Articles | Volume 13, issue 8
https://doi.org/10.5194/gmd-13-3769-2020
https://doi.org/10.5194/gmd-13-3769-2020
Model evaluation paper
 | 
26 Aug 2020
Model evaluation paper |  | 26 Aug 2020

Evaluation of CH4MODwetland and Terrestrial Ecosystem Model (TEM) used to estimate global CH4 emissions from natural wetlands

Tingting Li, Yanyu Lu, Lingfei Yu, Wenjuan Sun, Qing Zhang, Wen Zhang, Guocheng Wang, Zhangcai Qin, Lijun Yu, Hailing Li, and Ran Zhang

Data sets

Evaluation of two process-based models used to estimate global CH4 emissions from natural wetlands Tingting Li, Yanyu Lu, Lingfei Yu, Wenjuan Sun, Qing Zhang, Wen Zhang, Guocheng Wang, Zhangcai Qin, Lijun Yu, Hailing Li, Ran Zhang https://doi.org/10.5281/zenodo.3537621

Model code and software

Evaluation of two process-based models used to estimate global CH4 emissions from natural wetlands Tingting Li, Yanyu Lu, Lingfei Yu, Wenjuan Sun, Qing Zhang, Wen Zhang, Guocheng Wang, Zhangcai Qin, Lijun Yu, Hailing Li, Ran Zhang https://doi.org/10.5281/zenodo.3537621

Download
Short summary
Reliable models are required to estimate global wetland CH4 emissions, which are the largest and most uncertain source of atmospheric CH4. This paper evaluated CH4MODwetland and TEM models against CH4 measurements from different continents and wetland types. Based on best-model performance, we estimated 117–125 Tg yr−1 of global CH4 emissions from wetlands for the period 2000–2010. Efforts should be made to reduce estimate uncertainties for different wetland types and regions.