partly due to its chemically active nature. We introduce a simplified approach to simulate methane in climate models to enable large sensitivity studies by reducing computational cost but including the crucial feedback of methane on stratospheric water vapour. We further provide options to simulate the isotopic content of methane and to generate output for an inverse optimization technique for emission estimation.
Ruth Petrie, Sébastien Denvil, Sasha Ames, Guillaume Levavasseur, Sandro Fiore, Chris Allen, Fabrizio Antonio, Katharina Berger, Pierre-Antoine Bretonnière, Luca Cinquini, Eli Dart, Prashanth Dwarakanath, Kelsey Druken, Ben Evans, Laurent Franchistéguy, Sébastien Gardoll, Eric Gerbier, Mark Greenslade, David Hassell, Alan Iwi, Martin Juckes, Stephan Kindermann, Lukasz Lacinski, Maria Mirto, Atef Ben Nasser, Paola Nassisi, Eric Nienhouse, Sergey Nikonov, Alessandra Nuzzo, Clare Richards, Syazwan Ridzwan, Michel Rixen, Kim Serradell, Kate Snow, Ag Stephens, Martina Stockhause, Hans Vahlenkamp, and Rick Wagner
Geosci. Model Dev., 14, 629–644, https://doi.org/10.5194/gmd-14-629-2021, https://doi.org/10.5194/gmd-14-629-2021, 2021
Short summary
Short summary
This paper describes the infrastructure that is used to distribute Coupled Model Intercomparison Project Phase 6 (CMIP6) data around the world for analysis by the climate research community. It is expected that there will be ~20 PB (petabytes) of data available for analysis. The operations team performed a series of preparation "data challenges" to ensure all components of the infrastructure were operational for when the data became available for timely data distribution and subsequent analysis.
Camilla Mathison, Andrew J. Challinor, Chetan Deva, Pete Falloon, Sébastien Garrigues, Sophie Moulin, Karina Williams, and Andy Wiltshire
Geosci. Model Dev., 14, 437–471, https://doi.org/10.5194/gmd-14-437-2021, https://doi.org/10.5194/gmd-14-437-2021, 2021
Short summary
Short summary
Sequential cropping (also known as multiple or double cropping) is a common cropping system, particularly in tropical regions. Typically, land surface models only simulate a single crop per year. To understand how sequential crops influence surface fluxes, we implement sequential cropping in JULES to simulate all the crops grown within a year at a given location in a seamless way. We demonstrate the method using a site in Avignon, four locations in India and a regional run for two Indian states.
Chao Wang, Xingqin An, Qing Hou, Zhaobin Sun, Yanjun Li, and Jiangtao Li
Geosci. Model Dev., 14, 337–350, https://doi.org/10.5194/gmd-14-337-2021, https://doi.org/10.5194/gmd-14-337-2021, 2021
Kalyn Dorheim, Steven J. Smith, and Ben Bond-Lamberty
Geosci. Model Dev., 14, 365–375, https://doi.org/10.5194/gmd-14-365-2021, https://doi.org/10.5194/gmd-14-365-2021, 2021
Short summary
Short summary
Simple climate models are frequently used in research and decision-making communities because of their tractability and low computational cost. Simple climate models are diverse, including highly idealized and process-based models. Here we present a hybrid approach that combines the strength of two types of simple climate models in a flexible framework. This hybrid approach has provided insights into the climate system and opens an avenue for investigating radiative forcing uncertainties.
David N. Bresch and Gabriela Aznar-Siguan
Geosci. Model Dev., 14, 351–363, https://doi.org/10.5194/gmd-14-351-2021, https://doi.org/10.5194/gmd-14-351-2021, 2021
Short summary
Short summary
Climate change is a fact and adaptation a necessity. The Economics of Climate Adaptation methodology provides a framework to integrate risk and reward perspectives of different stakeholders, underpinned by the CLIMADA impact modelling platform. This extended version of CLIMADA enables risk assessment and options appraisal in a modular form and occasionally bespoke fashion yet with high reusability of functionalities to foster usage in interdisciplinary studies and international collaboration.
Adam T. Blaker, Manoj Joshi, Bablu Sinha, David P. Stevens, Robin S. Smith, and Joël J.-M. Hirschi
Geosci. Model Dev., 14, 275–293, https://doi.org/10.5194/gmd-14-275-2021, https://doi.org/10.5194/gmd-14-275-2021, 2021
Short summary
Short summary
FORTE 2.0 is a flexible coupled atmosphere–ocean general circulation model that can be run on modest hardware. We present two 2000-year simulations which show that FORTE 2.0 is capable of producing a stable climate. Earlier versions of FORTE were used for a wide range of studies, ranging from aquaplanet configurations to investigating the cold European winters of 2009–2010. This paper introduces the updated model for which the code and configuration are now publicly available.
Ah-Hyun Kim, Seong Soo Yum, Dong Yeong Chang, and Minsu Park
Geosci. Model Dev., 14, 259–273, https://doi.org/10.5194/gmd-14-259-2021, https://doi.org/10.5194/gmd-14-259-2021, 2021
Short summary
Short summary
A new method to estimate the sulfate aerosol hygroscopicity parameter (κSO4) is suggested that can consider κSO4 for two different sulfate species instead of prescribing a single κSO4 value, as in most previous studies. The new method simulates more realistic cloud droplet concentrations and, thus, a more realistic cloud albedo effect than the original method. The new method is simple and readily applicable to modeling studies investigating sulfate aerosols’ effect in aerosol–cloud interactions.
Brigitta Szabó, Melanie Weynants, and Tobias K. D. Weber
Geosci. Model Dev., 14, 151–175, https://doi.org/10.5194/gmd-14-151-2021, https://doi.org/10.5194/gmd-14-151-2021, 2021
Short summary
Short summary
This paper presents updated European prediction algorithms (euptf2) to compute soil hydraulic parameters from easily available soil properties. The new algorithms lead to significantly better predictions and provide a built-in prediction uncertainty computation. The influence of predictor variables on predicted soil hydraulic properties is explored and practical guidance on how to use the derived PTFs is provided. A website and an R package facilitate easy application of the updated predictions.
Zhanshan Ma, Chuanfeng Zhao, Jiandong Gong, Jin Zhang, Zhe Li, Jian Sun, Yongzhu Liu, Jiong Chen, and Qingu Jiang
Geosci. Model Dev., 14, 205–221, https://doi.org/10.5194/gmd-14-205-2021, https://doi.org/10.5194/gmd-14-205-2021, 2021
Short summary
Short summary
The spin-up in GRAPES_GFS, under different initial fields, goes through a dramatic adjustment in the first half-hour of integration and slow dynamic and thermal adjustments afterwards. It lasts for at least 6 h, with model adjustment gradually completed from lower to upper layers in the model. Thus, the forecast results, at least in the first 6 h, should be avoided when used. In addition, the spin-up process should repeat when the model simulation is interrupted.
Chein-Jung Shiu, Yi-Chi Wang, Huang-Hsiung Hsu, Wei-Ting Chen, Hua-Lu Pan, Ruiyu Sun, Yi-Hsuan Chen, and Cheng-An Chen
Geosci. Model Dev., 14, 177–204, https://doi.org/10.5194/gmd-14-177-2021, https://doi.org/10.5194/gmd-14-177-2021, 2021
Short summary
Short summary
A cloud macrophysics scheme utilizing grid-mean hydrometeor information is developed and evaluated for climate models. The GFS–TaiESM–Sundqvist (GTS) scheme can simulate variations of cloud fraction associated with relative humidity (RH) in a more consistent way than the default scheme of CAM5.3. Through better cloud–RH distributions, the GTS scheme helps to better represent cloud fraction, cloud radiative forcing, and thermodynamic-related climatic fields in climate simulations.
Katherine A. Crichton, Jamie D. Wilson, Andy Ridgwell, and Paul N. Pearson
Geosci. Model Dev., 14, 125–149, https://doi.org/10.5194/gmd-14-125-2021, https://doi.org/10.5194/gmd-14-125-2021, 2021
Short summary
Short summary
Temperature is a controller of metabolic processes and therefore also a controller of the ocean's biological carbon pump (BCP). We calibrate a temperature-dependent version of the BCP in the cGENIE Earth system model. Since the pre-industrial period, warming has intensified near-surface nutrient recycling, supporting production and largely offsetting stratification-induced surface nutrient limitation. But at the same time less carbon that sinks out of the surface then reaches the deep ocean.
Jane P. Mulcahy, Colin Johnson, Colin G. Jones, Adam C. Povey, Catherine E. Scott, Alistair Sellar, Steven T. Turnock, Matthew T. Woodhouse, Nathan Luke Abraham, Martin B. Andrews, Nicolas Bellouin, Jo Browse, Ken S. Carslaw, Mohit Dalvi, Gerd A. Folberth, Matthew Glover, Daniel P. Grosvenor, Catherine Hardacre, Richard Hill, Ben Johnson, Andy Jones, Zak Kipling, Graham Mann, James Mollard, Fiona M. O'Connor, Julien Palmiéri, Carly Reddington, Steven T. Rumbold, Mark Richardson, Nick A. J. Schutgens, Philip Stier, Marc Stringer, Yongming Tang, Jeremy Walton, Stephanie Woodward, and Andrew Yool
Geosci. Model Dev., 13, 6383–6423, https://doi.org/10.5194/gmd-13-6383-2020, https://doi.org/10.5194/gmd-13-6383-2020, 2020
Short summary
Short summary
Aerosols are an important component of the Earth system. Here, we comprehensively document and evaluate the aerosol schemes as implemented in the physical and Earth system models, HadGEM3-GC3.1 and UKESM1. This study provides a useful characterisation of the aerosol climatology in both models, facilitating the understanding of the numerous aerosol–climate interaction studies that will be conducted for CMIP6 and beyond.
Qun Liu, Matthew Collins, Penelope Maher, Stephen I. Thomson, and Geoffrey K. Vallis
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-402, https://doi.org/10.5194/gmd-2020-402, 2020
Revised manuscript accepted for GMD
Short summary
Short summary
Clouds play an vital role in Earth's energy budget and even a small change in cloud fields can have a large impact on climate system. They also bring lots of uncertainties to climate models. Here we implement a simple diagnostic cloud scheme in order to reproduce the general radiative properties of clouds. The scheme can capture some key features of the cloud fraction and cloud radiative properties, thus providing a useful tool to explore the unsolved problems about clouds.
Hao Yu, Li Liu, Chao Sun, Ruizhe Li, Xinzhu Yu, Cheng Zhang, Zhiyuan Zhang, and Bin Wang
Geosci. Model Dev., 13, 6253–6263, https://doi.org/10.5194/gmd-13-6253-2020, https://doi.org/10.5194/gmd-13-6253-2020, 2020
Short summary
Short summary
Routing network generation is a major step for initializing the data transfer functionality for model coupling. The distributed implementation for routing network generation (DiRong1.0) proposed in this paper can significantly improve the global implementation of routing network generation used in some existing coupling software, because it does not introduce any gather–broadcast communications and achieves much lower complexity in terms of time, memory, and communication.
Steven R. Brus, Phillip J. Wolfram, Luke P. Van Roekel, and Jessica D. Meixner
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-351, https://doi.org/10.5194/gmd-2020-351, 2020
Revised manuscript accepted for GMD
Short summary
Short summary
Wind generated waves are an important process in the global climate system. They mediate many interactions between the ocean, atmosphere, and sea ice. Models which describe these waves are computationally expensive and have often been excluded from coupled Earth system models. To address this, we have developed a capability for the WAVEWATCHIII model which allows model resolution to be varied globally across the coastal the open ocean. This allows for improved accuracy at reduced computing time.
Øyvind Seland, Mats Bentsen, Dirk Olivié, Thomas Toniazzo, Ada Gjermundsen, Lise Seland Graff, Jens Boldingh Debernard, Alok Kumar Gupta, Yan-Chun He, Alf Kirkevåg, Jörg Schwinger, Jerry Tjiputra, Kjetil Schanke Aas, Ingo Bethke, Yuanchao Fan, Jan Griesfeller, Alf Grini, Chuncheng Guo, Mehmet Ilicak, Inger Helene Hafsahl Karset, Oskar Landgren, Johan Liakka, Kine Onsum Moseid, Aleksi Nummelin, Clemens Spensberger, Hui Tang, Zhongshi Zhang, Christoph Heinze, Trond Iversen, and Michael Schulz
Geosci. Model Dev., 13, 6165–6200, https://doi.org/10.5194/gmd-13-6165-2020, https://doi.org/10.5194/gmd-13-6165-2020, 2020
Short summary
Short summary
The second version of the coupled Norwegian Earth System Model (NorESM2) is presented and evaluated. The temperature and precipitation patterns has improved compared to NorESM1. The model reaches present-day warming levels to within 0.2 °C of observed temperature but with a delayed warming during the late 20th century. Under the four scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), the warming in the period of 2090–2099 compared to 1850–1879 reaches 1.3, 2.2, 3.1, and 3.9 K.
Wieke Heldens, Cornelia Burmeister, Farah Kanani-Sühring, Björn Maronga, Dirk Pavlik, Matthias Sühring, Julian Zeidler, and Thomas Esch
Geosci. Model Dev., 13, 5833–5873, https://doi.org/10.5194/gmd-13-5833-2020, https://doi.org/10.5194/gmd-13-5833-2020, 2020
Short summary
Short summary
For realistic microclimate simulations in urban areas with PALM 6.0, detailed description of surface types, buildings and vegetation is required. This paper shows how such input data sets can be derived with the example of three German cities. Various data sources are used, including remote sensing, municipal data collections and open data such as OpenStreetMap. The collection and preparation of input data sets is tedious. Future research aims therefore at semi-automated tools to support users.
Emmanuele Russo, Silje Lund Sørland, Ingo Kirchner, Martijn Schaap, Christoph C. Raible, and Ulrich Cubasch
Geosci. Model Dev., 13, 5779–5797, https://doi.org/10.5194/gmd-13-5779-2020, https://doi.org/10.5194/gmd-13-5779-2020, 2020
Short summary
Short summary
The parameter space of the COSMO-CLM RCM is investigated for the Central Asia CORDEX domain using a perturbed physics ensemble (PPE) with different parameter values. Results show that only a subset of model parameters presents relevant changes in model performance and these changes depend on the considered region and variable: objective calibration methods are highly necessary in this case. Additionally, the results suggest the need for calibrating an RCM when targeting different domains.
Carley E. Iles, Robert Vautard, Jane Strachan, Sylvie Joussaume, Bernd R. Eggen, and Chris D. Hewitt
Geosci. Model Dev., 13, 5583–5607, https://doi.org/10.5194/gmd-13-5583-2020, https://doi.org/10.5194/gmd-13-5583-2020, 2020
Short summary
Short summary
We investigate how increased resolution affects the simulation of European climate extremes for global and regional climate models to inform modelling strategies. Precipitation extremes become heavier with higher resolution, especially over mountains, wind extremes become somewhat stronger, and for temperature extremes warm biases are reduced over mountains. Differences with resolution for the global model appear to come from downscaling effects rather than improved large-scale circulation.
Pirkka Ollinaho, Glenn D. Carver, Simon T. K. Lang, Lauri Tuppi, Madeleine Ekblom, and Heikki Järvinen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-292, https://doi.org/10.5194/gmd-2020-292, 2020
Revised manuscript accepted for GMD
Short summary
Short summary
OpenEnsemble 1.0 is a novel dataset that aims to open up ensemble or probabilistic weather forecasting research for the academic community. The dataset contains atmospheric states that are required for running model forecasts of the atmospheric evolution. Our capacity to observe the atmosphere is limited, thus a single reconstruction of the atmospheric state contains some errors. Our dataset provides sets of 50 slightly different atmospheric states so that these errors can be taken into account.
Martina Messmer, Santos J. González-Rojí, Christoph C. Raible, and Thomas F. Stocker
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-347, https://doi.org/10.5194/gmd-2020-347, 2020
Preprint under review for GMD
Short summary
Short summary
Sensitivity experiments with the WRF model are run to find an optimal parameterization setup for precipitation around Mount Kenya at a scale that resolves convection (1 km). Precipitation is compared against many weather stations and gridded observational data sets. Both the temporal correlation of monthly precipitation sums and pattern correlations show that fewer nests lead to a more constrained simulation with higher correlation. The Grell-Freitas cumulus scheme obtains most accurate results.
Marie-Estelle Demory, Ségolène Berthou, Jesús Fernández, Silje L. Sørland, Roman Brogli, Malcolm J. Roberts, Urs Beyerle, Jon Seddon, Rein Haarsma, Christoph Schär, Erasmo Buonomo, Ole B. Christensen, James M. Ciarlo ̀, Rowan Fealy, Grigory Nikulin, Daniele Peano, Dian Putrasahan, Christopher D. Roberts, Retish Senan, Christian Steger, Claas Teichmann, and Robert Vautard
Geosci. Model Dev., 13, 5485–5506, https://doi.org/10.5194/gmd-13-5485-2020, https://doi.org/10.5194/gmd-13-5485-2020, 2020
Short summary
Short summary
Now that global climate models (GCMs) can run at similar resolutions to regional climate models (RCMs), one may wonder whether GCMs and RCMs provide similar regional climate information. We perform an evaluation for daily precipitation distribution in PRIMAVERA GCMs (25–50 km resolution) and CORDEX RCMs (12–50 km resolution) over Europe. We show that PRIMAVERA and CORDEX simulate similar distributions. Considering both datasets at such a resolution results in large benefits for impact studies.
George C. Hurtt, Louise Chini, Ritvik Sahajpal, Steve Frolking, Benjamin L. Bodirsky, Katherine Calvin, Jonathan C. Doelman, Justin Fisk, Shinichiro Fujimori, Kees Klein Goldewijk, Tomoko Hasegawa, Peter Havlik, Andreas Heinimann, Florian Humpenöder, Johan Jungclaus, Jed O. Kaplan, Jennifer Kennedy, Tamás Krisztin, David Lawrence, Peter Lawrence, Lei Ma, Ole Mertz, Julia Pongratz, Alexander Popp, Benjamin Poulter, Keywan Riahi, Elena Shevliakova, Elke Stehfest, Peter Thornton, Francesco N. Tubiello, Detlef P. van Vuuren, and Xin Zhang
Geosci. Model Dev., 13, 5425–5464, https://doi.org/10.5194/gmd-13-5425-2020, https://doi.org/10.5194/gmd-13-5425-2020, 2020
Short summary
Short summary
To estimate the effects of human land use activities on the carbon–climate system, a new set of global gridded land use forcing datasets was developed to link historical land use data to eight future scenarios in a standard format required by climate models. This new generation of land use harmonization (LUH2) includes updated inputs, higher spatial resolution, more detailed land use transitions, and the addition of important agricultural management layers; it will be used for CMIP6 simulations.
Philip Goodwin, Martin Leduc, Antti-Ilari Partanen, H. Damon Matthews, and Alex Rogers
Geosci. Model Dev., 13, 5389–5399, https://doi.org/10.5194/gmd-13-5389-2020, https://doi.org/10.5194/gmd-13-5389-2020, 2020
Short summary
Short summary
Numerical climate models are used to make projections of future surface warming for different pathways of future greenhouse gas emissions, where future surface warming will vary from place to place. However, it is so expensive to run complex models using supercomputers that future projections can only be produced for a small number of possible future emissions pathways. This study presents an efficient climate model to make projections of local surface warming using a desktop computer.
Mathieu Vrac and Soulivanh Thao
Geosci. Model Dev., 13, 5367–5387, https://doi.org/10.5194/gmd-13-5367-2020, https://doi.org/10.5194/gmd-13-5367-2020, 2020
Short summary
Short summary
We propose a multivariate bias correction (MBC) method to adjust the spatial and/or inter-variable properties of climate simulations, while also accounting for their temporal dependences (e.g., autocorrelations).
It consists on a method reordering the ranks of the time series according to their multivariate distance to a reference time series.
Results show that temporal correlations are improved while spatial and inter-variable correlations are still satisfactorily corrected.
Hella Garny, Roland Walz, Matthias Nützel, and Thomas Birner
Geosci. Model Dev., 13, 5229–5257, https://doi.org/10.5194/gmd-13-5229-2020, https://doi.org/10.5194/gmd-13-5229-2020, 2020
Short summary
Short summary
Numerical models of Earth's climate system have been gaining more and more complexity over the last decades. Therefore, it is important to establish simplified models to improve process understanding. In our study, we present and document the development of a new simplified model setup within the framework of a complex climate model system that uses the same routines to calculate atmospheric dynamics as the complex model but is simplified in the representation of clouds and radiation.
Yingxia Gao, Nicholas P. Klingaman, Charlotte A. DeMott, and Pang-Chi Hsu
Geosci. Model Dev., 13, 5191–5209, https://doi.org/10.5194/gmd-13-5191-2020, https://doi.org/10.5194/gmd-13-5191-2020, 2020
Short summary
Short summary
Both the air–sea coupling and ocean mean state affect the fidelity of simulated boreal summer intraseasonal oscillation (BSISO). To elucidate their relative effects on the simulated BSISO, a set of experiments was conducted using a superparameterized AGCM and its coupled version. Both air–sea coupling and cold ocean mean state improve the BSISO amplitude due to the suppression of the overestimated variance, while the former (latter) could further upgrade (degrade) the BSISO propagation.
Zebedee R. J. Nicholls, Malte Meinshausen, Jared Lewis, Robert Gieseke, Dietmar Dommenget, Kalyn Dorheim, Chen-Shuo Fan, Jan S. Fuglestvedt, Thomas Gasser, Ulrich Golüke, Philip Goodwin, Corinne Hartin, Austin P. Hope, Elmar Kriegler, Nicholas J. Leach, Davide Marchegiani, Laura A. McBride, Yann Quilcaille, Joeri Rogelj, Ross J. Salawitch, Bjørn H. Samset, Marit Sandstad, Alexey N. Shiklomanov, Ragnhild B. Skeie, Christopher J. Smith, Steve Smith, Katsumasa Tanaka, Junichi Tsutsui, and Zhiang Xie
Geosci. Model Dev., 13, 5175–5190, https://doi.org/10.5194/gmd-13-5175-2020, https://doi.org/10.5194/gmd-13-5175-2020, 2020
Short summary
Short summary
Computational limits mean that we cannot run our most comprehensive climate models for all applications of interest. In such cases, reduced complexity models (RCMs) are used. Here, researchers working on 15 different models present the first systematic community effort to evaluate and compare RCMs: the Reduced Complexity Model Intercomparison Project (RCMIP). Our research ensures that users of RCMs can more easily evaluate the strengths, weaknesses and limitations of their tools.
Jaeyoung Song, Gretchen R. Miller, Anthony T. Cahill, Luiza Maria T. Aparecido, and Georgianne W. Moore
Geosci. Model Dev., 13, 5147–5173, https://doi.org/10.5194/gmd-13-5147-2020, https://doi.org/10.5194/gmd-13-5147-2020, 2020
Short summary
Short summary
The performance of a land surface model (CLM4.5 and 5.0) was examined against a suite of measurements from a tropical montane rainforest in Costa Rica. Both versions failed to capture the effects of frequent rainfall events and mountainous terrain on temperature, leaf wetness, photosynthesis, and transpiration. While the new model version eliminated some errors, it still cannot precisely simulate a number of processes. This suggests that two key components of the model need modification.
Patricio Velasquez, Martina Messmer, and Christoph C. Raible
Geosci. Model Dev., 13, 5007–5027, https://doi.org/10.5194/gmd-13-5007-2020, https://doi.org/10.5194/gmd-13-5007-2020, 2020
Short summary
Short summary
This work presents a new bias-correction method for precipitation that considers orographic characteristics, which can be used in studies where the latter strongly changes. The three-step correction method consists of a separation into orographic features, correction of low-intensity precipitation, and application of empirical quantile mapping. Seasonal bias induced by the global climate model is fully corrected. Rigorous cross-validations illustrate the method's applicability and robustness.
Hui Wan, Shixuan Zhang, Philip J. Rasch, Vincent E. Larson, Xubin Zeng, and Huiping Yan
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-330, https://doi.org/10.5194/gmd-2020-330, 2020
Revised manuscript accepted for GMD
Short summary
Short summary
Numerical models used in weather and climate research and prediction unavoidably contain numerical errors resulting from temporal discretization, and the impact of such errors can be substantial. Complex process interactions often make it difficult to pinpoint the exact sources of such errors. This study uses a series of sensitivity experiments to identify components in a global atmosphere model that are responsible for time step sensitivities in various cloud regimes.
Eric Larour, Lambert Caron, Mathieu Morlighem, Surendra Adhikari, Thomas Frederikse, Nicole-Jeanne Schlegel, Erik Ivins, Benjamin Hamlington, Robert Kopp, and Sophie Nowicki
Geosci. Model Dev., 13, 4925–4941, https://doi.org/10.5194/gmd-13-4925-2020, https://doi.org/10.5194/gmd-13-4925-2020, 2020
Short summary
Short summary
ISSM-SLPS is a new projection system for future sea level that increases the resolution and accuracy of current projection systems and improves the way uncertainty is treated in such projections. This will pave the way for better inclusion of state-of-the-art results from existing intercomparison efforts carried out by the scientific community, such as GlacierMIP2 or ISMIP6, into sea-level projections.
Hiroshi Yamashita, Feijia Yin, Volker Grewe, Patrick Jöckel, Sigrun Matthes, Bastian Kern, Katrin Dahlmann, and Christine Frömming
Geosci. Model Dev., 13, 4869–4890, https://doi.org/10.5194/gmd-13-4869-2020, https://doi.org/10.5194/gmd-13-4869-2020, 2020
Short summary
Short summary
This paper describes the updated submodel AirTraf 2.0 which simulates global air traffic in the ECHAM/MESSy Atmospheric Chemistry (EMAC) model. Nine aircraft routing options have been integrated, including contrail avoidance, minimum economic costs, and minimum climate impact. Example simulations reveal characteristics of different routing options on air traffic performances. The consistency of the AirTraf simulations is verified with literature data.
Landon A. Rieger, Jason N. S. Cole, John C. Fyfe, Stephen Po-Chedley, Philip J. Cameron-Smith, Paul J. Durack, Nathan P. Gillett, and Qi Tang
Geosci. Model Dev., 13, 4831–4843, https://doi.org/10.5194/gmd-13-4831-2020, https://doi.org/10.5194/gmd-13-4831-2020, 2020
Short summary
Short summary
Recently, the stratospheric aerosol forcing dataset used as an input to the Coupled Model Intercomparison Project phase 6 was updated. This work explores the impact of those changes on the modelled historical climates in the CanESM5 and EAMv1 models. Temperature differences in the stratosphere shortly after the Pinatubo eruption are found to be significant, but surface temperatures and precipitation do not show a significant change.
Elisa Ziegler and Kira Rehfeld
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-237, https://doi.org/10.5194/gmd-2020-237, 2020
Revised manuscript accepted for GMD
Short summary
Short summary
Past climate changes are the only record of how the climate responds to changes in conditions on Earth, but simulations with complex climate models are challenging. We extended a simple climate model such that it simulates the development of temperatures over time. In the model, changes in carbon dioxide and ice distribution affect the simulated temperatures the most. The model is very efficient and can therefore be used to examine past climate changes happening over long periods of time.
Shaoqing Zhang, Haohuan Fu, Lixin Wu, Yuxuan Li, Hong Wang, Yunhui Zeng, Xiaohui Duan, Wubing Wan, Li Wang, Yuan Zhuang, Hongsong Meng, Kai Xu, Ping Xu, Lin Gan, Zhao Liu, Sihai Wu, Yuhu Chen, Haining Yu, Shupeng Shi, Lanning Wang, Shiming Xu, Wei Xue, Weiguo Liu, Qiang Guo, Jie Zhang, Guanghui Zhu, Yang Tu, Jim Edwards, Allison Baker, Jianlin Yong, Man Yuan, Yangyang Yu, Qiuying Zhang, Zedong Liu, Mingkui Li, Dongning Jia, Guangwen Yang, Zhiqiang Wei, Jingshan Pan, Ping Chang, Gokhan Danabasoglu, Stephen Yeager, Nan Rosenbloom, and Ying Guo
Geosci. Model Dev., 13, 4809–4829, https://doi.org/10.5194/gmd-13-4809-2020, https://doi.org/10.5194/gmd-13-4809-2020, 2020
Short summary
Short summary
Science advancement and societal needs require Earth system modelling with higher resolutions that demand tremendous computing power. We successfully scale the 10 km ocean and 25 km atmosphere high-resolution Earth system model to a new leading-edge heterogeneous supercomputer using state-of-the-art optimizing methods, promising the solution of high spatial resolution and time-varying frequency. Corresponding technical breakthroughs are of significance in modelling and HPC design communities.
Tokuta Yokohata, Tsuguki Kinoshita, Gen Sakurai, Yadu Pokhrel, Akihiko Ito, Masashi Okada, Yusuke Satoh, Etsushi Kato, Tomoko Nitta, Shinichiro Fujimori, Farshid Felfelani, Yoshimitsu Masaki, Toshichika Iizumi, Motoki Nishimori, Naota Hanasaki, Kiyoshi Takahashi, Yoshiki Yamagata, and Seita Emori
Geosci. Model Dev., 13, 4713–4747, https://doi.org/10.5194/gmd-13-4713-2020, https://doi.org/10.5194/gmd-13-4713-2020, 2020
Short summary
Short summary
The most significant feature of MIROC-INTEG-LAND is that the land surface model that describes the processes of the energy and water balances, human water management, and crop growth incorporates a land-use decision-making model based on economic activities. The future simulations indicate that changes in climate have significant impacts on crop yields, land use, and irrigation water demand.
Chia-Te Chien, Markus Pahlow, Markus Schartau, and Andreas Oschlies
Geosci. Model Dev., 13, 4691–4712, https://doi.org/10.5194/gmd-13-4691-2020, https://doi.org/10.5194/gmd-13-4691-2020, 2020
Short summary
Short summary
We demonstrate sensitivities of tracers to parameters of a new optimality-based plankton–ecosystem model (OPEM) in the UVic-ESCM. We find that changes in phytoplankton subsistence nitrogen quota strongly impact the nitrogen inventory, nitrogen fixation, and elemental stoichiometry of ordinary phytoplankton and diazotrophs. We introduce a new likelihood-based metric for model calibration, and it shows the capability of constraining globally averaged oxygen, nitrate, and DIC concentrations.
Cited articles
Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., and
Arellano, A.: The Data Assimilation Research Testbed: A Community Facility,
B. Am. Meteorol. Soc., 90, 1283–1296, 2009. a
Browne, P. A., de Rosnay, P., Zuo, H., Bennett, A., and Dawson, A.: Weakly
coupled ocean–atmosphere data assimilation in the ECMWF NWP system,
Remote Sensing, 11, 234, https://doi.org/10.3390/rs11030234, 2019. a
Burgers, G., van Leeuwen, P. J., and Evensen, G.: On the Analysis Scheme in the
Ensemble Kalman Filter, Mon. Weather Rev., 126, 1719–1724, 1998. a
Chang, Y.-S., Zhang, S., Rosati, A., Delworth, T. L., and Stern, W. F.: An
assessment of oceanic variability for 1960–2010 from the GFDL ensemble
coupled data assimilation, Clim. Dynam., 40, 775–803, 2013. a
Danilov, S., Kivman, G., and Schröter, J.: A finite-element ocean model:
Principles and evaluation, Ocean Model., 6, 125–150, 2004. a
Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic
model using Monte Carlo methods to forecast error statistics, J. Geophys.
Res., 99, 10143–10162, 1994. a
Fournier, A., Nerger, L., and Aubert, J.: An ensemble Kalman filter for the
time-dependent analysis of the geomagnetic field, Geochemistry Geophysics
Geosystems, 14, 4035–4043, 2013. a
Frolov, S., Bishop, C. H., Holt, T., Cummings, J., and Kuhl, D.: Facilitating
strongly coupled ocean-atmosphere data assimilation with an interface solver,
Mon. Weather Rev., 144, 3–20, 2016. a
Gaspari, G. and Cohn, S. E.: Construction of Correlation Functions in Two and
Three Dimensions, Q. J. Roy. Meteor. Soc., 125, 723–757, 1999. a
Gillet-Chaulet, F.: Assimilation of surface observations in a transient marine ice sheet model using an ensemble Kalman filter, The Cryosphere, 14, 811–832, https://doi.org/10.5194/tc-14-811-2020, 2020. a
Good, S. A., Martin, M. J., and Rayner, N. A.: EN4: quality controlled ocean
temperature and salinity profiles and monthly objective analyses with
uncertainty estimates, J. Geophys. Res.-Oceans, 118, 6704–6716, 2013. a
Han, G., Wu, X., Zhang, S., Liu, Z., and Li, W.: Error Covariance Estimation
for Coupled Data Assimilation Using a Lorenz Atmosphere and a Simple
Pycnocline Ocean Model, J. Climate, 26, 10218–10231, 2013. a
Harlim, J. and Hunt, B. R.: Four-dimensional local ensemble transform Kalmn
filter: numerical experiments with a global corculation model, Tellus, 59A,
731–748, 2007. a
Houtekamer, P. L. and Mitchell, H. L.: Data Assimilation Using an Ensemble
Kalman Filter Technique, Mon. Weather Rev., 126, 796–811, 1998. a
Karspeck, A. R., Danabasoglu, G., Anderson, J., Karol, S., Collins, N.,
Vertenstein, M., Raeder, K., Hoar, T., Neale, R., Edwards, J., and Craig, A.:
A global coupled ensemble data assimilation system using the Community
Earth System Model and the Data Assimilation Research Testbed,
Q. J. Roy. Meteor. Soc., 144, 2404–2430, https://doi.org/10.1002/qj.3308, 2018. a, b, c, d, e, f
Kirchgessner, P., Toedter, J., Ahrens, B., and Nerger, L.: The smoother
extension of the nonlinear ensemble transform filter, Tellus A, 69, 1327766, https://doi.org/10.1080/16000870.2017.1327766,
2017. a, b
Kunii, M., Ito, K., and Wada, A.: Preliminary Test of a Data Assimilation
System with a Regional High-Resolution Atmosphere-Ocean Coupled Model Based
on an Ensemble Kalman Filter, Mon. Weather Rev., 145, 565–581, 2017. a
Kurtz, W., He, G., Kollet, S. J., Maxwell, R. M., Vereecken, H., and Hendricks Franssen, H.-J.: TerrSysMP–PDAF (version 1.0): a modular high-performance data assimilation framework for an integrated land surface–subsurface model, Geosci. Model Dev., 9, 1341–1360, https://doi.org/10.5194/gmd-9-1341-2016, 2016. a, b, c, d, e
Laloyaux, P., Balmaseda, M., Dee, D., Mogensen, K., and Janssen, P.: A coupled
data assimilation system for climate reanalysis, Q. J. Roy. Meteor. Soc.,
142, 65–78, 2016. a
Lawrence, B. N., Rezny, M., Budich, R., Bauer, P., Behrens, J., Carter, M., Deconinck, W., Ford, R., Maynard, C., Mullerworth, S., Osuna, C., Porter, A., Serradell, K., Valcke, S., Wedi, N., and Wilson, S.: Crossing the chasm: how to develop weather and climate models for next generation computers?, Geosci. Model Dev., 11, 1799–1821, https://doi.org/10.5194/gmd-11-1799-2018, 2018. a
Lea, D. J., Mirouze, I., Martin, M. J., King, R. R., Hines, A., Walters, D.,
and Thurlow, M.: Assessing a new coupled data assimilation system based on
the Met Office coupled atmosphere-land-ocean-sea ice model, Mon. Weather
Rev., 143, 4678–4694, 2015. a
Liu, Z., Wu, S., Zhang, S., Liu, Y., and Rong, X.: Ensemble data assimilation
in a simple coupled climate model: The role of ocean-atmopshere interaction,
Adv. Atmos. Sci., 30, 1235–1248, 2013. a
Mu, L., Yang, Q., Losch, M., Losa, S. N., RIcker, R., Nerger, L., and Liang,
X.: Improving sea ice thickness estimates by assimilating CryoSat-2 and
SMOS sea ice thickness data simultaneously, Q. J. Roy. Meteor. Soc., 144,
529–538, 2018. a
Mu, L., Nerger, L., Tang, Q., Losa, S. N., Sidorenko, D., Wang, Q., Semmler,
T., Zampieri, L., Losch, M., and Goessling, H. F.: Toward a data assimilation
system for seamless sea ice prediction based on the AWI climate model, J.
Adv. Model. Earth Sy., 12, 359, https://doi.org/10.1029/2019MS001937 , 2020. a, b, c
Nerger, L., Hiller, W., and Schröter, J.: PDAF - The Parallel
Data Assimilation Framework: Experiences with Kalman filtering., in:
Use of High Performance Computing in Meteorology – Proceedings of the 11.
ECMWF Workshop, edited by: Zwieflhofer, W. and Mozdzynski, G.,
World Scientific, 63–83, 2005. a, b, c
Nerger, L., Danilov, S., Hiller, W., and Schröter, J.: Using sea level data
to constrain a finite-element primitive-equation ocean model with a local
SEIK filter, Ocean Dynam., 56, 634–649, 2006. a
Nerger, L., Janjić, T., Schröter, J., and Hiller, W.: A regulated
localization scheme for ensemble-based Kalman filters, Q. J. Roy. Meteor.
Soc., 138, 802–812, 2012a. a
Nerger, L., Schulte, S., and Bunse-Gerstner, A.: On the influence of model
nonlinearity and localization on ensemble Kalman smoothing, Q. J. Roy.
Meteor. Soc., 140, 2249–2259, 2014. a
Nerger, L., Tang, Q., and Mu, L.: The PDAF model binding for AWI-CM
(AWI-CM-PDAF version 1.0), Zenodo, https://doi.org/10.5281/zenodo.3822030,
2019a. a
Nerger, L., Tang, Q., and Mu, L.: Efficient ensemble data assimilation for
coupled models with the Parallel Data Assimilation Framework: Example of
AWI-CM – output files and plot scripts, Zenodo,
https://doi.org/10.5281/zenodo.3823816, 2019b. a
OpenMP: OpenMP Application Program Interface Version 3.0, available at:
http://www.openmp.org/ (last access: 14 September 2020), 2008. a
Pardini, F., Corradini, S., Costa, A., Ongari, T. E., Merucci, L., Neri, A.,
Stelitano, D., and deḾichieli Vitturi, M.: Ensemble-Based Data
Assimilation of Volcanic Ash Clouds from Satellite Observations: Application
to the 24 December 2018 Mt. Etna Explosive Eruption, Atmosphere, 11, 359, https://doi.org/10.3390/atmos11040359,
2020. a
Penny, S. G., Akella, S., Alves, O., Bishop, C., Buehner, M., Chevalier, M.,
Counillon, F., Drper, C., Frolov, S., Fujii, Y., Kumar, A., Laloyaux, P.,
Mahfouf, J.-F., MArtin, M., Pena, M., de Rosnay, P., Subramanian, A., Tardif,
R., Wang, Y., and Wu, X.: Coupled data assimilation for integrated Earth
system analysis and prediction: Goals, Challenges and Recommendations, Tech.
Rep. WWRP 2017-3, World Meteorological Organization, 2017. a
Rackow, T., Sein, D. V., Semmler, T., Danilov, S., Koldunov, N. V., Sidorenko, D., Wang, Q., and Jung, T.: Sensitivity of deep ocean biases to horizontal resolution in prototype CMIP6 simulations with AWI-CM1.0, Geosci. Model Dev., 12, 2635–2656, https://doi.org/10.5194/gmd-12-2635-2019, 2019. a
Sakov, P. and Oke, P. R.: A deterministic formulation of hte ensemlbe Kalman
filter: an alternative to ensemble square root filters, Tellus, 60A,
361–371, 2008. a
Sidorenko, D., Rackow, T., Jung, T., Semmler, T., Barbi, D., Danilov, S.,
Dethloff, K., Dorn, W., Firg, K., Goessling, H. F., d. Handorf, Harig, S.,
Hiller, W., Juricke, S., Losch, M., Schröter, J., Sein, D. V., and Wang,
Q.: Towards multi-resolution global climate moeling with ECHAM6-FESOM.
Part I: model formulation and mean climate, Clim. Dynam., 44, 757–780, 2015. a, b, c, d
Sluka, T. C., Penny, S. G., Kalnay, E., and Miyoshi, T.: Assimilating
atmospheric observations into the ocean using strongly coupled ensemble data
assimilation, Geophys. Res. Lett., 43, 752–759, 2016. a
Snyder, C., Bengtsson, T., Bickel, P., and Anderson, J.: Obstacles to
high-dimensional particle filtering, Mon. Weather Rev., 136, 4629–4640, 2008. a
Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S.,
Salzmann, M., Schmift, H., an K. Blovk, J. B., Brokopf, R., Fast, I., Kinne,
S., Koernblueh, L., Lohmann, U., Pincus, R., Reichler, T., and Roeckner, E.:
Atmospheric component of the MPI-M Earth system model: ECHAM6., J. Adv.
Model. Earth Sy., 5, 146–172, 2013. a
Tang, Q., Mu, L., Sidorenko, D., Goessling, H., Semmler, T., and Nerger, L.:
Improving the ocean and atmosphere in a coupled ocean-atmosphere model by
assimilating satellite sea surface temperature and subsurface profile data,
Q. J. Roy. Meteor. Soc., https://doi.org/10.1002/qj.3885, in press, 2020. a, b, c
Valcke, S.: The OASIS3 coupler: a European climate modelling community software, Geosci. Model Dev., 6, 373–388, https://doi.org/10.5194/gmd-6-373-2013, 2013. a
van Leeuwen, P. J.: Particle Filtering in Geophysical Systems, Mon. Weather Rev.,
137, 4089–4114, 2009. a
van Leeuwen, P. J.: Nonlinear data assimilation in geosciences: An extremely
efficient particle filter, Q. J. Roy. Meteor. Soc., 136, 1991–1999, 2010. a
van Leeuwen, P. J., Künsch, H. R., Nerger, L., Potthast, R., and Reich, S.:
Particle filters for high-dimensional geoscience applications: a review, Q.
J. Roy. Meteor. Soc., 145, 2335–2365, 2019. a
Vetra-Carvalho, S., van Leeuwen, P. J., Nerger, L., Barth, A., Altaf, M. U.,
Brasseur, P., Kirchgessner, P., and Beckers, J.-M.: State-of-the-art
stochastic data assimilation methods for high-dimensional non-Gaussian
problems, Tellus A, 70, 1445364, https://doi.org/10.1080/16000870.2018.1445364, 2018. a
Wang, Q., Danilov, S., and Schröter, J.: Finite element ocean circulation
model based on triangular prismatic elements with application in studying the
effect of topography representation, J. Geophys. Res., 113, C05015, https://doi.org/10.1029/2007JC004482, 2008. a
Yu, L., Fennel, K., Bertino, L., Gharamti, M. E., and Thompson, K. R.: Insights
on multivariate updates of physical and biogeochemical ocean variables using
an ensemble Kalman filter and an idealized model of upwelling, Ocean Model.,
126, 13–28, 2018. a
Zhang, S., Harrison, M. J., Rosati, A., and Wittenberg, A.: System design and
evaluation of a coupled ensemble data assimilation for global oceanic climate
studies, Mon. Weather Rev., 135, 3541–3564, 2007. a
Short summary
Data assimilation combines observations with numerical models to get an improved estimate of the model state. This work discusses the technical aspects of how a coupled model that simulates the ocean and the atmosphere can be augmented by data assimilation functionality provided in generic form by the open-source software PDAF (Parallel Data Assimilation Framework). A very efficient program is obtained that can be executed on high-performance computers.
Data assimilation combines observations with numerical models to get an improved estimate of the...