Articles | Volume 13, issue 9
Geosci. Model Dev., 13, 3887–3904, 2020
https://doi.org/10.5194/gmd-13-3887-2020
Geosci. Model Dev., 13, 3887–3904, 2020
https://doi.org/10.5194/gmd-13-3887-2020

Model description paper 01 Sep 2020

Model description paper | 01 Sep 2020

Taiwan Earth System Model Version 1: description and evaluation of mean state

Wei-Liang Lee et al.

Related authors

A Parameterization of Sub-grid Topographical Effects on Solar Radiation in the E3SM Land Model (Version 1.0): Implementation and Evaluation Over the Tibetan Plateau
Dalei Hao, Gautam Bisht, Yu Gu, Wei‐Liang Lee, Kuo-Nan Liou, and L. Ruby Leung
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-55,https://doi.org/10.5194/gmd-2021-55, 2021
Preprint under review for GMD
Short summary
Potential faster Arctic sea ice retreat triggered by snowflakes' greenhouse effect
Jui-Lin Frank Li, Mark Richardson, Wei-Liang Lee, Eric Fetzer, Graeme Stephens, Jonathan Jiang, Yulan Hong, Yi-Hui Wang, Jia-Yuh Yu, and Yinghui Liu
The Cryosphere, 13, 969–980, https://doi.org/10.5194/tc-13-969-2019,https://doi.org/10.5194/tc-13-969-2019, 2019
Short summary

Related subject area

Climate and Earth system modeling
Global evaluation of the nutrient-enabled version of the land surface model ORCHIDEE-CNP v1.2 (r5986)
Yan Sun, Daniel S. Goll, Jinfeng Chang, Philippe Ciais, Betrand Guenet, Julian Helfenstein, Yuanyuan Huang, Ronny Lauerwald, Fabienne Maignan, Victoria Naipal, Yilong Wang, Hui Yang, and Haicheng Zhang
Geosci. Model Dev., 14, 1987–2010, https://doi.org/10.5194/gmd-14-1987-2021,https://doi.org/10.5194/gmd-14-1987-2021, 2021
Short summary
Quantifying and attributing time step sensitivities in present-day climate simulations conducted with EAMv1
Hui Wan, Shixuan Zhang, Philip J. Rasch, Vincent E. Larson, Xubin Zeng, and Huiping Yan
Geosci. Model Dev., 14, 1921–1948, https://doi.org/10.5194/gmd-14-1921-2021,https://doi.org/10.5194/gmd-14-1921-2021, 2021
Short summary
A process-based evaluation of the Intermediate Complexity Atmospheric Research Model (ICAR) 1.0.1
Johannes Horak, Marlis Hofer, Ethan Gutmann, Alexander Gohm, and Mathias W. Rotach
Geosci. Model Dev., 14, 1657–1680, https://doi.org/10.5194/gmd-14-1657-2021,https://doi.org/10.5194/gmd-14-1657-2021, 2021
Short summary
Effects of coupling a stochastic convective parameterization with the Zhang–McFarlane scheme on precipitation simulation in the DOE E3SMv1.0 atmosphere model
Yong Wang, Guang J. Zhang, Shaocheng Xie, Wuyin Lin, George C. Craig, Qi Tang, and Hsi-Yen Ma
Geosci. Model Dev., 14, 1575–1593, https://doi.org/10.5194/gmd-14-1575-2021,https://doi.org/10.5194/gmd-14-1575-2021, 2021
Short summary
Sensitivity of surface solar radiation to aerosol–radiation and aerosol–cloud interactions over Europe in WRFv3.6.1 climatic runs with fully interactive aerosols
Sonia Jerez, Laura Palacios-Peña, Claudia Gutiérrez, Pedro Jiménez-Guerrero, Jose María López-Romero, Enrique Pravia-Sarabia, and Juan Pedro Montávez
Geosci. Model Dev., 14, 1533–1551, https://doi.org/10.5194/gmd-14-1533-2021,https://doi.org/10.5194/gmd-14-1533-2021, 2021
Short summary

Cited articles

Artale, V., Iudicone, D., Santoleri, R., Rupolo, V., Marullo, S., and D'Ortenzio, F.: Role of surface fluxes in ocean general circulation models using satellite sea surface temperature: Validation of and sensitivity to the forcing frequency of the Mediterranean thermohaline circulation, J. Geophys. Res.-Oceans, 107, 29-1–29-24, 2002. 
Bretherton, C. S. and Park, S.: A new moist turbulence parameterization in the Community Atmosphere Model, J. Climate, 22, 3422–2448, https://doi.org/10.1175/2008JCLI2556.1, 2009. 
Byun, D. and Schere, K. L.: Review of the Governing Equations, Computational Algorithms, and Other Components of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System, Appl. Mech. Rev., 59, 51–77, 2006. 
Carbone, R. E. and J. D. Tuttle: Rainfall occurrence in the U.S. warm season: The diurnal cycle, J. Climate, 21, 4132–4146, https://doi.org/10.1175/2008JCLI2275.1, 2008. 
Chen, J.-P., Tsai, I.-C., and Lin, Y.-C.: A statistical–numerical aerosol parameterization scheme, Atmos. Chem. Phys., 13, 10483–10504, https://doi.org/10.5194/acp-13-10483-2013, 2013. 
Download
Short summary
The Taiwan Earth System Model (TaiESM) is a new climate model developed in Taiwan. It includes several new features, and therefore it can better simulate the occurrence of convective rainfall, solar energy received by mountainous surfaces, and more detail chemical processes in aerosols. TaiESM can capture the trend of global warming after 1950 well, and its overall performance in most meteorological quantities is better than the average of global models used in IPCC AR5.