Articles | Volume 13, issue 8
https://doi.org/10.5194/gmd-13-3529-2020
Special issue:
https://doi.org/10.5194/gmd-13-3529-2020
Development and technical paper
 | 
07 Aug 2020
Development and technical paper |  | 07 Aug 2020

Simulating stable carbon isotopes in the ocean component of the FAMOUS general circulation model with MOSES1 (XOAVI)

Jennifer E. Dentith, Ruza F. Ivanovic, Lauren J. Gregoire, Julia C. Tindall, and Laura F. Robinson

Related authors

Simulating oceanic radiocarbon with the FAMOUS GCM: implications for its use as a proxy for ventilation and carbon uptake
Jennifer E. Dentith, Ruza F. Ivanovic, Lauren J. Gregoire, Julia C. Tindall, Laura F. Robinson, and Paul J. Valdes
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-365,https://doi.org/10.5194/bg-2019-365, 2019
Publication in BG not foreseen
Short summary

Related subject area

Biogeosciences
Spatially varying parameters improve carbon cycle modeling in the Amazon rainforest with ORCHIDEE r8849
Lei Zhu, Philippe Ciais, Yitong Yao, Daniel Goll, Sebastiaan Luyssaert, Isabel Martínez Cano, Arthur Fendrich, Laurent Li, Hui Yang, Sassan Saatchi, and Wei Li
Geosci. Model Dev., 18, 4915–4933, https://doi.org/10.5194/gmd-18-4915-2025,https://doi.org/10.5194/gmd-18-4915-2025, 2025
Short summary
Simulating the drought response of European tree species with the dynamic vegetation model LPJ-GUESS (v4.1, 97c552c5)
Benjamin F. Meyer, João P. Darela-Filho, Konstantin Gregor, Allan Buras, Qiao-Lin Gu, Andreas Krause, Daijun Liu, Phillip Papastefanou, Sijeh Asuk, Thorsten E. E. Grams, Christian S. Zang, and Anja Rammig
Geosci. Model Dev., 18, 4643–4666, https://doi.org/10.5194/gmd-18-4643-2025,https://doi.org/10.5194/gmd-18-4643-2025, 2025
Short summary
pyVPRM: a next-generation vegetation photosynthesis and respiration model for the post-MODIS era
Theo Glauch, Julia Marshall, Christoph Gerbig, Santiago Botía, Michał Gałkowski, Sanam N. Vardag, and André Butz
Geosci. Model Dev., 18, 4713–4742, https://doi.org/10.5194/gmd-18-4713-2025,https://doi.org/10.5194/gmd-18-4713-2025, 2025
Short summary
Emulating grid-based forest carbon dynamics using machine learning: an LPJ-GUESS v4.1.1 application
Carolina Natel, David Martín Belda, Peter Anthoni, Neele Haß, Sam Rabin, and Almut Arneth
Geosci. Model Dev., 18, 4317–4333, https://doi.org/10.5194/gmd-18-4317-2025,https://doi.org/10.5194/gmd-18-4317-2025, 2025
Short summary
ELM2.1-XGBfire1.0: improving wildfire prediction by integrating a machine learning fire model in a land surface model
Ye Liu, Huilin Huang, Sing-Chun Wang, Tao Zhang, Donghui Xu, and Yang Chen
Geosci. Model Dev., 18, 4103–4117, https://doi.org/10.5194/gmd-18-4103-2025,https://doi.org/10.5194/gmd-18-4103-2025, 2025
Short summary

Cited articles

Andres, R., Boden, T., and Marland, G.: Annual Fossil-Fuel CO2 Emissions: Global Stable Carbon Isotopic Signature, CDIAC, https://doi.org/10.3334/CDIAC/FFE.DB1013.2017, 1996. 
Andres, R. J., Marland, G., Boden, T., and Bischof, S.: Carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1751–1991; and an estimate of their isotopic composition and latitudinal distribution, Oak Ridge National Lab., TN (United States), Oak Ridge Inst. for Science and Education, TN (United States), available at: https://www.osti.gov/biblio/10185357 (last access:29 October 2018), 1994. 
Bardin, A., Primeau, F., and Lindsay, K.: An offline implicit solver for simulating prebomb radiocarbon, Ocean Model., 73, 45–58, https://doi.org/10.1016/j.ocemod.2013.09.008, 2014. 
Behrenfeld, M. J. and Falkowski, P. G.: Photosynthetic rates derived from satellite-based chlorophyll concentration, Limnol. Oceanogr., 42, 1–20, https://doi.org/10.4319/lo.1997.42.1.0001, 1997. 
Bouttes, N., Roche, D. M., Mariotti, V., and Bopp, L.: Including an ocean carbon cycle model into iLOVECLIM (v1.0), Geosci. Model Dev., 8, 1563–1576, https://doi.org/10.5194/gmd-8-1563-2015, 2015. 
Download
Short summary
We have added a new tracer (13C) into the ocean of the FAMOUS climate model to study large-scale circulation and the marine carbon cycle. The model captures the large-scale spatial pattern of observations but the simulated values are consistently higher than observed. In the first instance, our new tracer is therefore useful for recalibrating the physical and biogeochemical components of the model.
Share
Special issue