Articles | Volume 13, issue 8
https://doi.org/10.5194/gmd-13-3769-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-3769-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluation of CH4MODwetland and Terrestrial Ecosystem Model (TEM) used to estimate global CH4 emissions from natural wetlands
Tingting Li
LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
Yanyu Lu
CORRESPONDING AUTHOR
Anhui Institute of Meteorological Sciences, Key Laboratory of
Atmospheric Sciences and Remote Sensing of Anhui Province, Hefei 230031, China
Lingfei Yu
CORRESPONDING AUTHOR
Institute of Botany, Chinese Academy of Sciences, Beijing 100049,
China
Wenjuan Sun
Institute of Botany, Chinese Academy of Sciences, Beijing 100049,
China
Qing Zhang
LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Wen Zhang
LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Guocheng Wang
LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Zhangcai Qin
Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou
510245, China
Lijun Yu
LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Hailing Li
LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
College of Earth and Planetary Science, University of Chinese Academy of Sciences, Beijing 100049, China
Ran Zhang
CCRC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Related authors
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara H. Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Yi Xi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Biogeosciences, 22, 305–321, https://doi.org/10.5194/bg-22-305-2025, https://doi.org/10.5194/bg-22-305-2025, 2025
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 yr-1 in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Yao Gao, Eleanor J. Burke, Sarah E. Chadburn, Maarit Raivonen, Mika Aurela, Lawrence B. Flanagan, Krzysztof Fortuniak, Elyn Humphreys, Annalea Lohila, Tingting Li, Tiina Markkanen, Olli Nevalainen, Mats B. Nilsson, Włodzimierz Pawlak, Aki Tsuruta, Huiyi Yang, and Tuula Aalto
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-229, https://doi.org/10.5194/bg-2022-229, 2022
Manuscript not accepted for further review
Short summary
Short summary
We coupled a process-based peatland CH4 emission model HIMMELI with a state-of-art land surface model JULES. The performance of the coupled model was evaluated at six northern wetland sites. The coupled model is considered to be more appropriate in simulating wetland CH4 emission. In order to improve the simulated CH4 emission, the model requires better representation of the peat soil carbon and hydrologic processes in JULES and the methane production and transportation processes in HIMMELI.
Guocheng Wang, Zhongkui Luo, Yao Huang, Wenjuan Sun, Yurong Wei, Liujun Xiao, Xi Deng, Jinhuan Zhu, Tingting Li, and Wen Zhang
Atmos. Chem. Phys., 21, 3059–3071, https://doi.org/10.5194/acp-21-3059-2021, https://doi.org/10.5194/acp-21-3059-2021, 2021
Short summary
Short summary
We simulate the spatiotemporal dynamics of aboveground biomass (AGB) in Inner Mongolian grasslands using a machine-learning-based approach. Under climate change, on average, compared with the historical AGB (average of 1981–2019), the AGB at the end of this century (average of 2080–2100) would decrease by 14 % under RCP4.5 and 28 % under RCP8.5. The decrease in AGB might be mitigated or even reversed by positive carbon dioxide enrichment effects on plant growth.
Pengfei Han, Ning Zeng, Bo Yao, Wen Zhang, Weijun Quan, Pucai Wang, Ting Wang, Minqiang Zhou, Qixiang Cai, Yuzhong Zhang, Ruosi Liang, Wanqi Sun, and Shengxiang Liu
Atmos. Chem. Phys., 25, 4965–4988, https://doi.org/10.5194/acp-25-4965-2025, https://doi.org/10.5194/acp-25-4965-2025, 2025
Short summary
Short summary
Methane (CH4) is a potent greenhouse gas. Northern China contributes a large proportion of CH4 emissions, yet large observation gaps exist. Here we compiled a comprehensive dataset, which is publicly available, that includes ground-based, satellite-based, inventory, and modeling results to show the CH4 concentrations, enhancements, and spatial–temporal variations. The data can benefit the research community and policy-makers for future observations, atmospheric inversions, and policy-making.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Hongmei Li, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Carla F. Berghoff, Henry C. Bittig, Laurent Bopp, Patricia Cadule, Katie Campbell, Matthew A. Chamberlain, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Thomas Colligan, Jeanne Decayeux, Laique M. Djeutchouang, Xinyu Dou, Carolina Duran Rojas, Kazutaka Enyo, Wiley Evans, Amanda R. Fay, Richard A. Feely, Daniel J. Ford, Adrianna Foster, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul K. Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Xin Lan, Siv K. Lauvset, Nathalie Lefèvre, Zhu Liu, Junjie Liu, Lei Ma, Shamil Maksyutov, Gregg Marland, Nicolas Mayot, Patrick C. McGuire, Nicolas Metzl, Natalie M. Monacci, Eric J. Morgan, Shin-Ichiro Nakaoka, Craig Neill, Yosuke Niwa, Tobias Nützel, Lea Olivier, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Zhangcai Qin, Laure Resplandy, Alizée Roobaert, Thais M. Rosan, Christian Rödenbeck, Jörg Schwinger, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Roland Séférian, Shintaro Takao, Hiroaki Tatebe, Hanqin Tian, Bronte Tilbrook, Olivier Torres, Etienne Tourigny, Hiroyuki Tsujino, Francesco Tubiello, Guido van der Werf, Rik Wanninkhof, Xuhui Wang, Dongxu Yang, Xiaojuan Yang, Zhen Yu, Wenping Yuan, Xu Yue, Sönke Zaehle, Ning Zeng, and Jiye Zeng
Earth Syst. Sci. Data, 17, 965–1039, https://doi.org/10.5194/essd-17-965-2025, https://doi.org/10.5194/essd-17-965-2025, 2025
Short summary
Short summary
The Global Carbon Budget 2024 describes the methodology, main results, and datasets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2024). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Bo Fang, Nana Wei, Weixiong Zhao, Nana Yang, Hao Zhou, Heng Zhang, Jiarong Li, Weijun Zhang, Yanyu Lu, Zhu Zhu, and Yue Liu
Atmos. Meas. Tech., 18, 1243–1256, https://doi.org/10.5194/amt-18-1243-2025, https://doi.org/10.5194/amt-18-1243-2025, 2025
Short summary
Short summary
A portable laser-flash photolysis Faraday rotation spectrometer for measuring atmospheric total hydroxyl (OH) reactivity was developed, with optical box dimensions of 130 cm × 40 cm × 35 cm. It features a pump–probe multi-pass cell with a high overlapping factor of 75.4 %. The instrument’s precision and uncertainty are 1.0 s-1 (1σ, 300 s) and within 2 s-1, respectively. This portable, cost-effective instrument expands current measurement capabilities and is convenient for field applications.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara H. Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Yi Xi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Biogeosciences, 22, 305–321, https://doi.org/10.5194/bg-22-305-2025, https://doi.org/10.5194/bg-22-305-2025, 2025
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 yr-1 in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Daju Wang, Peiyang Ren, Xiaosheng Xia, Lei Fan, Zhangcai Qin, Xiuzhi Chen, and Wenping Yuan
Earth Syst. Sci. Data, 16, 2465–2481, https://doi.org/10.5194/essd-16-2465-2024, https://doi.org/10.5194/essd-16-2465-2024, 2024
Short summary
Short summary
This study generated a high-precision dataset, locating forest harvested carbon and quantifying post-harvest wood emissions for various uses. It enhances our understanding of forest harvesting and post-harvest carbon dynamics in China, providing essential data for estimating the forest ecosystem carbon budget and emphasizing wood utilization's impact on carbon emissions.
Yao Gao, Eleanor J. Burke, Sarah E. Chadburn, Maarit Raivonen, Mika Aurela, Lawrence B. Flanagan, Krzysztof Fortuniak, Elyn Humphreys, Annalea Lohila, Tingting Li, Tiina Markkanen, Olli Nevalainen, Mats B. Nilsson, Włodzimierz Pawlak, Aki Tsuruta, Huiyi Yang, and Tuula Aalto
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-229, https://doi.org/10.5194/bg-2022-229, 2022
Manuscript not accepted for further review
Short summary
Short summary
We coupled a process-based peatland CH4 emission model HIMMELI with a state-of-art land surface model JULES. The performance of the coupled model was evaluated at six northern wetland sites. The coupled model is considered to be more appropriate in simulating wetland CH4 emission. In order to improve the simulated CH4 emission, the model requires better representation of the peat soil carbon and hydrologic processes in JULES and the methane production and transportation processes in HIMMELI.
Ziqi Lin, Yongjiu Dai, Umakant Mishra, Guocheng Wang, Wei Shangguan, Wen Zhang, and Zhangcai Qin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-232, https://doi.org/10.5194/essd-2022-232, 2022
Manuscript not accepted for further review
Short summary
Short summary
Spatial soil organic carbon (SOC) data is critical for predictions in carbon climate feedbacks and future climate trends, but no conclusion has yet been reached on which dataset to be used for specific purposes. We evaluated the SOC estimates from five widely used global soil datasets and a regional permafrost dataset, and identify uncertainties of SOC estimates by region, biome, and data sources, hoping to help improve SOC/soil data in the future.
Chen Yang, Yue Shi, Wenjuan Sun, Jiangling Zhu, Chengjun Ji, Yuhao Feng, Suhui Ma, Zhaodi Guo, and Jingyun Fang
Biogeosciences, 19, 2989–2999, https://doi.org/10.5194/bg-19-2989-2022, https://doi.org/10.5194/bg-19-2989-2022, 2022
Short summary
Short summary
Quantifying China's forest biomass C pool is important in understanding C cycling in forests. However, most of studies on forest biomass C pool were limited to the period of 2004–2008. Here, we used a biomass expansion factor method to estimate C pool from 1977 to 2018. The results suggest that afforestation practices, forest growth, and environmental changes were the main drivers of increased C sink. Thus, this study provided an essential basis for achieving China's C neutrality target.
Zhiping Tian, Dabang Jiang, Ran Zhang, and Baohuang Su
Geosci. Model Dev., 15, 4469–4487, https://doi.org/10.5194/gmd-15-4469-2022, https://doi.org/10.5194/gmd-15-4469-2022, 2022
Short summary
Short summary
We present an experimental design for a new set of transient experiments for the Holocene from 11.5 ka to the preindustrial period (1850) with a relatively high-resolution Earth system model. Model boundary conditions include time-varying full and single forcing of orbital parameters, greenhouse gases, and ice sheets. The simulations will help to study the mean climate trend and abrupt climate changes through the Holocene in response to both full and single external forcings.
Xiaohui Lin, Wen Zhang, Monica Crippa, Shushi Peng, Pengfei Han, Ning Zeng, Lijun Yu, and Guocheng Wang
Earth Syst. Sci. Data, 13, 1073–1088, https://doi.org/10.5194/essd-13-1073-2021, https://doi.org/10.5194/essd-13-1073-2021, 2021
Short summary
Short summary
CH4 is a potent greenhouse gas, and China’s anthropogenic CH4 emissions account for a large proportion of global total emissions. However, the existing estimates either focus on a specific sector or lag behind real time by several years. We collected and analyzed 12 datasets and compared them to reveal the spatiotemporal changes and their uncertainties. We further estimated the emissions from 1990–2019, and the estimates showed a robust trend in recent years when compared to top-down results.
Guocheng Wang, Zhongkui Luo, Yao Huang, Wenjuan Sun, Yurong Wei, Liujun Xiao, Xi Deng, Jinhuan Zhu, Tingting Li, and Wen Zhang
Atmos. Chem. Phys., 21, 3059–3071, https://doi.org/10.5194/acp-21-3059-2021, https://doi.org/10.5194/acp-21-3059-2021, 2021
Short summary
Short summary
We simulate the spatiotemporal dynamics of aboveground biomass (AGB) in Inner Mongolian grasslands using a machine-learning-based approach. Under climate change, on average, compared with the historical AGB (average of 1981–2019), the AGB at the end of this century (average of 2080–2100) would decrease by 14 % under RCP4.5 and 28 % under RCP8.5. The decrease in AGB might be mitigated or even reversed by positive carbon dioxide enrichment effects on plant growth.
Cited articles
Allen, O. B. and Raktoe, B. L.: Accuracy analysis with special reference to
the prediction of grassland yield, Biom. J., 23, 371–388, 1981.
Alvalá, P. C. and Kirchhoff, V. W. J. H.: Methane fluxes from the
Pantanal floodplain in Brazil: seasonal variation, in: Non-CO2
greenhouse gases: Scientific understanding, control and implementation:
Proceedings of the Second International Symposium, 8–10 September 1999, Noordwijkerhout, the Netherlands, edited by: van Ham, J., Baede, A. P. M.,
Meyer, L. A., and Ybema, R., Springer Netherlands, Dordrecht, the Netherlands, 95–99,
2000
Antonov, J. I., Seidov, D., Boyer, T. P., Locarnini, R. A., Mishonov,
A. V., Garcia, H. E., Baranova, O. K., Zweng, M. M., and Johnson, D. R.,
World Ocean Atlas 2009, Volume 2: Salinity, in: NOAA Atlas NESDIS 69, edited
by: Levitus, S., U.S. Government Printing Office, USA, 2010.
Aubinet, M., Vesala, T., and Papale, D.: Eddy covariance: a practical guide
to measurement and data analysis, Springer Science & Business Media, Dordrecht, the Netherlands,
2012.
Aurela, M., Laurila, T., and Tuovinen, J. P.: Annual CO2 balance of a
subarctic fen in northern Europe: importance of the wintertime efflux, J.
Geophys. Res.-Atmos., 107, 4607, https://doi.org/10.1029/2002JD002055, 2002.
Bartlett, K. B., Harriss, R., and Sebacher, D.: Methane flux from coastal salt
marshes, J. Geophys. Res.-Atmos., 90, 5710–5720, 1985.
Bartlett, K. B., Bartlett, D. S., Harriss, R. C., and Sebacher, D. I.:
Methane emissions along a salt marsh salinity gradient, Biogeochemistry, 4,
183–202, https://doi.org/10.1007/bf02187365, 1987.
Bartlett, K. B., Crill, P., Sass, R., Harriss, R., and Dise, N.: Methane
emissions from tundra environments in the Yukon-Kuskokwim Delta, Alaska, J.
Geophys. Res., 97, 16645–16660, https://doi.org/10.1029/91JD00610, 1992.
Belger, L., Forsberg, B. R., and Melack, J. M.: Carbon dioxide and methane
emissions from interfluvial wetlands in the upper Negro River basin, Brazil,
Biogeochemistry, 105, 171–183, https://doi.org/10.1007/s10533-010-9536-0, 2011.
Belward, A. S., Estes, J. E., and Kline, K. D.: The IGBP-DIS global 1-km
land-cover data set DISCover: A project overview, Photogramm. Eng. Remote
Sens., 65, 1013–1020, 1999.
Bennett, N. D., Croke, B. F. W., Guariso, G., Guillaume, J. H. A., Hamilton,
S. H., Jakeman, A. J., Marsili-Libelli, S., Newham, L. T. H., Norton, J. P.,
Perrin, C., Pierce, S. A., Robson, B., Seppelt, R., Voinov, A. A., Fath, B.
D., and Andreassian, V.: Characterising performance of environmental models,
Environ. Model. Softw., 40, 1–20,
https://doi.org/10.1016/j.envsoft.2012.09.011, 2013.
Beven, K., and Kirkby, M. J.: A physically based, variable contributing area
model of basin hydrology, Hydrol. Sci. B., 24, 43–69, 1979.
Bhullar, G. S., Iravani, M., Edwards, P. J., and Venterink, H. O.: Methane
transport and emissions from soil as affected by water table and vascular
plants, BMC Ecol., 13, 32, https://doi.org/10.1186/1472-6785-13-32, 2013.
Bohn, T., Lettenmaier, D., Sathulur, K., Bowling, L., Podest, E., McDonald,
K., and Friborg, T.: Methane emissions from western Siberian wetlands:
heterogeneity and sensitivity to climate change, Environ. Res. Lett., 2,
045015, https://doi.org/10.1088/1748-9326/2/4/045015, 2007.
Boucher, O., Friedlingstein, P., Collins, B., and Shine, K. P.: The indirect
global warming potential and global temperature change potential due to
methane oxidation, Environ. Res. Lett., 4, 044007, https://doi.org/10.1088/1748-9326/4/4/044007, 2009.
Bousquet, P., Ciais, P., Miller, J., Dlugokencky, E., Hauglustaine, D.,
Prigent, C., Van der Werf, G., Peylin, P., Brunke, E.-G., and Carouge, C.:
Contribution of anthropogenic and natural sources to atmospheric methane
variability, Nature, 443, 439–443, 2006.
Bridgham, S., Updegraff, K., and Pastor, J.: Carbon, Nitrogen, and
Phosphorus Mineralization in Northern Wetlands, Ecology, 79, 1545–1561,
1998.
Bridgham, S. D., Cadillo-Quiroz, H., Keller, J. K., and Zhuang, Q.: Methane
emissions from wetlands: biogeochemical, microbial, and modeling
perspectives from local to global scales, Glob. Change Biol., 19,
1325–1346, 2013.
Bruhwiler, L., Dlugokencky, E., Masarie, K., Ishizawa, M., Andrews, A., Miller, J., Sweeney, C., Tans, P., and Worthy, D.: CarbonTracker-CH4: an assimilation system for estimating emissions of atmospheric methane, Atmos. Chem. Phys., 14, 8269–8293, https://doi.org/10.5194/acp-14-8269-2014, 2014.
Cao, M., Marshall, S., and Gregson, K.: Global carbon exchange and methane
emissions from natural wetlands: Application of a process-based model, J.
Geophys. Res.-Atmos., 101, 14399–14414, 1996.
Carter, A. J. and Scholes, R. J.: Spatial global database of soil
properties., IGBP Global Soil Data Task CD-ROM, International
Geosphere-Biosphere Programme Data Information Systems, Toulouse, France, 2000.
Chaichana, N., Bellingrath-Kimura, S., Komiya, S., Fujii, Y., Noborio, K.,
Dietrich, O., and Pakoktom, T.: Comparison of closed chamber and eddy
covariance methods to improve the understanding of methane fluxes from rice
paddy fields in Japan, Atmosphere, 9, 356, https://doi.org/10.3390/atmos9090356, 2018.
Chanton, J. P.: The effect of gas transport on the isotope signature of
methane in wetlands, Org. Geochem., 36, 753–768, 2005.
Christensen, T. R.: Methane emission from Arctic tundra, Biogeochemistry,
21, 117–139, https://doi.org/10.1007/BF00000874, 1993.
Christensen, T. R., Friborg, T., Sommerkorn, M., Kaplan, J., Illeris, L.,
Soegaard, H., Nordstroem, C., and Jonasson, S.: Trace gas exchange in a
high-Arctic valley: 1. Variationsin CO2 and CH4 flux between
tundra vegetation types, Global Biogeochem. Cy., 14, 701–713, 2000.
Crill, P. M., Bartlett, K. B., Wilson, J. O., Sebacher, D. I., Harriss, R.
C., Melack, J. M., MacIntyre, S., Lesack, L., and Smith-Morrill, L.:
Tropospheric methane from an Amazonian floodplain lake, J. Geophys. Res.-Atmos., 93, 1564–1570, https://doi.org/10.1029/JD093iD02p01564, 1988.
Dalsøren, S. B., Myhre, C. L., Myhre, G., Gomez-Pelaez, A. J., Søvde, O. A., Isaksen, I. S. A., Weiss, R. F., and Harth, C. M.: Atmospheric methane evolution the last 40 years, Atmos. Chem. Phys., 16, 3099–3126, https://doi.org/10.5194/acp-16-3099-2016, 2016.
Deemer, B. R., Harrison, J. A., Li, S., Beaulieu, J. J., DelSontro, T.,
Barros, N., Bezerra-Neto, J. F., Powers, S. M., dos Santos, M. A., and Vonk,
J. A.: Greenhouse gas emissions from reservoir water surfaces: A new global
synthesis, BioScience, 66, 949–964, https://doi.org/10.1093/biosci/biw117, 2016.
Delaune, R. D., Smith, C. J., and Patrick Jr., W. H.: Methane release from Gulf
coast wetlands, Tellus B, 35B, 8–15, https://doi.org/10.1111/j.1600-0889.1983.tb00002.x,
1983.
Devol, A. H., Richey, J. E., Clark, W. A., King, S. L., and Martinelli, L.
A.: Methane emissions to the troposphere from the Amazon floodplain, J.
Geophys. Res.-Atmos., 93, 1583–1592, https://doi.org/10.1029/JD093iD02p01583, 1988.
Dlugokencky, E. J.: NOAA/ESRL, available at: http://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/, last access: 18 July
2016.
Dlugokencky, E. J., Bruhwiler, L., White, J., Emmons, L., Novelli, P. C.,
Montzka, S. A., Masarie, K. A., Lang, P. M., Crotwell, A., and Miller, J.
B.: Observational constraints on recent increases in the atmospheric
CH4 burden, Geophys. Res. Lett., 36, L18803, https://doi.org/10.1029/2009GL039780, 2009.
Duan, X., Wang, X., Mu, Y., and Ouyang, Z.: Seasonal and diurnal variations
in methane emissions from Wuliangsu Lake in arid regions of China, Atmos.
Environ., 39, 4479–4487, 2005.
Fan, S. M., Wofsy, S. C., Bakwin, P. S., Jacob, D. J., Anderson, S. M.,
Kebabian, P. L., McManus, J. B., Kolb, C. E., and Fitzjarrald, D. R.:
Micrometeorological measurements of CH4 and CO2 exchange between
the atmosphere and subarctic tundra, J. Geophys. Res.-Atmos., 97,
16627–16643, https://doi.org/10.1029/91jd02531, 1992.
Fan, Y. and van den Dool, H.: Climate Prediction Center global monthly soil
moisture data set at 0.5 resolution for 1948 to present, J. Geophys. Res.-Atmos., 109, D10102, https://doi.org/10.1029/2003JD004345, 2004.
FAO/IIASA/ISRIC/ISS-CAS/JRC: Harmonized World Soil Database, version 1.0,
FAO, Rome, Italy and IIASA, Laxenburg, Austria, 42 pp., 2008.
FAO/IIASA/ISRIC/ISS-CAS/JRC: Harmonized World Soil Database, version 1.2,
FAO and IIASA, Rome, Italy and Laxenburg, Austria, 43 pp., 2012.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S.,
Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S.,
Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf,
D.: The shuttle radar topography mission, Rev. Geophys., 45, RG2004, https://doi.org/10.1029/2005rg000183, 2007.
Fraser, A., Palmer, P. I., Feng, L., Boesch, H., Cogan, A., Parker, R., Dlugokencky, E. J., Fraser, P. J., Krummel, P. B., Langenfelds, R. L., O'Doherty, S., Prinn, R. G., Steele, L. P., van der Schoot, M., and Weiss, R. F.: Estimating regional methane surface fluxes: the relative importance of surface and GOSAT mole fraction measurements, Atmos. Chem. Phys., 13, 5697–5713, https://doi.org/10.5194/acp-13-5697-2013, 2013.
Friborg, T., Christensen, T., and Søgaard, H.: Rapid response of
greenhouse gas emission to early spring thaw in a subarctic mire as shown by
micrometeorological techniques, Geophys. Res. Lett., 24, 3061–3064, https://doi.org/10.1029/97GL03024, 1997.
Galand, P. E., Yrjälä, K., and Conrad, R.: Stable carbon isotope fractionation during methanogenesis in three boreal peatland ecosystems, Biogeosciences, 7, 3893–3900, https://doi.org/10.5194/bg-7-3893-2010, 2010.
Gedney, N., Cox, P., and Huntingford, C.: Climate feedback from wetland
methane emissions, Geophys. Res. Lett., 31, L20503, https://doi.org/10.1029/2004GL020919, 2004.
Ghosh, A., Patra, P. K., Ishijima, K., Umezawa, T., Ito, A., Etheridge, D. M., Sugawara, S., Kawamura, K., Miller, J. B., Dlugokencky, E. J., Krummel, P. B., Fraser, P. J., Steele, L. P., Langenfelds, R. L., Trudinger, C. M., White, J. W. C., Vaughn, B., Saeki, T., Aoki, S., and Nakazawa, T.: Variations in global methane sources and sinks during 1910–2010, Atmos. Chem. Phys., 15, 2595–2612, https://doi.org/10.5194/acp-15-2595-2015, 2015.
Hanis, K. L., Tenuta, M., Amiro, B. D., and Papakyriakou, T. N.: Seasonal dynamics of methane emissions from a subarctic fen in the Hudson Bay Lowlands, Biogeosciences, 10, 4465–4479, https://doi.org/10.5194/bg-10-4465-2013, 2013.
Hao, Q. J.: Effect of land-use change on greenhouse gases emissions in
freshwater marshes in the Sanjiang Plain, PhD Dissertation, Institute of
Atmospheric Physics, Chinese Academy of Sciences, Beijing, China, 2006.
Harazono, Y., Mano, M., Miyata, A., Yoshimoto, M., Zulueta, R., Vourlitis,
G., Kwon, H., and Oechel, W.: Temporal and spatial differences of methane
flux at arctic tundra in Alaska, Mem. Natl. Inst. Polar Res., 59, 79–95,
2006.
Harris, I., Jones, P., Osborn, T., and Lister, D.: Updated high-resolution
grids of monthly climatic observations – the CRU TS3. 10 Dataset, Int. J.
Climatol., 34, 623–642, 2014.
Hatala, J. A., Detto, M., Sonnentag, O., Deverel, S. J., Verfaillie, J., and
Baldocchi, D. D.: Greenhouse gas (CO2, CH4, H2O) fluxes from
drained and flooded agricultural peatlands in the Sacramento-San Joaquin
Delta, Agr., Ecosyst. Environ., 150, 1–18, 2012.
Hirota, M., Tang, Y., Hu, Q., Hirata, S., Kato, T., Mo, W., Cao, G., and
Mariko, S.: Methane emissions from different vegetation zones in a
Qinghai-Tibetan Plateau wetland, Soil Biol. Biochem., 36, 737–748, 2004.
Huang, G., Li, X., Hu, Y., Shi, Y., and Xiao, D.: Methane (CH4)
emission from a natural wetland of northern China, J. Environ. Sci. Health,
40, 1227–1238, 2005.
Huang, P. Y., Yu, H. X., Chai, L. H., Chai, F. Y., and Zhang, W. F.: Methane
emission flux of Zhalong Phragmites Australis wetlands in growth season,
Chin. J. Appl. Ecol., 22, 1219–1224, 2011.
Huang, Y. A. O., Sass, R., and Fisher, F.: Methane emission from Texas rice
paddy soils. 1. Quantitative multi-year dependence of CH4 emission on
soil, cultivar and grain yield, Glob. Change Biol., 3, 479–489, 1997.
Huttunen, J. T., Alm, J., Saarijärvi, E., Lappalainen, K. M., Silvola,
J., and Martikainen, P. J.: Contribution of winter to the annual CH4
emission from a eutrophied boreal lake, Chemosphere, 50, 247–250, 2003.
IPCC: Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories:
Reference Manual, Paris, France, 1996.
Jauhiainen, J., Takahashi, H., Heikkinen, J. E., Martikainen, P. J., and
Vasander, H.: Carbon fluxes from a tropical peat swamp forest floor, Glob.
Change Biol., 11, 1788–1797, 2005.
Jitka, V., Jiří, D., Stanislav, S., Lenka, M., and Hana, Č.:
Effect of hummock-forming vegetation on methane emissions from a temperate
sedge-grass marsh, Wetlands, 37, 675–686, https://doi.org/10.1007/s13157-017-0898-0, 2017.
Joabsson, A. and Christensen, T. R.: Methane emissions from wetlands and
their relationship with vascular plants: an Arctic example, Glob. Change
Biol., 7, 919–932, https://doi.org/10.1046/j.1354-1013.2001.00044.x, 2001.
Kang, W. X., Zhao, Z. H., Tian, D. L., He, J. N., and Deng, X. W.: CO2
exchanges between mangrove- and shoal wetland ecosystems and atmosphere in
Guangzhou, Chin. J. Appl. Ecol., 19, 2605–2610, 2008.
Keddy, P. A.: Wetland ecology: principles and conservation, Cambridge
University Press, Cambridge, UK, 2010.
Keller, J. and Bridgham, S.: Pathways of Anaerobic Carbon Cycling Across an
Ombrotrophic–Minerotrophic Peatland Gradient, Limnol. Oceanogr., 52,
96–107, https://doi.org/10.4319/lo.2007.52.1.0096, 2007.
King, J., Reeburgh, W., Thieler, K., Kling, G., Loya, W., Johnson, L., and
Nadelhoffer, K.: Pulse-labeling studies of carbon cycling in Arctic tundra
ecosystems: The contribution of photosynthates to methane emission, Global
Biogeochem. Cy., 16, 1062, https://doi.org/10.1029/2001GB001456, 2002.
Kingsford, R. T., Basset, A., and Jackson, L.: Wetlands: conservation's poor
cousins, Aquat. Conserv., 26,
892–916, https://doi.org/10.1002/aqc.2709, 2016.
Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G.,
Dlugokencky, E. J., Bergamaschi, P., Bergmann, D., Blake, D. R., and
Bruhwiler, L.: Three decades of global methane sources and sinks, Nat.
Geosci., 6, 813–823, 2013.
Koh, H. S., Ochs, C., and Yu, K.: Hydrologic gradient and vegetation
controls on CH4 and CO2 fluxes in a spring-fed forested wetland,
Hydrobiologia, 630, 271–286, https://doi.org/10.1007/s10750-009-9821-x, 2009.
Kramer, K., Leinonen, I., Bartelink, H., Berbigier, P., Borghetti, M.,
Bernhofer, C., Cienciala, E., Dolman, A., Froer, O., and Gracia, C.:
Evaluation of six process-based forest growth models using eddy-covariance
measurements of CO2 and H2O fluxes at six forest sites in Europe,
Glob. Change Biol., 8, 213–230, 2002.
Kwon, M. J., Beulig, F., Ilie, I., Wildner, M., Küsel, K., Merbold, L.,
Mahecha, M. D., Zimov, N., Zimov, S. A., Heimann, M., Schuur, E. A. G.,
Kostka, J. E., Kolle, O., Hilke, I., and Göckede, M.: Plants,
microorganisms, and soil temperatures contribute to a decrease in methane
fluxes on a drained Arctic floodplain, Glob. Change Biol., 23, 2396–2412, https://doi.org/10.1111/gcb.13558, 2017.
Lehner, B. and Döll, P.: Development and validation of a global
database of lakes, reservoirs and wetlands, J. Hydrol., 296, 1–22,
2004.
Li, T., Huang, Y., Zhang, W., and Song, C.: CH4MODwetland: A
biogeophysical model for simulating methane emissions from natural wetlands,
Ecol. Model., 221, 666–680, 2010.
Li, T., Zhang, W., Zhang, Q., Lu, Y., Wang, G., Niu, Z., Raivonen, M., and Vesala, T.: Impacts of climate and reclamation on temporal variations in CH4 emissions from different wetlands in China: from 1950 to 2010, Biogeosciences, 12, 6853–6868, https://doi.org/10.5194/bg-12-6853-2015, 2015.
Li, T., Xie, B., Wang, G., Zhang, W., Zhang, Q., Vesala, T., and Raivonen,
M.: Field-scale simulation of methane emissions from coastal wetlands in
China using an improved version of CH4MODwetland, Sci. Total Environ.,
559, 256–267, https://doi.org/10.1016/j.scitotenv.2016.03.186, 2016.
Li, T., Zhang, Q., Cheng, Z., Wang, G., Yu, L., and Zhang, W.: Performance
of CH4MODwetland for the case study of different regions of natural
Chinese wetland, J. Environ. Sci., 57, 356–369, 2017.
Li, T., Li, H., Zhang, Q., Ma, Z., Yu, L., Lu, Y., Niu, Z., Sun, W., and
Liu, J.: Prediction of CH4 emissions from potential natural wetlands on
the Tibetan Plateau during the 21st century, Sci. Total Environ., 657,
498–508, https://doi.org/10.1016/j.scitotenv.2018.11.275, 2019a.
Li, T., Lu, Y., Yu, L., Sun, W., Zhang, Q., Zhang, W., Wang, G., Qin, Z., Yu, L., Li, H., and Zhang, R.: valuation of two process-based models used to estimate global CH4 emissions from natural wetlands, Zenodo, https://doi.org/10.5281/zenodo.3537621, 2019b.
Li, Y. J., Cheng, Z. L., Wang, D. Q., Hu, H., and Wang, C.: Methane emission
in the process of wetland and vegetation succession in salt marsh of Yangtze
River estuary, Acta Sci. Circumst., 34, 2035–2402, 2014.
Long, K. D., Flanagan, L. B., and Cai, T.: Diurnal and seasonal variation in
methane emissions in a northern Canadian peatland measured by eddy
covariance, Glob. Change Biol., 16, 2420–2435, https://doi.org/10.1111/j.1365-2486.2009.02083.x, 2010.
Loveland, T., Reed, B., Brown, J., Ohlen, D., Zhu, Z., Yang, L., and
Merchant, J.: Development of a global land cover characteristics database
and IGBP DISCover from 1 km AVHRR data, Int. J. Remote Sens., 21, 1303–1330,
2000.
Marthews, T. R., Dadson, S. J., Lehner, B., Abele, S., and Gedney, N.: High-resolution global topographic index values for use in large-scale hydrological modelling, Hydrol. Earth Syst. Sci., 19, 91–104, https://doi.org/10.5194/hess-19-91-2015, 2015.
Mastepanov, M., Sigsgaard, C., Dlugokencky, E. J., Houweling, S., Ström,
L., Tamstorf, M. P., and Christensen, T. R.: Large tundra methane burst
during onset of freezing, Nature, 456, 628–630, 2008.
McEwing, K. R., Fisher, J. P., and Zona, D.: Environmental and vegetation
controls on the spatial variability of CH4 emission from wet-sedge and
tussock tundra ecosystems in the Arctic, Plant Soil, 388, 37–52, https://doi.org/10.1007/s11104-014-2377-1, 2015.
Meirink, J. F., Bergamaschi, P., and Krol, M. C.: Four-dimensional variational data assimilation for inverse modelling of atmospheric methane emissions: method and comparison with synthesis inversion, Atmos. Chem. Phys., 8, 6341–6353, https://doi.org/10.5194/acp-8-6341-2008, 2008.
Melack, J. M., Hess, L. L., Gastil, M., Forsberg, B. R., Hamilton, S. K.,
Lima, I. B. T., and Novo, E. M. L. M.: Regionalization of methane emissions
in the Amazon Basin with microwave remote sensing, Glob. Change Biol., 10,
530–544, https://doi.org/10.1111/j.1365-2486.2004.00763.x, 2004.
Melillo, J. M., McGuire, A. D., Kicklighter, D. W., Moore, B., Vorosmarty,
C. J., and Schloss, A. L.: Global climate change and terrestrial net primary
production, Nature, 363, 234–240, 1993.
Melling, L., Hatanoa, R., and Gohc, K. J.: Methane fluxes from three
ecosystems in tropical peatland of Sarawak, Malaysia, Soil Biol. Biochem.,
37, 1445–1453, 2005.
Melton, J. R., Wania, R., Hodson, E. L., Poulter, B., Ringeval, B., Spahni, R., Bohn, T., Avis, C. A., Beerling, D. J., Chen, G., Eliseev, A. V., Denisov, S. N., Hopcroft, P. O., Lettenmaier, D. P., Riley, W. J., Singarayer, J. S., Subin, Z. M., Tian, H., Zürcher, S., Brovkin, V., van Bodegom, P. M., Kleinen, T., Yu, Z. C., and Kaplan, J. O.: Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP), Biogeosciences, 10, 753–788, https://doi.org/10.5194/bg-10-753-2013, 2013.
Meng, L., Hess, P. G. M., Mahowald, N. M., Yavitt, J. B., Riley, W. J., Subin, Z. M., Lawrence, D. M., Swenson, S. C., Jauhiainen, J., and Fuka, D. R.: Sensitivity of wetland methane emissions to model assumptions: application and model testing against site observations, Biogeosciences, 9, 2793–2819, https://doi.org/10.5194/bg-9-2793-2012, 2012.
Moore, T., Roulet, N., and Knowles, R.: Spatial and temporal variations of
methane flux from subarctic/northern Boreal fens, Global Biogeochem. Cy.,
4, 29–46, https://doi.org/10.1029/GB004i001p00029, 1990.
Moore, T., Heyes, A., and Roulet, N.: Methane emissions from wetlands,
southern Hudson Bay Lowland, J. Geophys. Res., 99, 1455–1467, https://doi.org/10.1029/93JD02457, 1994.
Moore, T., Young, A., Bubier, J., Humphreys, E., Lafleur, P., and Roulet,
N.: A multi-year record of methane flux at the Mer Bleue Bog, Southern
Canada, Ecosystems, 14, 646–657, https://doi.org/10.1007/s10021-011-9435-9, 2011.
Morse, J. L., Ardón, M., and Bernhardt, E. S.: Greenhouse gas fluxes in
southeastern U.S. coastal plain wetlands under contrasting land uses, Ecol.
Appl., 22, 264–280, https://doi.org/10.1890/11-0527.1, 2012.
Myhre, G., Shindell, D., Bréon, F. M., Collins, W., Fuglestvedt, J.,
Huang, J., Koch, D., Lamarque, J. F., Lee, D., Mendoza, B., Nakajima, T.,
Robock, A., Stephens, G., Takemura, T., and Zhang, H.: Anthropogenic and
Natural Radiative Forcing, in: Climate Change 2013: The Physical Science
Basis. Contribution of Working Group I to the Fifth Assessment Report of the
Inter-governmental Panel on Climate Change, edited by: Stocker, T. F., Qin,
D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A.,
Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge,
UK and New York, NY, USA, 2013.
Nakano, T., Kuniyoshi, S., and Fukuda, M.: Temporal variation in methane
emission from tundra wetlands in a permafrost area, northeastern Siberia,
Atmos. Environ., 34, 1205–1213, https://doi.org/10.1016/S1352-2310(99)00373-8, 2000.
Nisbet, E., Manning, M., Dlugokencky, E., Fisher, R., Lowry, D., Michel, S.,
Lund Myhre, C., Platt, S., Allen, G., Bousquet, P., Brownlow, R., Cain, M.,
France, J., Hermansen, O., Hossaini, R., Jones, A., Levin, I., Manning, A.,
Myhre, G., and White, J.: Very strong atmospheric methane growth in the four
years 2014–2017: Implications for the Paris Agreement, Global Biogeochem. Cy., 33, 318–342, https://doi.org/10.1029/2018GB006009, 2019.
Olefeldt, D., Roulet, N. T., Bergeron, O., Crill, P., Bäckstrand, K.,
and Christensen, T. R.: Net carbon accumulation of a high-latitude
permafrost palsa mire similar to permafrost-free peatlands, Geophys. Res.
Lett., 39, L03501, https://doi.org/10.1029/2011GL050355, 2012.
Olson, D., Griffis, T., Noormets, A., Kolka, R., and Chen, J.: Interannual,
seasonal, and retrospective analysis of the methane and carbon dioxide
budgets of a temperate peatland, J. Geophys. Res.-Biogeo., 118, 226–238, https://doi.org/10.1002/jgrg.20031, 2013.
Page, S., Rieley, J., Shotyk, W., and Weiss, D.: Interdependence of peat and
vegetation in a tropical peat swamp forest, Philos. T. Roy. Soc. Lond. B, 354, 1885–1897, https://doi.org/10.1098/rstb.1999.0529, 1999.
Parmentier, F. J. W., van Huissteden, J., van der Molen, M. K.,
Schaepman-Strub, G., Karsanaev, S. A., Maximov, T. C., and Dolman, A. J.:
Spatial and temporal dynamics in eddy covariance observations of methane
fluxes at a tundra site in northeastern Siberia, J. Geophys. Res.-Biogeo., 116, G03016, https://doi.org/10.1029/2010jg001637, 2011.
Poffenbarger, H. J., Needelman, B. A., and Megonigal, J. P.: Salinity
influence on methane emissions from tidal marshes, Wetlands, 31, 831–842, https://doi.org/10.1007/s13157-011-0197-0, 2011.
Potter, C. S.: An ecosystem simulation model for methane production and emission from wetlands, Global Biogeochem. Cy., 11, 495–506, 1997.
Poulter, B., Bousquet, P., Canadell, J. G., Ciais, P., Peregon, A., Saunois,
M., Arora, V. K., Beerling, D. J., Brovkin, V., and Jones, C. D.: Global
wetland contribution to 2000–2012 atmospheric methane growth rate dynamics,
Environ. Res. Lett., 12, 094013, https://doi.org/10.1088/1748-9326/aa8391, 2017.
Riley, W. J., Subin, Z. M., Lawrence, D. M., Swenson, S. C., Torn, M. S., Meng, L., Mahowald, N. M., and Hess, P.: Barriers to predicting changes in global terrestrial methane fluxes: analyses using CLM4Me, a methane biogeochemistry model integrated in CESM, Biogeosciences, 8, 1925–1953, https://doi.org/10.5194/bg-8-1925-2011, 2011.
Rykiel, E. J.: Testing ecological models: the meaning of validation, Ecol.
Model., 90, 229–244, https://doi.org/10.1016/0304-3800(95)00152-2, 1996.
Sachs, T., Giebels, M., Boike, J., and Kutzbach, L.: Environmental controls
on CH4 emission from polygonal tundra on the microsite scale in the
Lena river delta, Siberia, Glob. Change Biol., 16, 3096–3110, 2010.
Schimel, J., Nadelhoffer, K., Shaver, G., Giblin, A., and Rastetter, E.: Methane
and carbon dioxide emissions were monitored in control, greenhouse, and
nitrogen and phosphorus fertilized plots of three different plant
communities Arctic LTER experimental plots, Toolik Field Station, 1992,
Environmental Data Initiative, https://doi.org/10.6073/pasta/3e2ae7928b00f7546338086d0dc3bd55, 1994.
Schimel, J., Nadelhoffer, K., Shaver, G., Giblin, A., Rastetter, E.: Methane
and carbon dioxide emissions were monitored in control, greenhouse, and
nitrogen and phosphorus fertilized plots of three different plant
communities, Toolik Field Station, North Slope Alaska, Arctic LTER 1993,
Environmental Data Initiative, https://doi.org/10.6073/pasta/64c4ad25b7efb6f98acc22301dd1802a, 1995.
Sebacher, D., Harriss, R., Bartlett, K., Sebacher, S., and Grice, S.:
Atmospheric methane sources: Alaskan tundra bogs, an alpine fen, and a
subarctic boreal marsh, Tellus B, 38B, 1–10, https://doi.org/10.1111/j.1600-0889.1986.tb00083.x, 1986.
Sellers, P. J., Hall, F. G., Kelly, R. D., Black, A., Baldocchi, D., Berry,
J., Ryan, M., Ranson, K. J., Crill, P. M., and Lettenmaier, D. P.: BOREAS in
1997: Experiment overview, scientific results, and future directions, J.
Geophys. Res.-Atmos., 102, 28731–28769, 1997.
Shannon, R. D., White, J. R., Lawson, J. E., and Gilmour, B. S.: Methane
efflux from emergent vegetation in peatlands, J. Ecol., 84, 239–246, 1996.
Shindell, D., Kuylenstierna, J. C. I., Vignati, E., van Dingenen, R., Amann,
M., Klimont, Z., Anenberg, S. C., Muller, N., Janssens-Maenhout, G., Raes,
F., Schwartz, J., Faluvegi, G., Pozzoli, L., Kupiainen, K.,
Höglund-Isaksson, L., Emberson, L., Streets, D., Ramanathan, V., Hicks,
K., Oanh, N. T. K., Milly, G., Williams, M., Demkine, V., and Fowler, D.:
Simultaneously Mitigating Near-Term Climate Change and Improving Human
Health and Food Security, Science, 335, 183–189, https://doi.org/10.1126/science.1210026, 2012.
Song, C., Zhang, J., Wang, Y., Wang, Y., and Zhao, Z.: Emission of CO2, CH4
and N2O from freshwater marsh in northeast of China, J. Environ. Manag., 88,
428–436, https://doi.org/10.1016/j.jenvman.2007.03.030, 2008.
Spiers, A. G.: Review of international/continental wetland resources, in:
Global review of wetland resources and priorities for wetland inventory,
edited by: Finlayson, C. M., and Spiers, A. G., Supervising Scientist Report
144, Supervising Scientist, Canberra, Australia, 63–104, 1999.
Stanley, K. M., Heppell, C. M., Belyea, L. R., Baird, A. J., and Field, R.
H.: The Importance of CH4 Ebullition in Floodplain Fens, J. Geophys.
Res.-Biogeo., 124, 1750–1763, https://doi.org/10.1029/2018jg004902, 2019.
Suyker, A. E., Verma, S. B., Clement, R. J., and Billesbach, D. P.: Methane
flux in a boreal fen: Season-long measurement by eddy correlation, J.
Geophys. Res.-Atmos., 101, 28637–28647, https://doi.org/10.1029/96JD02751, 1996.
Svensson, B., and Rosswall, T.: In situ methane production
from acid peat in plant communities with different moisture regimes in a
subarctic mire, Oikos, 43, 341–350, https://doi.org/10.2307/3544151, 1984.
Tathy, J., Cros, B., Delmas, R., Marenco, A., Servant, J., and Labat, M.:
CH4 emission from flooded forest in Central Africa, J. Geophys. Res.,
97, 6159–6168, https://doi.org/10.1029/90JD02555, 1992.
Tian, H., Chen, G., Lu, C., Xu, X., Ren, W., Zhang, B., Banger, K., Tao, B.,
Pan, S., and Liu, M.: Global methane and nitrous oxide emissions from
terrestrial ecosystems due to multiple environmental changes, Ecosystem
Health and Sustainability, 1, 1–20, https://doi.org/10.1890/EHS14-0015.1,
2015.
Tsuruta, A., Aalto, T., Backman, L., Hakkarainen, J., van der Laan-Luijkx, I. T., Krol, M. C., Spahni, R., Houweling, S., Laine, M., Dlugokencky, E., Gomez-Pelaez, A. J., van der Schoot, M., Langenfelds, R., Ellul, R., Arduini, J., Apadula, F., Gerbig, C., Feist, D. G., Kivi, R., Yoshida, Y., and Peters, W.: Global methane emission estimates for 2000–2012 from CarbonTracker Europe-CH4 v1.0, Geosci. Model Dev., 10, 1261–1289, https://doi.org/10.5194/gmd-10-1261-2017, 2017.
Twine, T. E., Kustas, W., Norman, J., Cook, D., Houser, P., Meyers, T.,
Prueger, J., Starks, P., and Wesely, M.: Correcting eddy-covariance flux
underestimates over a grassland, Agr. Forest Meteorol., 103,
279–300, 2000.
Wagner, D., Kobabe, S., Pfeiffer, E. M., and Hubberten, H. W.: Microbial
controls on methane fluxes from a polygonal tundra of the Lena Delta,
Siberia, Permafrost Periglac., 14, 173–185, 2003.
Walter, B. P. and Heimann, M.: A process-based, climate-sensitive model to
derive methane emissions from natural wetlands: Application to five wetland
sites, sensitivity to model parameters, and climate, Global Biogeochem. Cy., 14, 745–765, 2000.
Walter, B. P., Heimann, M., Shannon, R. D., and White, J. R.: A process‐based model to derive methane emissions from natural wetlands, Geophys. Res. Lett., 23, 3731–3734, 1996.
Wang, D., Lv, X., Ding, W., Cai, Z., Gao, J., and Yang, F.: Methan emission
from narshes in Zoige Plateau, Adv. Earth Sci., 17, 877–880, 2002.
Wei, D. and Wang, X.: Uncertainty and dynamics of natural wetland CH4
release in China: Research status and priorities, Atmos. Environ., 154,
95–105, https://doi.org/10.1016/j.atmosenv.2017.01.038, 2017.
Werle, P. and Kormann, R.: Fast chemical sensor for eddy-correlation
measurements of methane emissions from rice paddy fields, Appl. Optics,
40, 846–858, 2001.
Whalen, S. C. and Reeburgh, W. S.: Interannual variations in tundra methane
emission: A 4-year time series at fixed sites, Global Biogeochem. Cy., 6,
139–159, 1992.
Wille, C., Kutzbach, L., Sachs, T., Wagner, D., and Pfeiffer, E. M.: Methane
emission from Siberian arctic polygonal tundra: eddy covariance measurements
and modeling, Glob. Change Biol., 14, 1395–1408, 2008.
Xu, X., Yuan, F., Hanson, P. J., Wullschleger, S. D., Thornton, P. E., Riley, W. J., Song, X., Graham, D. E., Song, C., and Tian, H.: Reviews and syntheses: Four decades of modeling methane cycling in terrestrial ecosystems, Biogeosciences, 13, 3735–3755, https://doi.org/10.5194/bg-13-3735-2016, 2016.
Ye, Y., Lu, C., and Lin, P.: CH4 dynamics in sediments of Bruguiera
sexangula mangrove at Hegang Estuary, Soil Environ. Sci., 9,
91–95, 2000 (in Chinese).
Zhang, Q., Zhang, W., Li, T., Sun, W., Yu, Y., and Wang, G.: Projective
analysis of staple food crop productivity in adaptation to future climate
change in China, Int. J. Biometeorol., 61, 1445–1460, https://doi.org/10.1007/s00484-017-1322-4, 2017.
Zhang, Y., Li, C., Trettin, C. C., and Li, H.: An integrated model of soil,
hydrology, and vegetation for carbon dynamics in wetland ecosystems, Global Biogeochem. Cy., 16, 1061–1078, 2002.
Zhu, Q., Liu, J., Peng, C., Chen, H., Fang, X., Jiang, H., Yang, G., Zhu, D., Wang, W., and Zhou, X.: Modelling methane emissions from natural wetlands by development and application of the TRIPLEX-GHG model, Geosci. Model Dev., 7, 981–999, https://doi.org/10.5194/gmd-7-981-2014, 2014.
Zhu, Q., Peng, C. H., Chen, H., Fang, X. Q., Liu, J. X., Jiang, H., Yang, Y.
Z., and Yang, G.: Estimating global natural wetland methane emissions using
process modelling: spatio-temporal patterns and contributions to atmospheric
methane fluctuations, Global Ecol. Biogeogr., 24, 959–972, https://doi.org/10.1111/geb.12307, 2015.
Zhu, X., Zhuang, Q., Gao, X., Sokolov, A., and Schlosser, C. A.: Pan-Arctic
land–atmospheric fluxes of methane and carbon dioxide in response to
climate change over the 21st century, Environ. Res. Lett., 8, 045003,
https://doi.org/10.1088/1748-9326/8/4/045003, 2013.
Zhuang, Q., Melillo, J. M., Kicklighter, D. W., Prinn, R. G., McGuire, A.
D., Steudler, P. A., Felzer, B. S., and Hu, S.: Methane fluxes between
terrestrial ecosystems and the atmosphere at northern high latitudes during
the past century: A retrospective analysis with a process-based
biogeochemistry model, Global Biogeochem. Cy., 18, GB3010, https://doi.org/10.1029/2004gb002239, 2004.
Zhuang, Q., Melillo, J. M., Sarofim, M. C., Kicklighter, D. W., McGuire, A.
D., Felzer, B. S., Sokolov, A., Prinn, R. G., Steudler, P. A., and Hu, S.:
CO2 and CH4 exchanges between land ecosystems and the atmosphere in northern
high latitudes over the 21st century, Geophys. Res. Lett., 33, L17403,
https://doi.org/10.1029/2006GL026972, 2006.
Zhuang, Q., Melillo, J., McGuire, A., Kicklighter, D., Prinn, R., Steudler,
P., Felzer, B., and Hu, S.: Net emissions of CH4 and CO2 in
Alaska: Implications for the region's greenhouse gas budget, Ecol. Appl.,
17, 203–212, 2007.
Zhuang, Q., Chen, M., Xu, K., Tang, J., Saikawa, E., Lu, Y., Melillo, J. M.,
Prinn, R. G., and McGuire, A. D.: Response of global soil consumption of
atmospheric methane to changes in atmospheric climate and nitrogen
deposition, Global Biogeochem. Cy., 27, 650–663, 2013.
Zona, D., Oechel, W., Kochendorfer, J., Paw U, K., Salyuk, A., Olivas, P.,
Oberbauer, S., and Lipson, D.: Methane fluxes during the initiation of a
large-scale water table manipulation experiment in the Alaskan Arctic
tundra, Global Biogeochem. Cy., 23, GB2013, https://doi.org/10.1029/2009GB003487, 2009.
Zona, D., Gioli, B., Commane, R., Lindaas, J., Wofsy, S. C., Miller, C. E.,
Dinardo, S. J., Dengel, S., Sweeney, C., Karion, A., Chang, R. Y.-W.,
Henderson, J. M., Murphy, P. C., Goodrich, J. P., Moreaux, V., Liljedahl,
A., Watts, J. D., Kimball, J. S., Lipson, D. A., and Oechel, W. C.: Cold
season emissions dominate the Arctic tundra methane budget, P.
Natl. Acad. Sci. USA, 113, 40–45, https://doi.org/10.1073/pnas.1516017113, 2016.
Short summary
Reliable models are required to estimate global wetland CH4 emissions, which are the largest and most uncertain source of atmospheric CH4. This paper evaluated CH4MODwetland and TEM models against CH4 measurements from different continents and wetland types. Based on best-model performance, we estimated 117–125 Tg yr−1 of global CH4 emissions from wetlands for the period 2000–2010. Efforts should be made to reduce estimate uncertainties for different wetland types and regions.
Reliable models are required to estimate global wetland CH4 emissions, which are the largest and...