Articles | Volume 13, issue 9
https://doi.org/10.5194/gmd-13-4305-2020
https://doi.org/10.5194/gmd-13-4305-2020
Development and technical paper
 | 
16 Sep 2020
Development and technical paper |  | 16 Sep 2020

Efficient ensemble data assimilation for coupled models with the Parallel Data Assimilation Framework: example of AWI-CM (AWI-CM-PDAF 1.0)

Lars Nerger, Qi Tang, and Longjiang Mu

Related authors

WRF-PDAF v1.0: Implementation and Application of an Online Localized Ensemble Data Assimilation Framework
Changliang Shao and Lars Nerger
EGUsphere, https://doi.org/10.5194/egusphere-2023-2311,https://doi.org/10.5194/egusphere-2023-2311, 2023
Short summary
The effects of assimilating a sub-grid-scale sea ice thickness distribution in a new Arctic sea ice data assimilation system
Nicholas Williams, Nicholas Byrne, Daniel Feltham, Peter Jan Van Leeuwen, Ross Bannister, David Schroeder, Andrew Ridout, and Lars Nerger
The Cryosphere, 17, 2509–2532, https://doi.org/10.5194/tc-17-2509-2023,https://doi.org/10.5194/tc-17-2509-2023, 2023
Short summary
Development of a flexible data assimilation method in a 3D unstructured-grid ocean model under Earth System Modeling Framework
Hao-Cheng Yu, Yinglong Joseph Zhang, Lars Nerger, Carsten Lemmen, Jason C. S. Yu, Tzu-Yin Chou, Chi-Hao Chu, and Chuen-Teyr Terng
EGUsphere, https://doi.org/10.5194/egusphere-2022-114,https://doi.org/10.5194/egusphere-2022-114, 2022
Preprint archived
Short summary
Brief communication: The challenge and benefit of using sea ice concentration satellite data products with uncertainty estimates in summer sea ice data assimilation
Qinghua Yang, Martin Losch, Svetlana N. Losa, Thomas Jung, Lars Nerger, and Thomas Lavergne
The Cryosphere, 10, 761–774, https://doi.org/10.5194/tc-10-761-2016,https://doi.org/10.5194/tc-10-761-2016, 2016
Short summary

Related subject area

Climate and Earth system modeling
Earth System Model Aerosol–Cloud Diagnostics (ESMAC Diags) package, version 2: assessing aerosols, clouds, and aerosol–cloud interactions via field campaign and long-term observations
Shuaiqi Tang, Adam C. Varble, Jerome D. Fast, Kai Zhang, Peng Wu, Xiquan Dong, Fan Mei, Mikhail Pekour, Joseph C. Hardin, and Po-Lun Ma
Geosci. Model Dev., 16, 6355–6376, https://doi.org/10.5194/gmd-16-6355-2023,https://doi.org/10.5194/gmd-16-6355-2023, 2023
Short summary
CIOFC1.0: a common parallel input/output framework based on C-Coupler2.0
Xinzhu Yu, Li Liu, Chao Sun, Qingu Jiang, Biao Zhao, Zhiyuan Zhang, Hao Yu, and Bin Wang
Geosci. Model Dev., 16, 6285–6308, https://doi.org/10.5194/gmd-16-6285-2023,https://doi.org/10.5194/gmd-16-6285-2023, 2023
Short summary
Overcoming computational challenges to realize meter- to submeter-scale resolution in cloud simulations using the super-droplet method
Toshiki Matsushima, Seiya Nishizawa, and Shin-ichiro Shima
Geosci. Model Dev., 16, 6211–6245, https://doi.org/10.5194/gmd-16-6211-2023,https://doi.org/10.5194/gmd-16-6211-2023, 2023
Short summary
Introducing a new floodplain scheme in ORCHIDEE (version 7885): validation and evaluation over the Pantanal wetlands
Anthony Schrapffer, Jan Polcher, Anna Sörensson, and Lluís Fita
Geosci. Model Dev., 16, 5755–5782, https://doi.org/10.5194/gmd-16-5755-2023,https://doi.org/10.5194/gmd-16-5755-2023, 2023
Short summary
URock 2023a: an open-source GIS-based wind model for complex urban settings
Jérémy Bernard, Fredrik Lindberg, and Sandro Oswald
Geosci. Model Dev., 16, 5703–5727, https://doi.org/10.5194/gmd-16-5703-2023,https://doi.org/10.5194/gmd-16-5703-2023, 2023
Short summary

Cited articles

Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., and Arellano, A.: The Data Assimilation Research Testbed: A Community Facility, B. Am. Meteorol. Soc., 90, 1283–1296, 2009. a
Androsov, A., Nerger, L., Schnur, R., Schröter, J., Albertella, A., Rummel, R., Savcenko, R., Bosch, W., Skachko, S., and Danilov, S.: On the assimilation of absolute geodetic dynamics topography in a global ocean model: Impact on the deep ocean state, J. Geodesy, 93, 141–157, 2019. a, b
Browne, P. A. and Wilson, S.: A simple method for integrating a complex model into an ensemble data assimilation system using MPI, Environ. Modell. Softw., 68, 122–128, 2015. a, b
Browne, P. A., de Rosnay, P., Zuo, H., Bennett, A., and Dawson, A.: Weakly coupled ocean–atmosphere data assimilation in the ECMWF NWP system, Remote Sensing, 11, 234, https://doi.org/10.3390/rs11030234, 2019. a
Burgers, G., van Leeuwen, P. J., and Evensen, G.: On the Analysis Scheme in the Ensemble Kalman Filter, Mon. Weather Rev., 126, 1719–1724, 1998. a
Download
Short summary
Data assimilation combines observations with numerical models to get an improved estimate of the model state. This work discusses the technical aspects of how a coupled model that simulates the ocean and the atmosphere can be augmented by data assimilation functionality provided in generic form by the open-source software PDAF (Parallel Data Assimilation Framework). A very efficient program is obtained that can be executed on high-performance computers.