Articles | Volume 13, issue 8
Geosci. Model Dev., 13, 3769–3788, 2020
https://doi.org/10.5194/gmd-13-3769-2020
Geosci. Model Dev., 13, 3769–3788, 2020
https://doi.org/10.5194/gmd-13-3769-2020

Model evaluation paper 26 Aug 2020

Model evaluation paper | 26 Aug 2020

Evaluation of CH4MODwetland and Terrestrial Ecosystem Model (TEM) used to estimate global CH4 emissions from natural wetlands

Tingting Li et al.

Related authors

Simulating the spatiotemporal variations in aboveground biomass in Inner Mongolian grasslands under environmental changes
Guocheng Wang, Zhongkui Luo, Yao Huang, Wenjuan Sun, Yurong Wei, Liujun Xiao, Xi Deng, Jinhuan Zhu, Tingting Li, and Wen Zhang
Atmos. Chem. Phys., 21, 3059–3071, https://doi.org/10.5194/acp-21-3059-2021,https://doi.org/10.5194/acp-21-3059-2021, 2021
Short summary
Modeling soil organic carbon dynamics and their driving factors in the main global cereal cropping systems
Guocheng Wang, Wen Zhang, Wenjuan Sun, Tingting Li, and Pengfei Han
Atmos. Chem. Phys., 17, 11849–11859, https://doi.org/10.5194/acp-17-11849-2017,https://doi.org/10.5194/acp-17-11849-2017, 2017
Short summary
Uncertainties in the national inventory of methane emissions from rice cultivation: field measurements and modeling approaches
Wen Zhang, Wenjuan Sun, and Tingting Li
Biogeosciences, 14, 163–176, https://doi.org/10.5194/bg-14-163-2017,https://doi.org/10.5194/bg-14-163-2017, 2017
Short summary
Impacts of climate and reclamation on temporal variations in CH4 emissions from different wetlands in China: from 1950 to 2010
T. Li, W. Zhang, Q. Zhang, Y. Lu, G. Wang, Z. Niu, M. Raivonen, and T. Vesala
Biogeosciences, 12, 6853–6868, https://doi.org/10.5194/bg-12-6853-2015,https://doi.org/10.5194/bg-12-6853-2015, 2015
Short summary
Uncertainties in estimating regional methane emissions from rice paddies due to data scarcity in the modeling approach
W. Zhang, Q. Zhang, Y. Huang, T. T. Li, J. Y. Bian, and P. F. Han
Geosci. Model Dev., 7, 1211–1224, https://doi.org/10.5194/gmd-7-1211-2014,https://doi.org/10.5194/gmd-7-1211-2014, 2014

Related subject area

Biogeosciences
Addressing biases in Arctic–boreal carbon cycling in the Community Land Model Version 5
Leah Birch, Christopher R. Schwalm, Sue Natali, Danica Lombardozzi, Gretchen Keppel-Aleks, Jennifer Watts, Xin Lin, Donatella Zona, Walter Oechel, Torsten Sachs, Thomas Andrew Black, and Brendan M. Rogers
Geosci. Model Dev., 14, 3361–3382, https://doi.org/10.5194/gmd-14-3361-2021,https://doi.org/10.5194/gmd-14-3361-2021, 2021
Short summary
Cutting out the middleman: calibrating and validating a dynamic vegetation model (ED2-PROSPECT5) using remotely sensed surface reflectance
Alexey N. Shiklomanov, Michael C. Dietze, Istem Fer, Toni Viskari, and Shawn P. Serbin
Geosci. Model Dev., 14, 2603–2633, https://doi.org/10.5194/gmd-14-2603-2021,https://doi.org/10.5194/gmd-14-2603-2021, 2021
Short summary
Ecosystem age-class dynamics and distribution in the LPJ-wsl v2.0 global ecosystem model
Leonardo Calle and Benjamin Poulter
Geosci. Model Dev., 14, 2575–2601, https://doi.org/10.5194/gmd-14-2575-2021,https://doi.org/10.5194/gmd-14-2575-2021, 2021
Short summary
CLASSIC v1.0: the open-source community successor to the Canadian Land Surface Scheme (CLASS) and the Canadian Terrestrial Ecosystem Model (CTEM) – Part 2: Global benchmarking
Christian Seiler, Joe R. Melton, Vivek K. Arora, and Libo Wang
Geosci. Model Dev., 14, 2371–2417, https://doi.org/10.5194/gmd-14-2371-2021,https://doi.org/10.5194/gmd-14-2371-2021, 2021
Short summary
How to reconstruct aerosol-induced diffuse radiation scenario for simulating GPP in land surface models? An evaluation of reconstruction methods with ORCHIDEE_DFv1.0_DFforc
Yuan Zhang, Olivier Boucher, Philippe Ciais, Laurent Li, and Nicolas Bellouin
Geosci. Model Dev., 14, 2029–2039, https://doi.org/10.5194/gmd-14-2029-2021,https://doi.org/10.5194/gmd-14-2029-2021, 2021
Short summary

Cited articles

Allen, O. B. and Raktoe, B. L.: Accuracy analysis with special reference to the prediction of grassland yield, Biom. J., 23, 371–388, 1981. 
Alvalá, P. C. and Kirchhoff, V. W. J. H.: Methane fluxes from the Pantanal floodplain in Brazil: seasonal variation, in: Non-CO2 greenhouse gases: Scientific understanding, control and implementation: Proceedings of the Second International Symposium, 8–10 September 1999, Noordwijkerhout, the Netherlands, edited by: van Ham, J., Baede, A. P. M., Meyer, L. A., and Ybema, R., Springer Netherlands, Dordrecht, the Netherlands, 95–99, 2000 
Aubinet, M., Vesala, T., and Papale, D.: Eddy covariance: a practical guide to measurement and data analysis, Springer Science & Business Media, Dordrecht, the Netherlands, 2012. 
Aurela, M., Laurila, T., and Tuovinen, J. P.: Annual CO2 balance of a subarctic fen in northern Europe: importance of the wintertime efflux, J. Geophys. Res.-Atmos., 107, 4607, https://doi.org/10.1029/2002JD002055, 2002. 
Download
Short summary
Reliable models are required to estimate global wetland CH4 emissions, which are the largest and most uncertain source of atmospheric CH4. This paper evaluated CH4MODwetland and TEM models against CH4 measurements from different continents and wetland types. Based on best-model performance, we estimated 117–125 Tg yr−1 of global CH4 emissions from wetlands for the period 2000–2010. Efforts should be made to reduce estimate uncertainties for different wetland types and regions.