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Abstract. Ocean circulation and the marine carbon cycle can
be indirectly inferred from stable and radiogenic carbon iso-
tope ratios (δ13C and 114C, respectively), measured directly
in the water column, or recorded in geological archives such
as sedimentary microfossils and corals. However, interpret-
ing these records is non-trivial because they reflect a com-
plex interplay between physical and biogeochemical pro-
cesses. By directly simulating multiple isotopic tracer fields
within numerical models, we can improve our understand-
ing of the processes that control large-scale isotope distribu-
tions and interpolate the spatiotemporal gaps in both modern
and palaeo datasets. We have added the stable isotope 13C to
the ocean component of the FAMOUS coupled atmosphere–
ocean general circulation model, which is a valuable tool for
simulating complex feedbacks between different Earth sys-
tem processes on decadal to multi-millennial timescales. We
tested three different biological fractionation parameterisa-
tions to account for the uncertainty associated with equilib-
rium fractionation during photosynthesis and used sensitivity
experiments to quantify the effects of fractionation during
air–sea gas exchange and primary productivity on the sim-
ulated δ13CDIC distributions. Following a 10 000-year pre-
industrial spin-up, we simulated the Suess effect (the iso-
topic imprint of anthropogenic fossil fuel burning) to assess
the performance of the model in replicating modern obser-
vations. Our implementation captures the large-scale struc-
ture and range of δ13CDIC observations in the surface ocean,
but the simulated values are too high at all depths, which we
infer is due to biases in the biological pump. In the first in-
stance, the new 13C tracer will therefore be useful for recali-
brating both the physical and biogeochemical components of
FAMOUS.

1 Introduction

Carbon isotopes are often used as proxies for ocean cir-
culation and the marine carbon cycle. There are three nat-
urally occurring carbon isotopes: the stable isotopes 12C
(98.9 %) and 13C (1.1 %), and the radioactive isotope 14C
(1.2× 10−10 %), which is also known as radiocarbon (Key,
2001). In this study, we focus on the stable isotopes, with 14C
being discussed in detail elsewhere (Dentith et al., 2019a).
The relative proportions of 12C and 13C in a given oceanic
pool (e.g. dissolved inorganic carbon, DIC, or particulate
organic carbon, POC) are controlled by ocean circulation
and mixing, and mass-dependent fractionation during bio-
geochemical processes such as air–sea gas exchange (Lynch-
Stieglitz et al., 1995; Zhang et al., 1995), photosynthesis
(e.g. Sackett et al., 1965; Rau et al., 1989; Hollander and
McKenzie, 1991; Keller and Morel, 1999), and calcium car-
bonate formation (Emrich et al., 1970; Turner, 1982; Ziveri
et al., 2003). This is typically reported in delta (δ) notation,
which is the heavy to light isotope ratio (R) of a sample rel-
ative to a standard in per mille (‰) units:

δ13C=

(
13C/12Csample

13C/12Cstandard
− 1

)
× 1000. (1)

Oceanic δ13C is primarily used to track individual water
masses (Curry and Oppo, 2005), study past changes in the
carbon cycle (e.g. de la Fuente et al., 2017), and inves-
tigate changes in ocean circulation on glacial–interglacial
timescales (e.g. Spero and Lea, 2002; Campos et al., 2017).
It has also been used to constrain air–sea gas exchange rates
(Gruber and Keeling, 2001) and to estimate the uptake of an-
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thropogenic carbon by the global oceans (Quay et al., 1992,
2003).

Oceanographic surveys conducted since the 1970s, such
as the World Ocean Circulation Experiment (WOCE; Orsi
and Whitworth, 2005; Talley, 2007, 2013; Koltermann et
al., 2011), and synthesis projects such as Carbon dioxide
in the Atlantic Ocean (CARINA; Key et al., 2010), Pacific
Ocean Interior Carbon (PACIFICA; Suzuki et al., 2013), and
the Global Ocean Data Analysis Project (GLODAP; Key
et al., 2004, 2015; Olsen et al., 2016), provide an indica-
tion of large-scale carbon isotope distributions in the modern
oceans. The two main drawbacks of these surveys are that
they include relatively few measurements from the subsur-
face ocean and that there were only a limited number of re-
peat measurements at fixed locations, which were often taken
decades apart. These datasets are therefore insufficient for
studying transient changes in carbon isotope distributions at
subdecadal resolution.

Geological archives such as corals (e.g. Guilderson et al.,
2013) and sediment cores (e.g. Oliver et al., 2010) are used to
extend the record further back in time. However, interpreting
isotopic ratios in geological archives is non-trivial because
they result from a complex interplay between physical pro-
cesses and biogeochemical processes, both in the water col-
umn itself and during biomineralisation, which can be diffi-
cult to disentangle.

By including carbon isotopes in climate models, we
can fill in the spatiotemporal gaps in both modern and
palaeo datasets, and improve our understanding of the pro-
cesses that control their large-scale distributions (Tagliabue
and Bopp, 2008; Schmittner et al., 2013; Menviel et al.,
2017). The Ocean Carbon-Cycle Modelling Intercompari-
son Project (OCMIP) was initiated in 1995 with the aim of
evaluating the major differences between global ocean car-
bon cycle models and advancing our understanding of the
ocean as a long-term CO2 reservoir (Orr, 1999). Carbon
isotopes are not routinely incorporated into climate models
because of the computational expense associated with the
long equilibration between the deep ocean and the atmo-
sphere (Bardin et al., 2014). However, since OCMIP pro-
duced a legacy of standard input fields (Orr, 1999; Orr et
al., 2000, 2017), carbon isotopes have increasingly been im-
plemented into models of varying complexities to validate
physical and biogeochemical schemes, to investigate the spa-
tiotemporal variability in isotope distributions, and to recon-
cile the interpretation of ocean proxy data. As outlined in
Table 1, the community of 13C-enabled models currently in-
cludes HAMOCC3.1 (Hofmann et al., 2000), the Geophys-
ical Fluid Dynamics Laboratory (GFDL) Modular Ocean
Model (MOM; Murnane and Sarmiento, 2000), CLIMBER-
2 (Brovkin et al., 2002), MoBidiC (Crucifix, 2005), GENIE
(Ridgwell et al., 2007), Pelagic Interactions Scheme for Car-
bon and Ecosystem Studies (PISCES) (Tagliabue and Bopp,
2008), LOVECLIM (Mouchet, 2011; Menviel et al., 2015),
Bern3D+C (Tschumi et al., 2011), the University of Victoria

(UVic) Earth system model (ESM) (Schmittner et al., 2013),
iLOVECLIM (Bouttes et al., 2015), the Community Earth
System Model (CESM) (Jahn et al., 2015), and the Common-
wealth Scientific and Industrial Research Organisation Mark
3L climate system model with the Carbon of the Ocean, At-
mosphere and Land (CSIRO Mk3L-COAL) biogeochemi-
cal model (Buchanan et al., 2019). Most of these are low-
resolution (3 to 5◦), intermediate-complexity models that are
valuable tools for studying changes in ocean biogeochem-
istry on multi-millennial timescales. The more complex mod-
els (e.g. PISCES and CESM) provide a more sophisticated
representation of physical and biogeochemical processes be-
cause of increased spatial resolution and/or the inclusion of
more carbon pools. However, the higher-complexity models
are computationally expensive; for example, at the time of
their study, a 6010-year spin-up simulation with CESM took
over 7 months to run (Jahn et al., 2015). Without employ-
ing offline or accelerated spin-up techniques (e.g. Lindsay,
2017), these models are therefore less practical for running
the long simulations required to fully spin up the components
of the Earth system that evolve on millennial timescales, such
as deep ocean circulation (England, 1995) and ocean biogeo-
chemical cycles (Falkowski et al., 2000; Key et al., 2004).

Here, we describe the implementation of 13C in the
ocean component of the FAMOUS general circulation model
(GCM). FAMOUS is well suited to studying complex inter-
actions between different components of the Earth system
on decadal to multi-millennial timescales, due to its reduced
spatial resolution and increased time step relative to the latest
generation of state-of-the-art GCMs (Sect. 2.1). We use sen-
sitivity experiments to quantify the effects of isotopic frac-
tionation during air–sea gas exchange and primary produc-
tivity on the simulated δ13CDIC distributions (Sects. 2.3.3
and 3.1) and test three different parameterisations for photo-
synthetic fractionation to account for the uncertainty associ-
ated with the relative influence of ambient conditions, phys-
iological effects and transport mechanism on the fractiona-
tion of carbon isotopes during photosynthetic CO2 fixation
(Sects. 2.2.2 and 3.3). We evaluate the overall performance
of the model in simulating large-scale δ13CDIC distributions
by comparing to modern observations (Sect. 3.2) and discuss
the potential of the new 13C tracer as a tuning target for future
recalibration work (Sect. 3.4).

2 Methods

2.1 Model description

FAMOUS is a coupled atmosphere–ocean GCM (Jones et
al., 2005; Smith et al., 2008; Smith, 2012; Williams et al.,
2013) based on HadCM3 (Gordon et al., 2000; Pope et al.,
2000). Both are configurations of the UK Met Office Uni-
fied Model (UM) version 4.5 (Valdes et al., 2017). The
quasi-hydrostatic primitive equation atmospheric model is
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Table 1. Overview of existing 13C-enabled models.

Model Horizontal resolution Levels Tracers αPOC←aq parameteri-
sation

HAMOCC3.1 3.5◦× 3.5◦ 15 ALKa, CaCO3, DIC, δ13CDIC, DOCb,
POC, δ13CPOC, phytoplankton, zoo-
plankton, PO3−

4 , H4SiO4, O2

Maier-Reimer (1993),
Popp et al. (1989), Rau
et al. (1996)

GFDL MOM 4◦× 4◦ 12 ALK, DIC, DI13C, DOC, DO13C,
PO3−

4

Freeman and Hayes
(1992)

CLIMBER-2 2.5◦× 3 zonally aver-
aged basins

20 ALK, DIC, DI13C, DI14C, fast and
slow DOC, DO13C, DO14C, PO3−

4 , O2

Rau et al. (1989)

MoBidiC 5◦× 3 zonally aver-
aged basins

19 ALK, DIC, DI13C, 14C, DOC, DO13C,
PO3−

4 , O2

Mook (1986)

GENIE 36× 36 equal-area grid 8 49 dissolved tracers and isotopic prop-
erties, including ALK, DIC, DI13C,
DI14C, DOC, DO13C, DO14C, DOPc,
PO3−

4 , O2

Ridgwell (2001)

PISCES 2◦× 2◦ (mean with en-
hanced meridional res-
olution at the Equator)

30 CaCO3, CO2−
3 , DIC, 13C (in the three

dissolved and seven particulate car-
bon pools), DOC, nanophytoplankton,
diatoms, mesozooplankton, microzoo-
plankton, two detrital classes, PO3−

4 ,
NO3, H4SiO4, Fe

Laws et al. (1995)

LOVECLIM (LOCH) 3◦× 3◦ 20 ALK, DIC, DIPd, DOMe, POMf, phy-
toplankton biomass, 13C (in the four
carbon pools), 14C (in the four carbon
pools), Si, O2

Jasper et al. (1994) in
Mouchet (2011), Free-
man and Hayes (1992)
in Menviel et al. (2015)

Bern3D+C 36 cells× 36 cells 32 ALK, DIC, 13C, 14C, PO3−
4 , DOP, O2,

SiO2, Fe
Freeman and Hayes
(1992)

UVic 1.8◦× 3.6◦ 19 ALK, DIC, 13C (in the five carbon
pools), phytoplankton (nitrogen fixers
and other phytoplankton), zooplankton,
detritus, PO3−

4 , NO3, O2

Popp et al. (1989)

iLOVECLIM 3◦× 3◦ 20 ALK, CaCO3, DIC,114C, δ13C, DOC,
slow DOC, POC, phytoplankton, zoo-
plankton, PO3−

4 , NO3, O2

Freeman and Hayes
(1992)

CESM 3◦× 3◦ (development)
1◦× 1◦ (application)

60 ALK, CaCO3, DIC, abiotic 14C (in the
seven carbon pools), biotic 14C (in the
seven carbon pools), 13C (in the seven
carbon pools), DOC, diazotrophs, di-
atoms, small phytoplankton, zooplank-
ton, H4SiO4

Rau et al. (1989), Laws
et al. (1995), Keller and
Morel (1999)

CSIRO Mk3L-COAL 1.6◦× 2.8◦ 21 ALK, DIC, DI13C, 14C, general phyto-
plankton, diazotrophs, calcifiers, PO3−

4 ,
Fe, NO3, 15NO3, N2O, O2, abiotic O2

Constant

a ALK: alkalinity; b DOC: dissolved organic carbon; c DOP: dissolved organic phosphorus; d DIP: dissolved inorganic phosphorus; e DOM: dissolved organic matter;
f POM: particulate organic matter

https://doi.org/10.5194/gmd-13-3529-2020 Geosci. Model Dev., 13, 3529–3552, 2020



3532 J. E. Dentith et al.: Simulating stable carbon isotopes with FAMOUS

5◦ in latitude by 7.5◦ in longitude, with 11 vertical levels
on a hybrid sigma-pressure coordinate system. The rigid-
lid ocean model has a horizontal resolution of 2.5◦× 3.75◦

and 20 unevenly spaced vertical levels, which are approx-
imately 10 m thick in the near-surface ocean and 600 m
thick in the deep ocean. The atmosphere and ocean oper-
ate on 1 and 12 h time steps, respectively, and are coupled
once per model day. The model currently includes oxygen
(Williams et al., 2014) and chlorofluorocarbons (Pope et al.,
2000) as optional tracers. At the time of this study, FA-
MOUS is capable of simulating 400 to 500 model years per
wall-clock day on tier 2 (regional) and tier 3 (local) high-
performance computers at the University of Leeds, which is
more than 5 times the run speed of HadCM3. This makes
FAMOUS ideal for running long (multi-millennial) simu-
lations (Smith and Gregory, 2012; Gregoire et al., 2012,
2015) or large (hundred-member) ensembles (Gregoire et
al., 2011; Sagoo et al., 2013). Further technical documen-
tation can be found in an ongoing special issue in Geoscien-
tific Model Development (http://www.geosci-model-dev.net/
special_issue15.html, last access: 23 December 2019).

We added 13C as an optional passive tracer into the ocean
component of FAMOUS, using the Met Office Surface Ex-
change Scheme (MOSES) version 1 (Cox et al., 1999) gen-
eration of the model to evaluate our scheme. Although a
newer version of the land surface model exists, which in-
cludes the terrestrial carbon cycle and interactive vegetation
(MOSES2.2; Essery et al., 2001, 2003; Williams et al., 2013;
Valdes et al., 2017), problems have been identified with its
representation of meridional overturning circulation (MOC)
in multi-millennial simulations with constant pre-industrial
boundary conditions (Dentith et al., 2019b). Specifically,
FAMOUS-MOSES2.2 simulates a collapsed Atlantic MOC
(AMOC) and a strong, deep Pacific MOC when the run
length exceeds 6000 years, resulting in spurious ocean tracer
distributions. However, our code is directly transferable be-
tween the different generations of the model, meaning that
the isotope system can be extended into the terrestrial car-
bon cycle following additional tuning to improve the physi-
cal ocean circulation in FAMOUS-MOSES2.2.

2.1.1 Hadley Centre Ocean Carbon Cycle Model
(HadOCC)

The marine carbon cycle in FAMOUS is modelled by
HadOCC, a coupled physical–biogeochemical model that
simulates air–sea gas exchange, the circulation of DIC, and
the cycling of carbon by marine biota (Palmer, 1998; Palmer
and Totterdell, 2001). The ecosystem model provides a sim-
plified representation of the ocean biological system, with a
single (nitrogenous) nutrient, a single class of phytoplank-
ton, a single class of (non-migrating) zooplankton, and detri-
tus. Changes in the size of these pools are calculated through
a series of coupled differential equations that describe pri-
mary production, respiration, mortality, grazing, excretion,

and the sinking and remineralisation of detritus. The system
is nitrogen limited and carbon flows are coupled to the ni-
trogen flows by stoichiometric ratios that are fixed for each
pool of organic matter. In addition to the four biological com-
ponents, HadOCC also explicitly simulates DIC and alkalin-
ity. Modelled DIC concentrations depend upon phytoplank-
ton growth and biological breakdown. Alkalinity is similarly
affected by biological processes and is used to calculate the
proportion of DIC that is in the form of CO2 in the surface
waters and consequently the air–sea CO2 flux. All six tracers
are advected, diffused, and mixed across all levels, although
phytoplankton and zooplankton concentrations are negligi-
ble below the euphotic zone (approximately the uppermost
100 m of the ocean). Detritus is the only biological tracer
that is subject to sinking, which is parameterised at a con-
stant rate of 10 md−1. However, there is no representation of
sediments: any detrital material that reaches the ocean floor
is therefore immediately refluxed back to the top layer of the
ocean to conserve carbon and nitrogen. Calcium carbonate
(CaCO3) production is represented as an instantaneous redis-
tribution of DIC and alkalinity below the lysocline, the depth
of which is spatially and temporally constant (approximately
2500 m below sea level).

HadOCC accurately simulates low primary production in
the subtropical gyres and high production in the regions
with the greatest nutrient supply: the subpolar North Pa-
cific and North Atlantic oceans, and around the Antarctic
Convergence Zone (Fig. 1). However, primary production is
higher than observed in the equatorial Pacific, which is at-
tributed to excessive upwelling in the eastern equatorial Pa-
cific (Palmer and Totterdell, 2001). Production is lower than
observed northwards of 50◦ N in the Atlantic and Pacific
basins because sea ice formation and melt do not affect salin-
ity distributions (an area for future development), although
the model does include an iceberg meltwater flux (Smith et
al., 2008). Consequently, stably stratified, low-salinity lay-
ers of meltwater, which promote phytoplankton growth, are
not represented in the model (Palmer and Totterdell, 2001).
Furthermore, the simulated production in coastal regions is
lower than observed. There are three main reasons for this:
(1) HadOCC does not simulate riverine input of nutrients,
which are a significant source of coastal nutrients; (2) most
of the coastlines in FAMOUS are directly adjacent to ocean
grid cells that are more than 1 km deep, which dilutes near-
surface nutrient concentrations; and (3) upwelling is spread
out over several grid points, which causes production to be
more diffuse than observed (Palmer and Totterdell, 2001).

The level of representation of ecosystem processes in
HadOCC is of intermediate complexity, making it compu-
tationally faster than more sophisticated ecosystem models
that include additional POC species and/or multiple nutrients
(e.g. PISCES). Previous studies have found that errors in bio-
geochemical simulations are largely driven by biases in the
physical ocean circulation (i.e. inaccuracies in the climate or
ocean model to which the ecosystem model has been cou-
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Figure 1. Mean annual surface primary productivity: (a) ob-
servations estimated from surface chlorophyll concentrations us-
ing the Vertically Generalised Production Model (Behrenfeld
and Falkowski, 1997), (b) the std simulation in the 1990s,
and (c) simulated minus observed. Monthly mean primary pro-
ductivity data were obtained from the Oregon State University
Ocean Productivity website (http://www.science.oregonstate.edu/
ocean.productivity, last access: 23 December 2019).

pled; Doney, 1999; Doney et al., 2004; Najjar et al., 2007).
Thus, simulating carbon isotopes in a more complex ecosys-
tem model would not necessarily yield substantially better
results.

2.2 Carbon isotope implementation

We added 13C to the four carbon pools in HadOCC: DIC,
phytoplankton, zooplankton, and detritus (Fig. 2). We as-
sume that modelled DIC is 12C and carry 13C as a ratio

(DI13C/DI12C); therefore, virtual fluxes are not required to
account for the dilution or concentration effects of surface
freshwater fluxes (Appendix A). We also use model units to
minimise the error associated with carrying small numbers:

Model units=
DI13C
DI12C

×
100

13C/12Cstd
, (2)

where 13C/12Cstd = 1.12372× 10−2 (Craig, 1957). We ac-
count for isotopic fractionation during air–sea gas exchange
(Sect. 2.2.1 and Appendix B) and photosynthesis (Sect. 2.2.2
and Appendix C). Observational estimates suggest that iso-
topic fractionation during CaCO3 formation is between
+3 ‰ and −2 ‰ (Ziveri et al., 2003), which is small com-
pared to the other fractionation effects (Turner, 1982). Pre-
vious 13C isotope implementation studies have therefore as-
sumed either no isotopic fractionation during CaCO3 produc-
tion (Schmittner et al., 2013) or prescribed constant values,
for example, +1 ‰ (Tagliabue and Bopp, 2008) or +2 ‰
(Jahn et al., 2015). We conducted sensitivity tests where
fractionation during CaCO3 formation was included at con-
stant rates of −2 ‰, 0 ‰, and +2 ‰, respectively. After
10 000 years, there was 0.001 ‰ difference in both the mean
surface ocean δ13CDIC values and the surface standard devi-
ations between all three simulations, and 0.02 ‰ difference
between the three global volume-weighted integrals. Since
these differences are small, we proceeded with the equiva-
lent of no fractionation during CaCO3 production (αCaCO3 =

1.0).

2.2.1 Air–sea gas exchange

The air–sea gas flux of DI12C (F ) is calculated as

F = PV× (Csat−Csurf), (3)

where Csat is the saturation concentration of atmospheric
CO2 (in molm−3), Csurf is the surface aqueous concentra-
tion of CO2 (in molm−3), and PV is the piston velocity (in
cmh−1), which is calculated as

PV= a× u2
× (1− aice)×

(
Sc

660

)−0.5

, (4)

where a is a tuneable coefficient, u is the wind speed (in
ms−1), aice is the fractional ice cover, and Sc is the Schmidt
number for CO2, calculated as a function of sea surface tem-
perature (SST, in ◦C):

Sc= 2073.1− 125.62×SST+ 3.6276×SST2

− 0.043219×SST3. (5)

The air–sea gas flux of DI13C/DI12C
(
F 13

12

)
is calculated as
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Figure 2. Schematic overview of the 13C implementation in FAMOUS. Blue boxes represent permanent carbon pools. Grey boxes represent
temporary carbon pools (note that CaCO3 is a temporary carbon pool because the export of CaCO3 in FAMOUS is represented as an
instantaneous redistribution of alkalinity and carbon at depth). The orange box represents the prescribed atmospheric carbon pool. The
dashed lines represent fluxes of 13C/12C. However, note that the outgassed 13C/12C has no effect on δ13Catm because FAMOUS does not
currently have a fully interactive carbon cycle. Solid lines represent fluxes of 13C. Dot-dashed lines represent processes that occur below
the lysocline (≈ 2500 m below sea level). The dotted line represents the reflux of detrital material from the seafloor to the surface layer. Red
lines represent fractionation effects. The orange line represents isotopic fractionation during calcium carbonate formation (αCaCO3 ), which
is included in the code as a user-specified constant. Note that all simulations presented in this study were run without fractionation during
calcium carbonate formation (i.e. αCaCO3 = 1.0, which is equivalent to a fractionation effect of 0 ‰).

F 13
12
=

1
12C
×PV×

[
αk×αaq←g

×

Csat×
13A
12A
−
Csurf×

13C
12C

αDIC←g


−

( 13C
12C
× [Csat−Csurf]

)]
, (6)

where 13A/12A and 13C/12C are the 13C/12C ratios of the
atmosphere and DIC, respectively, αk is the constant kinetic
fractionation factor (0.99919), αaq←g is the temperature-
dependent fractionation during gas dissolution:

αaq←g = 0.9986− (4.9× 10−6)×SST, (7)

and αDIC←g is the temperature-dependent fractionation be-
tween aqueous CO2 and DIC:

αDIC←g = 1.01051− (1.05× 10−4)×SST. (8)

All three fractionation factors are based on the equations
of Zhang et al. (1995). However, following Schmittner et
al. (2013), we neglect the effect that the carbonate frac-
tion (fCO3) has on αDIC←g because this is much smaller
(0.05 ‰) than the temperature effect (3 ‰). Currently, atmo-
spheric CO2 and δ13C concentrations can either be held con-

Geosci. Model Dev., 13, 3529–3552, 2020 https://doi.org/10.5194/gmd-13-3529-2020



J. E. Dentith et al.: Simulating stable carbon isotopes with FAMOUS 3535

stant or prescribed from a file that contains a single global
weighted-average value per year.

2.2.2 Photosynthesis

Isotopic fractionation during photosynthesis (αPOC←DIC,
herein αp) is calculated as

αp =
αaq←g

αDIC←g
×αPOC←aq, (9)

where αPOC←aq is the equilibrium fractionation factor be-
tween aqueous CO2 and POC.

Empirical relationships for the different biogeochemi-
cal fractionation effects (αaq←g, αDIC←g, and αPOC←aq)
have been established from laboratory experiments, modern
oceans and lakes, and the sedimentary record. However, there
are still uncertainties associated with the parameterisation
of αPOC←aq. Early studies investigated a potential tempera-
ture dependence of the carbon isotope composition of marine
phytoplankton. For example, Sackett et al. (1965) proposed
that photosynthetic fractionation is higher at lower temper-
atures (0.23 ‰ per ◦C) after observing that phytoplankton
in the Drake Passage had more negative δ13C values than
those in the tropics. Wong and Sackett (1978) also recorded
small temperature effects (−0.13 ‰ to +0.36 ‰ per ◦C) in
17 species of marine phytoplankton; however, the authors
concluded that the 15 ‰ range observed in their samples was
primarily related to different metabolic pathways within the
organisms. Numerous studies have suggested that the frac-
tionation of carbon isotopes during photosynthetic CO2 fixa-
tion relates to aqueous CO2 concentrations (CO∗2) in the am-
bient environment (Popp et al., 1989; Rau et al., 1989; Jasper
and Hayes, 1990; Hollander and McKenzie, 1991; Freeman
and Hayes, 1992). However, these studies assumed that CO2
only enters the phytoplankton by passive diffusion and ne-
glected physiological effects, such as phytoplankton growth
rate, cell size and geometry, and cell membrane perme-
ability. Taking into consideration that physiological factors
may modify, weaken, or eliminate the relationship between
CO∗2 and photosynthetic fractionation, Rau et al. (1996) pro-
posed a model that accounted for the isotopic composition of
the ambient aqueous CO2, isotopic fractionation associated
with diffusive transport into the cell, and isotopic fractiona-
tion associated with enzymatic, intracellular fixation. Laws
et al. (1995) identified a linear relationship between phyto-
plankton growth rate, CO∗2, and isotopic fractionation dur-
ing photosynthesis under the assumption that the growth rate
is proportional to the net transport of CO2 into the cell. A
later study by Laws et al. (1997), which analysed the same
species of marine diatom over a larger range of CO∗2, revised
this to a non-linear relationship. Burkhardt et al. (1999) and
Keller and Morel (1999) additionally included active bicar-
bonate transport in their calculations, recognising that aque-
ous CO2 is not the only substrate for photosynthetic fixation
and that processes other than diffusion can contribute to inor-

ganic carbon acquisition. This has been a relatively inactive
research area in the last 20 years, but there remains no single
accepted model for fractionation during photosynthesis.

Consequently, previous carbon isotope implementation
studies have used a number of different parameterisations
for biological fractionation (Table 1), with the choice of
scheme largely reflecting the complexity of the simulated
biogeochemical and ecosystem processes. It is difficult to
compare the success of the different parameterisations used
by individual modelling groups because inter-model differ-
ences in the simulated isotopic distributions predominantly
relate to resolution, complexity, and biases in the physical
ocean circulation and ocean biogeochemistry, as opposed to
the choice of fractionation scheme. However, Hofmann et
al. (2000) tested three different fractionation schemes within
a single model. In their study, the oversimplified assump-
tion of constant biological fractionation, taken from Maier-
Reimer (1993), failed to reproduce the observed latitudinal
gradients in δ13CPOC. Calculating the fractionation as a func-
tion of CO∗2, as per Popp et al. (1989), successfully replicated
the interhemispheric asymmetry in δ13CPOC, but a growth-
rate-dependent fractionation (e.g. Rau et al., 1996) was re-
quired to additionally capture the seasonal variations. Jahn et
al. (2015) also demonstrated differences between three dif-
ferent fractionation schemes within a single model. In their
study, the simple scheme of Rau et al. (1989) produced lower
δ13CDIC values in the surface ocean and higher δ13CDIC val-
ues below 150 m compared to the more complex parameter-
isations of Laws et al. (1995) and Keller and Morel (1999).
The differences between the intermediate-complexity formu-
lation (Laws et al., 1995) and the most complex formula-
tion (Keller and Morel, 1999) were small, and the Laws et
al. (1995) equation was chosen as the default scheme.

To account for the uncertainty associated with biological
fractionation in FAMOUS, we tested three different parame-
terisations for αPOC←aq. In the standard simulation (std), we
calculated αPOC←aq according to Popp et al. (1989):

αPOC←aq =−0.017log
(
CO∗2

)
+ 1.0034, (10)

where CO∗2 is the aqueous CO2 concentration (in µmolL−1).
Both of the alternative parameterisations calculated

αPOC←aq as a function of the phytoplankton-specific growth
rate (µ) and CO∗2, representing an increase in complexity
relative to the standard scheme. The first was a linear re-
lationship derived from the experimental results of Laws et
al. (1995):

αPOC←aq =
−15(

µ/CO∗2
)
− 15.371

. (11)

The second was a non-linear relationship derived from the
experimental results of Laws et al. (1997):

αPOC←aq =
1+

(
µ/0.225CO∗2

)
1.0268+ 1.0055

(
µ/0.225CO∗2

) . (12)
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Because HadOCC is a relatively simple ecological model,
with only a single representation of phytoplankton, we did
not test more complex schemes, such as those that use
phytoplankton-type-specific cell parameters (e.g. Burkhardt
et al., 1999; Keller and Morel, 1999).

2.2.3 Advection

The default advection scheme in FAMOUS is Quadratic Up-
stream Interpolation for Convective Kinematics (QUICK)
with flux limiter (Leonard et al., 1993). This scheme is used
to compute the transport of tracers such as temperature, salin-
ity, nutrients, and DIC throughout the ocean. For consistency,
we use the same advection scheme to calculate 13C concen-
trations in the ocean interior. For greater numerical stabil-
ity, δ13CDIC is fixed at 0 ‰ in the Hudson Bay and Baltic
Sea. With the model’s standard pre-industrial land–sea mask,
these inland bodies of water are isolated from the global
oceans; therefore, their isotope concentrations will not affect
large-scale tracer distributions.

2.3 Simulations

2.3.1 Spin-up simulation

Carbon isotope simulations must be spun up over multiple
millennia (5000 to 15 000 years; Orr et al., 2000) to reach
steady state because of the long timescale of deep ocean
ventilation (Bardin et al., 2014). We therefore ran our spin-
up simulation for 10 000 years with constant pre-industrial
boundary conditions, where δ13Catm was fixed at −6.5 ‰
(Francey et al., 1999) and δ13Cocn was initialised at a glob-
ally uniform value of 0 ‰. The global volume-weighted in-
tegral of δ13CDIC started to stabilise after 7000 years, and
at the end of the spin-up simulation, the drift was less than
0.001 ‰yr−1 (Fig. S1 in the Supplement).

2.3.2 Historical simulation

A transient simulation for the period 1765 to 2000 CE was
initialised from the end of the spin-up simulation to gener-
ate model output that is directly comparable to modern ob-
servations (Fig. 3). Atmospheric CO2 concentrations were
prescribed from the OCMIP-2 files (Orr et al., 2000) and
δ13Catm was prescribed from the Law Dome and South
Pole ice core records (Rubino et al., 2013). The decrease in
δ13Catm from −6.5 ‰ in 1750 to approximately −8.0 ‰ in
2000 is due to the Suess effect. First observed in tree ring
records of atmospheric composition, the Suess effect refers
to the dilution of 13C in any carbon pool due to fossil fuel
burning (Suess, 1955; Keeling, 1979). Fossil fuels formed
millions of years ago from organic matter, which is relatively
13C depleted due to isotopic fractionation during photosyn-
thesis. Their isotopic signature is therefore approximately
20 ‰ lower than that of the ambient atmosphere (Andres et
al., 1994, 1996). To act as a control, the spin-up simulation

Figure 3. Prescribed atmospheric δ13C values (solid) from the Law
Dome and South Pole ice core records (Rubino et al., 2013) and pre-
scribed atmospheric CO2 values (dashed) from the OCMIP-2 files
(Orr et al., 2000).

was continued for an additional 235 years with constant CO2
and δ13Catm.

2.3.3 Sensitivity experiments

Five further simulations were conducted to quantify the ef-
fects of fractionation during air–sea gas exchange and pri-
mary productivity on the simulated δ13CDIC distributions. All
five simulations were run for 10 000 years with constant pre-
industrial boundary conditions. In each of the simulations,
δ13Catm was fixed at −6.5 ‰ and δ13Cocn was initialised at
0 ‰. At the end of each of the spin-up simulations, the global
volume-weighted δ13CDIC integral was drifting by less than
0.001 ‰yr−1.

Three of the simulations were designed to quantify the ef-
fects of the individual processes outlined in Sect. 2.2 (Ta-
ble 2). In the ki-fract-only simulation, αaq←g, αDIC←g, and αp
were all set to 1; therefore, only kinetic fractionation effects
were calculated. In the no-asgx-fract simulation, αk, αaq←g,
and αDIC←g were all set to 1 to eliminate the effect of frac-
tionation during air–sea gas exchange. Fractionation during
photosynthesis continued to be calculated using the std bi-
ological fractionation scheme, as per Eqs. (9)–(10). In the
no-bio-fract simulation, αp was set to 1 to remove the effect
of fractionation during photosynthesis, but fractionation dur-
ing air–sea gas exchange continued to be calculated as per
Eqs. (6)–(8).

The other two simulations were designed to assess the sen-
sitivity of the simulated δ13CDIC distributions to the choice
of biological fractionation scheme (Sect. 2.2.2). In the L95
simulation, αPOC←aq was calculated using Eq. (11), whilst in
the L97 simulation, αPOC←aq was calculated using Eq. (12).
As with the std simulation, we initialised a 235-year transient
simulation (with the 13C-Suess effect) from the end of both
of these spin-ups to allow the output from all three photo-
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Table 2. Overview of the fractionation factors used in the sensitivity experiments.

Simulation αk αaq←g, αDIC←g αp

std Standarda Variableb Variable (with αPOC←aq calculated as per Eq. 10)
ki-fract-only Standard 1 1
no-asgx-fract 1 1 Variable (with αPOC←aq calculated as per Eq. 10)
no-bio-fract Standard Variable 1
L95 Standard Variable Variable (with αPOC←aq calculated as per Eq. 11)
L97 Standard Variable Variable (with αPOC←aq calculated as per Eq. 12)

a 0.99919; b Calculated as per Eqs. (7)–(8)

synthetic fractionation schemes to be compared directly to
observations.

3 Results and discussion

3.1 Validating the isotope scheme

Isolating the different fractionation effects allows us to assess
the relative contribution of air–sea gas exchange and biol-
ogy to the simulated δ13CDIC distributions, and validate that
the new isotope scheme is responding to physical and bio-
geochemical processes as expected. If there is no fractiona-
tion during either air–sea gas exchange or photosynthesis, the
ocean equilibrates at a uniform value of−6.5 ‰, in line with
the atmosphere (simulation not shown). Kinetic fractiona-
tion has only a minor effect on surface ocean δ13CDIC dis-
tributions, with simulated δ13CDIC values in the ki-fract-only
simulation ranging between −6.57 ‰ in the Labrador Sea
and −6.42 ‰ in the eastern equatorial Pacific (Fig. 4a). This
represents a −0.07 ‰ to +0.08 ‰ shift relative to no iso-
topic fractionation. Specifically, there is 13C depletion (low
δ13CDIC) in areas of net CO2 invasion, such as the extratrop-
ics and high latitudes, and 13C enrichment (high δ13CDIC)
in the equatorial upwelling zones and the deep water forma-
tion regions where CO2 is being outgassed. Kinetic fraction-
ation has a negligible effect on the δ13CDIC depth profile,
with globally averaged δ13CDIC values of −6.4955 ‰ in the
surface ocean and −6.5011 ‰ in the abyssal ocean (Fig. 5).

When both the equilibrium and kinetic fractionation ef-
fects are included during air–sea gas exchange (no-bio-fract),
the large-scale δ13CDIC distributions are closely related to
the SST patterns because of the temperature dependence of
αaq←g and αDIC←g (Fig. 4b). In the absence of biological
fractionation, relatively high δ13CDIC values (>+2.5 ‰) are
simulated in the Southern Ocean due to the combined ef-
fect of CO2 outgassing and low SSTs, both of which cause
13C enrichment. The δ13CDIC values in the Arctic Ocean are
comparably low because the model has more extensive sea
ice in the Northern Hemisphere than in the Southern Hemi-
sphere, which inhibits air–sea gas exchange. The highest val-
ues (+3.00 ‰) are simulated in the eastern equatorial Pa-
cific where there are high rates of net CO2 outgassing, and

southern-sourced waters, which have a high δ13CDIC signa-
ture in this simulation because there is no biological fraction-
ation, are upwelled. Low δ13CDIC values are simulated in the
Indian Ocean, with the lowest values (+1.1 ‰) in southeast
Asia, because the sea surface is warmer than at the equiva-
lent latitudes in the Atlantic and Pacific oceans. The glob-
ally averaged δ13CDIC values in this simulation range be-
tween +2.03 ‰ in the surface ocean and +2.16 ‰ in the
deep ocean, with a minimum value of +2.00 ‰ at a depth of
approximately 200 m (Fig. 5). Below approximately 1500 m,
the globally averaged δ13CDIC is near constant with depth,
matching the simulated temperature profile.

When only biological fractionation effects are included
(no-asgx-fract), δ13CDIC values in the surface ocean range
between −7.65 ‰ in the eastern equatorial Pacific and
−3.89 ‰ in the eastern equatorial Atlantic (Fig. 4c), repre-
senting a shift of−1.15 ‰ to+2.61 ‰ relative to no isotopic
fractionation. The asymmetry between these two upwelling
zones occurs because the waters that are being upwelled from
the deep Pacific Ocean are approximately 600 years older
than the equivalent waters in the Atlantic Ocean. They there-
fore contain a higher percentage of remineralised organic
matter, which is enriched in 12C. Relatively low δ13CDIC val-
ues are also simulated in the Southern Ocean and northeast
North Atlantic Ocean where older water is mixed upwards
from the abyssal ocean to the surface ocean at sites of deep
water formation. The globally averaged δ13CDIC values in
this simulation range between −5.85 ‰ in the productive
surface ocean and−7.56 ‰ in the abyssal ocean, with a min-
imum value of−7.86 ‰ at a depth of approximately 1000 m,
which corresponds to the depth of maximum remineralisa-
tion in the model (Fig. 5). The values change from greater
than −6.5 ‰ (enriched in 13C relative to no fractionation) to
less than −6.5 ‰ (depleted in 13C relative to no fractiona-
tion) at a depth of approximately 100 m, which corresponds
to the photic zone.

The spatial patterns in the std simulation and the no-asgx-
fract simulation are closely matched, both in the surface
ocean (Fig. 6) and at depth (Fig. 5), demonstrating the im-
portance of biology to the large-scale δ13CDIC distributions.
However, in the surface layer, air–sea gas exchange partly
compensates for the biological effects in the Southern Ocean,
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Figure 4. Mean annual surface δ13CDIC values at the end of the
sensitivity experiment spin-up simulations (years 9900 to 10 000):
(a) ki-fract-only, (b) no-bio-fract, and (c) no asgx-fract.

the Northern Hemisphere deep water formation region, and
the equatorial upwelling zones, as inferred from the peak sur-
face zonal mean δ13CDIC values at 60◦ S, 55◦ N and 0◦ in
the no-bio-fract simulation, which correspond with reduced
amplitude troughs in the std simulation relative to the no-
asgx-fract simulation. Similar results pertaining to the rel-
ative influence of air–sea gas exchange and biology were
presented by Schmittner et al. (2013), who concluded that
air–sea gas exchange and temperature-dependent fractiona-
tion reduce the spatial δ13CDIC gradients that are created by
biology. Earlier work by Murnane and Sarmiento (2000) and

Figure 5. Depth profiles of globally averaged δ13CDIC at the end
of the sensitivity experiment spin-up simulations (years 9900 to
10 000). The std (black) and no-bio-fract (purple) simulations use
the bottom axis, whilst the ki-fract-only (red) and no-asgx-fract
(blue) simulations use the top axis. The dotted lines are the equiv-
alent simulations conducted by Schmittner et al. (2013) with the
UVic ESM: std (black) and no-bio (purple) on the bottom axis; ki-
only (red) and const-gasx (blue) on the top axis.

Schmittner et al. (2013) also supports the notion that biology
is the dominant factor controlling δ13CDIC distributions in the
interior ocean. Overall, the sensitivity experiments demon-
strate that the new carbon isotope scheme is accurately re-
sponding to physical and biogeochemical processes in the
model, such as temperature, air–sea gas exchange, and the
biological pump.

3.2 Comparison to observations

To assess the model performance in representing modern
large-scale 13C distributions, we compare the simulated
mean δ13CDIC values for the 1990s with observations from
GLODAP version 2 (v2; Key et al., 2015; Olsen et al.,
2016) and the gridded global ocean climatology of Eide et
al. (2017). The δ13CDIC values in the std simulation are,
on average, 0.97 ‰ higher than the GLODAPv2 observa-
tions in the surface ocean (Fig. 7) and 0.64 ‰ higher glob-
ally, with root mean square error (RMSE) values of 1.03 ‰
and 0.91 ‰, respectively. However, the simulated range in
the surface ocean (3.2 ‰) is in excellent agreement with the
observed range (3.3 ‰). Specifically, the simulated surface
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Figure 6. Zonally averaged mean annual surface δ13CDIC at the
end of the sensitivity experiment spin-up simulations (years 9900 to
10 000). The std (black) and no-bio-fract (purple) simulations use
the left-hand axis, whilst the ki-fract-only (red) and no-asgx-fract
(blue) simulations use the right-hand axis. The dotted lines are the
equivalent simulations conducted by Schmittner et al. (2013) with
the UVic ESM: std (black) and no-bio (purple) on the left-hand axis;
ki-only (red) and const-gasx (blue) on the right-hand axis.

δ13CDIC values are between +1.4 ‰ and +4.6 ‰, with a
mean value of +2.6 ‰, whilst the observed surface δ13CDIC
values range between −0.3 ‰ and +3.0 ‰, with a mean
value of +1.5 ‰.

Re-examining the results of the sensitivity experiments al-
lows us to ascertain the underlying causes of the model–data
discrepancy. Schmittner et al. (2013; herein S13) conducted a
similar set of simulations with the UVic ESM to elucidate the
relative influence of biology and air–sea gas exchange on the
distribution of oceanic δ13CDIC (see Table 1 in S13). Overall,
there is good agreement between our ki-fract-only and no-
bio-fract simulations and the equivalent simulations in S13
(ki-fract and no-bio, respectively), both in the surface ocean
(Fig. 6) and at depth (Fig. 5). However, there is a clear dif-
ference between the results of our no-asgx-fract simulation
and the equivalent simulation in S13 (const-gasx). Specifi-
cally, the surface ocean zonal mean δ13CDIC values in our
no-asgx-fract simulation range between−6.6 ‰ at 60◦ S and
−5.5 ‰ in the subtropics, with a local minimum of −5.8 ‰
at the Equator (solid blue line in Fig. 6). For comparison,
the surface ocean zonal mean values in const-gasx range be-
tween −8.0 ‰ in the Southern Ocean and −5.75 ‰ in the
Southern Hemisphere subtropics, with a localised minimum
of −6.25 ‰ at the Equator (dotted blue line in Fig. 6). Sim-
ilarly, whilst the globally averaged deep ocean δ13CDIC val-
ues in our no-asgx-fract simulation have a comparable range
(2.01 ‰) to the deep ocean values in const-gasx, there is an

offset of approximately 1 ‰, with S13 simulating δ13CDIC
values of −6.4 ‰ in the surface ocean, −8.4 ‰ in the deep
ocean, and near constant values below 1000 m (blue lines in
Fig. 5). Overall, the δ13CDIC values in the standard simula-
tion with the UVic ESM are in good agreement with obser-
vations, with a global linear regression r2 value of 0.91 and a
global RMSE of 0.33 ‰ (Schmittner et al., 2013; Buchanan
et al., 2019). We therefore postulate that the offset in the sim-
ulated δ13CDIC values in FAMOUS relates to biases in the
biological carbon cycle.

Elucidating the exact cause of δ13CDIC model–data dis-
crepancy is difficult. There are a number of fluxes going into
and out of the DI13C pool (Fig. 2), each of which could have
biases that are compounding or reducing the overall δ13CDIC
bias. For example, if any of the rates of phytoplankton res-
piration, phytoplankton mortality, or zooplankton mortality
are too low, the input of 12C-enriched material back into the
DIC pool would be insufficient. Similarly, if the model is not
simulating enough remineralisation, either as a direct con-
sequence of the parameterised remineralisation rate or as a
result of insufficient POC export, the input of 12C-enriched
material back into the DIC pool would again be too low.

Primary producers preferentially take up 12C during pho-
tosynthesis; therefore, higher-than-observed rates of net pri-
mary production in the photic zone would increase δ13CDIC.
However, if the δ13CDIC discrepancy in FAMOUS was a sim-
ple function of the biases in net primary production, δ13CDIC
would be lower than observed in the subtropical gyres, the
Indian Ocean, and the northern North Atlantic and North Pa-
cific oceans, and higher than observed in the equatorial up-
welling zones and the Southern Ocean (Fig. 1). Thus, whilst
the differences in net primary production could be contribut-
ing towards the δ13CDIC bias, particularly in the equatorial
upwelling zones, they alone cannot explain the unidirectional
offset.

Alternatively, the fractionation during photosynthesis
could be too strong as a result of imbalances in the car-
bonate chemistry (Fig. S2). The global mean alkalinity in
FAMOUS is 81 µmolkg−1 higher than observed and the
mean alkalinity in the uppermost 50 m of the ocean is
107 µmolkg−1 too high (Key et al., 2004; Sarmiento and
Gruber, 2006). In addition, the simulated global mean DIC
concentration is 54 µmolkg−1 higher than observed and the
mean DIC concentration in the uppermost 50 m of the ocean
is 96 µmolkg−1 too high (Key et al., 2004; Sarmiento and
Gruber, 2006). Furthermore, the mean ocean temperatures in
FAMOUS are warmer than observed, both globally (2.2 ◦C)
and in the uppermost 50 m of the ocean (1 ◦C; Sarmiento
and Gruber, 2006; Locarnini et al., 2013). Increasing alka-
linity increases CO∗2, whilst increasing the temperature and
DIC concentrations decreases CO∗2. Hence, the overall effect
of the carbonate chemistry biases in FAMOUS result in the
global mean CO∗2 being 3.03 µmolL−1 too low and the mean
CO∗2 in the uppermost 50 m of the ocean being 0.58 µmolL−1

too high. In the photic zone, this translates to a simulated αp
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Figure 7. Mean annual surface δ13CDIC during the 1990s: (a) observations from GLODAPv2 (Key et al., 2015; Olsen et al., 2016), (b) the
std simulation corrected for the mean surface bias (0.97 ‰), which is calculated as

∑
(simulated-observed)/number of observations, (c) the

std simulation, and (d) std minus GLODAPv2.

of 0.97378 compared to an observed αp of 0.97415 using the
std fractionation parameterisation. Thus, we postulate that
imbalances in the carbonate chemistry, and the consequent
differences in αp, are contributing towards the δ13CDIC bias,
but the overall effect is small.

The smallest model–data discrepancies in the surface layer
are in the Southern Ocean and the northeast North Atlantic
Ocean where deep convection mixes 12C-enriched waters up-
wards (Fig. 7). In contrast, in the equatorial upwelling zones,
the effect of higher than observed primary productivity (in-
creasing δ13CDIC) outweighs the effect of vertical mixing (re-
ducing δ13CDIC); therefore, the overall model–data biases are
higher in these regions. Despite the global offset, the model
correctly simulates lower δ13CDIC values in the Indian Ocean
compared to the Atlantic and Pacific oceans, because the In-
dian Ocean is relatively nutrient poor, both in the model and
reality (Fig. S3), which limits primary productivity (Fig. 1).
Similar to previous 13C modelling studies (e.g. Hofmann et
al., 2000; Tagliabue and Bopp, 2008; Schmittner et al., 2013),
FAMOUS also accurately simulates the observed latitudinal
gradient in mixed layer δ13CPOC, with relatively high val-

ues (≈−20 ‰) in the low latitudes and relatively low values
(≈−27 ‰) at high latitudes (Fig. 8).

As observed, δ13CDIC decreases with depth in all basins
due to the remineralisation of isotopically light organic mat-
ter (Fig. 9). The maximum remineralisation depth in the
model is approximately 1000 m, which is 200 to 500 m shal-
lower than observed. In the deep ocean, the highest δ13CDIC
values are in the Atlantic basin, with intermediate values
in the Indian basin, and the lowest values in the Pacific
basin, where the waters are older and therefore contain more
remineralised organic material (enriched in 12C). However,
there are notable structural differences in the zonal means
(Fig. 10), which arise due to inaccuracies in the physical
ocean circulation in FAMOUS. Specifically, FAMOUS does
not capture the observed structure in the Atlantic basin be-
cause, in this generation of the model, the AMOC is charac-
terised by an overdeep North Atlantic Deep Water (NADW)
cell and insufficient Antarctic Bottom Water formation (Den-
tith et al., 2019b). FAMOUS also simulates weak (less than
3 Sv) ventilation to depths of 2000 m in the North Pacific
Ocean (Dentith et al., 2019b), which prevents the accumu-
lation of old, 12C-enriched (low δ13CDIC) waters at inter-
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Figure 8. Zonally averaged mean annual mixed layer δ13CPOC dur-
ing the 1990s: observations (Goericke and Fry, 1994; red), the std
simulation (black), the L95 simulation (grey), and the L97 simula-
tion (blue).

mediate depths in the Northern Hemisphere. Instead, the
oldest carbon in the model is in the eastern equatorial Pa-
cific. In addition, the surface winds in the model are weaker
than observed (Kalnay et al., 1996), resulting in a relatively
shallow mixed layer. This promotes the excessive accumu-
lation of high δ13CDIC values in the surface ocean, which is
particularly notable in the Southern Hemisphere subtropical
gyres. These physical model biases are also clearly visible
in the zonal mean profiles of other tracers, such as nutri-
ents (Fig. S4) and DIC (Fig. S5). The overall shape of the
simulated depth profile reaffirms the notion that there are in-
accuracies in both the physical and biogeochemical compo-
nents of the model (Fig. 9). Below approximately 1000 m,
the simulated δ13CDIC values increase with depth in each
ocean basin, whilst the observed basin averages are near con-
stant with depth. The offset between the simulated and ob-
served values is greatest in the deep Atlantic Ocean, where
too much 13C-enriched water from the shallow ocean is be-
ing circulated into the abyssal ocean. However, the trend to-
wards increasing δ13CDIC with depth could also be in part
explained by insufficient remineralisation in the model. This
is supported by lower-than-observed nutrient concentrations
in the deep ocean (Fig. S4). HadOCC’s global export ratio
at 2000 m is within the observed range, but a lack of spatial
variation means that the geographic distributions are partially
incorrect (Palmer and Totterdell, 2001). Hence, we postu-
late that localised inaccuracies in the export ratio, together
with deficiencies in the parameterisation of the reminerali-
sation rate, are contributing towards the δ13CDIC offset. The

basin-averaged δ13CDIC bias is smallest in the Pacific Ocean,
where the waters are old and therefore have had more time to
remineralise, thereby partially compensating for the biogeo-
chemical biases. Indeed, the shape of the simulated and ob-
served basin-averaged depth profiles are in good agreement
below approximately 2000 m in the Pacific Ocean, despite
the structural differences in the zonal mean.

As outlined in Sect. 3.1, our carbon isotope implementa-
tion is sensitive to physical and biogeochemical processes in
the model. Thus, whilst biases in the overturning circulation
and the biological pump are currently limiting the model’s
ability to accurately represent modern large-scale 13C distri-
butions, the model–data agreement could be improved if the
physical and ecological components of FAMOUS were re-
calibrated. This will be discussed further in Sect. 3.4.

3.3 Biological fractionation parameterisations

Given the uncertainty associated with biological fractiona-
tion (Sect. 2.2.2), we tested three different parameterisations
for equilibrium fractionation during photosynthesis. For all
three parameterisations, the total fractionation during photo-
synthesis is greatest in the high latitudes (where SSTs are
relatively low and CO∗2 is relatively high) and lowest in the
equatorial regions (where SSTs are relatively high and CO∗2
is relatively low; Fig. 11). The std parameterisation pro-
duces the largest range of αp values (between approximately
0.97 and 0.98), whilst the L95 parameterisation produces
the smallest range (between approximately 0.964 and 0.970).
The total fractionation during photosynthesis increases with
the complexity of the parameterisation, with L97 producing
the largest overall effect (with a minimum αp of 0.9635). For
all three parameterisations, αp decreases (i.e. the strength of
fractionation increases) with depth in the photic zone, with
the largest gradient produced by the std parameterisation
(Fig. S6).

The large-scale δ13CDIC patterns are very similar for all
three photosynthetic fractionation schemes, but the param-
eterisations that take the phytoplankton growth rate in ac-
count simulate higher surface ocean δ13CDIC values every-
where except in the Southern Ocean, the Nordic Seas, and
the eastern equatorial regions, where older 13C-depleted wa-
ters are mixed upwards from the abyssal ocean during deep
water formation and upwelling (Fig. S7). The differences are
amplified when using the L97 parameterisation (RMSE=
1.24 ‰, bias= 1.15 ‰), which specifies a non-linear rela-
tionship between µ and CO∗2, compared to the L95 param-
eterisation (RMSE= 1.21 ‰, bias= 1.13 ‰), which speci-
fies a linear relationship (Fig. S8). Conversely, the alterna-
tive parameterisations decrease δ13CDIC at depth compared
to the std simulation, bringing the simulated values closer to
the observations (Fig. 9). Below approximately 500 m depth,
the δ13CDIC values are consistently lower when using the
L97 parameterisation compared to the L95 parameterisation.
This is due to the preconditioning of δ13CDIC and δ13CPOC as
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Figure 9. Depth profiles of δ13CDIC during the 1990s: (a) Atlantic Ocean, (b) Pacific Ocean, and (c) Indian Ocean. The δ13CDIC values in
the std (black), L95 (grey) and L97 (blue) simulations are compared to observations (red). Solid lines are used for the global dataset, with
observations from the gridded climatology produced by Eide et al. (2017). The simulated values have also been subsampled at the locations
where there is a corresponding observation in the GLODAPv2 dataset (Key et al., 2015; Olsen et al., 2016; dashed). The red shading shows
the estimated uncertainty in δ13CDIC observations due to unresolved intercalibration between different laboratories (±0.2 ‰; Schmittner et
al., 2013; Eide et al., 2017).

a result of fractionation during photosynthesis in the photic
zone. In the L95 and L97 simulations, δ13CPOC is lower than
in the std simulation due to increased uptake of 12C during
primary production (lower αp). The latitudinal δ13CPOC gra-
dients in the mixed layer in these simulations are lower than
observed, with zonal mean values ranging between approxi-
mately−30 ‰ at the Equator and−33 ‰ at 60◦ N/S (Fig. 8).
When the POC is remineralised, a relatively low δ13C signal
is therefore being released back into the DIC pool, which
causes the δ13CDIC in the deep ocean to be lower than in
the std simulation. Thus, although the rates of biological ex-
change and overturning circulation are the same in all three
simulations, the preconditioning of δ13CDIC and δ13CPOC in
the photic zone creates differences between the three simu-
lations at depth. Whilst the global RMSE compared to the
GLODAPv2 dataset is lower in the L95 and L97 simulations
(0.86 ‰ and 0.87 ‰, respectively), it is still almost double
the RMSE in other models (Buchanan et al., 2019). Overall,
increasing the complexity of the fractionation scheme does
not significantly improve the model–data agreement because
of the aforementioned physical and biogeochemical biases.

3.4 A new tuning target

In contrast with earlier studies, we have demonstrated that
the new carbon isotope scheme in FAMOUS is sensitive
to both physical and biogeochemical processes. The simu-
lated δ13CDIC distributions reflect known physical inaccura-
cies (such as overdeep NADW and weak convection in the
subpolar North Pacific Ocean) and have allowed us to iden-
tify previously undisclosed biogeochemical biases (e.g. in
the representation of remineralisation). The new tracer there-

fore offers excellent potential as a holistic tuning target for
recalibrating FAMOUS in the future.

FAMOUS has previously been tuned both systematically
(Jones et al., 2005; Gregoire et al., 2011; Williams et al.,
2013) and manually (Smith et al., 2008). Most recently,
Williams et al. (2013) tuned the 20 structural parameters
in HadOCC (coupled to FAMOUS-MOSES2.2) using an
objective hypercube technique. Specifically, the parameter
set included the C : N ratios for the different carbon pools,
phytoplankton-specific parameters (e.g. maximum rate of
photosynthesis), zooplankton-specific parameters (e.g. linear
and quadratic zooplankton mortality rates), detritus-specific
parameters (e.g. shallow and deep remineralisation rates),
and carbonate-specific parameters (e.g. calcite export ratio).
The main diagnostics used to evaluate the performance of the
ensemble members were December–January–February and
June–July–August surface air temperatures, annual mean to-
tal precipitation rate, annual mean nitrate concentrations, and
primary productivity. Crucially, this study only ran each per-
turbed parameter simulation for 200 years and neglected to
evaluate the strength and structure of the AMOC. The op-
timal parameter set therefore had small but important im-
balances in the surface climate, which caused the AMOC to
collapse over longer (multi-millennial) timescales (Dentith et
al., 2019b).

HadOCC has not yet been tuned for the configuration of
the model used in our study (FAMOUS-MOSES1). Simul-
taneously recalibrating HadOCC and the physical ocean cir-
culation in FAMOUS-MOSES1 could therefore improve the
simulated δ13CDIC distributions. In the first instance, further
sensitivity studies would provide more insight into the extent
to which our results could be improved by small adjustments
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Figure 10. Zonal mean δ13CDIC during the 1990s in the Atlantic Ocean (left), Pacific Ocean (centre), and Indian Ocean (right): (a–c) gridded
observations (Eide et al., 2017), (d–f) the std simulation, (g–i) the L95 simulation, and (j–l) the L97 simulation.

to the model’s biogeochemistry (e.g. modifying the reminer-
alisation rate and/or the export ratio). Longer term, we pro-
pose that the addition of carbon isotope ratios as tuning tar-
gets (both the δ13C presented here and the new 114C tracer
for FAMOUS discussed by Dentith et al., 2019a) would im-
prove the work of Williams et al. (2013) because they provide
an objective and straightforward way of assessing whether
the balance between all of the ecological processes in the
model is correct.

4 Summary

We have added the stable isotope 13C to the ocean compo-
nent of the FAMOUS GCM, using the MOSES1 generation
of the model to validate our scheme. We account for fraction-
ation during air–sea gas exchange and photosynthesis, and
have tested three different parameterisations for the latter.
The model captures the range of observed δ13CDIC values in
the surface ocean, but the simulated values are approximately
1 ‰ too high at all depths. The differences between the three
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Figure 11. Mean annual isotopic fractionation during photosynthe-
sis (αp) in the surface ocean at the end of the spin-up simulations
(years 9900 to 10 000): (a) the std simulation, (b) the L95 simula-
tion, and (c) the L97 simulation.

fractionation schemes are relatively minor, but when frac-
tionation during photosynthesis accounts for phytoplankton
growth rates as opposed to just aqueous CO2 concentrations
the discrepancies between the model and observations are
further increased in the surface ocean and reduced at depth.
The sensitivity experiments suggest that the simulated val-
ues are too high because of underlying biases in the biologi-
cal carbon cycle; therefore, retuning HadOCC could improve
the model–data agreement. Biases in the large-scale ocean
circulation also inhibit the model’s ability to accurately sim-

ulate the large-scale distribution of tracers in the deep ocean.
Retuning the ocean circulation to improve the representa-
tion of the AMOC, in particular, would further reduce the
model–data discrepancies. Thus, our results emphasise the
utility of implementing carbon isotopes in GCMs; the sim-
ulated isotope distributions provide an additional measure
against which the physical and biogeochemical model per-
formance can be evaluated and offer an extra tuning metric
for prospective development work. In the future, we intend to
use the isotope-enabled model to study ocean circulation and
the marine carbon cycle in both a modern and palaeo context,
for example, at the Last Glacial Maximum (21 000 years ago)
and during the last deglaciation (21 000 to 11 000 years ago).
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Appendix A: Virtual fluxes

The standard equation for calculating the virtual flux to ac-
count for the dilution or concentration effect of surface fresh-
water fluxes is

d12C
dt
=

12C×
(E−P)

dz
, (A1)

where E is evaporation, P is precipitation, and dz is layer
depth.

As we carry 13C as a ratio (13C/12C), virtual fluxes are not
required:

d
(

13C
12C

)
dt

=

12C× d13C
dt −

13C× d12C
dt(

12C
)2 (A2)

d
(

13C
12C

)
dt

=
1

12C
×

[
13C×

(E−P)

dz

]
−

13C(
12C

)2 × [12C×
(E−P)

dz

]
(A3)

d
(

13C
12C

)
dt

= 0. (A4)

Appendix B: Air–sea gas exchange equations

The standard equation for calculating the change in DI13C
due to air–sea gas exchange is

d13C
dt
=αk×αaq←g×PV

×

Csat×
13A
12A
−
Csurf×

13C
12C

αDIC←g

 , (B1)

where PV is the piston velocity (Eq. 4), Csat is the satura-
tion concentration of atmospheric CO2 (in molm−3), Csurf
is the surface aqueous concentration of CO2 (in molm−3),
αk is the constant kinetic fractionation factor, αaq←g is the
temperature-dependent fractionation during gas dissolution
(Eq. 7), αDIC←g is the temperature-dependent fractionation
between aqueous CO2 and DIC (Eq. 8), and 13A/12A and
13C/12C are the 13C/12C ratios of the atmosphere and DIC,
respectively.

The equation for calculating the change in DI13C/DI12C
due to air–sea gas exchange is

d
(

13C
12C

)
dt

=

12C× d13C
dt −

13C× d12C
dt(

12C
)2 (B2)

d
(

13C
12C

)
dt

=
1

12C
×
[
αk×αaq←g×PV

×

Csat×
13A
12A
−
Csurf×

13C
12C

αDIC←g


−

13C(
12C

)2 × [PV× (Csat−Csurf)] (B3)

d
(

13C
12C

)
dt

=
1

12C
×PV×

[
αk×αaq←g

×

Csat×
13A
12A
−
Csurf×

13C
12C

αDIC←g


−

( 13C
12C
× [Csat−Csurf]

)]
. (B4)

Appendix C: Biological equations

For consistency with the standard biological tracers, the 13C
contents of phytoplankton (13P), zooplankton (13Z), and de-
tritus (13D) are carried in mmolNm−3, with the carbon con-
centrations and fluxes calculated using fixed stoichiometric
ratios. The DI13C/DI12C values are therefore converted from
a ratio in model units (Eq. 2) to normalised DI13C concen-
trations before entering the soft tissue pump. The conversion
is reversed at the end of each time step.

C1 Phytoplankton (P)

The standard equation for calculating the change in phyto-
plankton (12P) is

dP
dt
= RP−GP−mP− ηP, (C1)

where RP is the specific growth rate of phytoplankton, GP
represents grazing by zooplankton, mP represents phyto-
plankton mortality due to overpopulation, and ηP represents
phytoplankton respiration.

The equation for calculating the change in 13P is

d13P

dt
=RP×

13C
12C
×αp−GP×

13P
12P
−mP×

13P
12P

− nP×
13P
12P

, (C2)

where αp is the isotopic fractionation that occurs during pho-
tosynthesis (Eq. 9), 13C/12C is the 13C/12C ratio of DIC, and
13P/12P is the 13C/12C ratio of phytoplankton.
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The 13P tracer is updated using the forward Euler method:

13P(t+1t) =
13P(t)+1t ×

(
RP(t) ×

13C
12C (t)

×αp(t)

−GP(t) ×
13P
12P (t)

−mP(t) ×
13P
12P (t)

−nP(t) ×
13P
12P (t)

)
. (C3)

C2 Zooplankton (Z)

The standard equation for calculating the change in zoo-
plankton (12Z) is

dZ
dt
= βP×GP+βD×GD−mZ, (C4)

where βP and βD are the assimilation efficiencies associated
with zooplankton grazing on phytoplankton (GP) and detri-
tus (GD), respectively, and mZ represents zooplankton mor-
tality due to predation and natural causes.

The equation for calculating the change in 13Z is

d13Z

dt
= βP×GP×

13P
12P
+βD×GD×

13D
12D
−mZ×

13Z
12Z

, (C5)

where 13P/12P, 13D/12D, and 13Z/12Z are the isotopic ratios
of phytoplankton, detritus and zooplankton, respectively.

The 13Z tracer is updated using the forward Euler method:

13Z(t+1t) =
13Z(t)+1t ×

(
βP(t) ×GP(t) ×

13P
12P (t)

+βD(t)

×GD(t) ×
13D
12D (t)

−mZ(t) ×
13Z
12Z (t)

)
. (C6)

C3 Dissolved inorganic carbon (DIC, C)

The standard equation for calculating the change in DI12C is

dC
dt
=−RP+ λD+ (1−βP)×GP+ (1−βD)×GD

+mZ+mP+ ηP, (C7)

where RP is the specific growth rate of phytoplankton, λD is
detrital remineralisation, which is specified at a constant rate
(0.1 d−1 in the uppermost 250 m of the ocean and 0.02 d−1 at
all other depths), βP and βD are the assimilation efficiencies
associated with zooplankton grazing on phytoplankton (GP)
and detritus (GD), respectively, mZ represents zooplankton
mortality due to predation and natural causes, mP represents
phytoplankton mortality due to overpopulation, and ηP rep-
resents phytoplankton respiration.

The equation for calculating the change in DI13C is

d13C

dt
=−RP×

13C
12C
×αp+ λD×

13D
12D
+ (1−βP)

×GP×
13P
12P
+ (1−βD)×GD×

13D
12D

+mZ×
13Z
12Z
+mP×

13P
12P
+ ηP×

13P
12P

, (C8)

where αp is the isotopic fractionation that occurs during pho-
tosynthesis (Eq. 9), and 13C/12C, 13D/12D, 13P/12P, and
13Z/12Z are the isotopic ratios of DIC, detritus, phytoplank-
ton, and zooplankton, respectively.

The DI13C tracer is updated using the forward Euler
method:

13C(t+1t) =
13C(t)+1t ×

(
−RP(t) ×

13C
12C (t)

×αp(t) + λD(t)

×

13D
12D (t)

+

(
1−βP(t)

)
×GP(t) ×

13P
12P (t)

+

(
1−βD(t)

)
×GD(t) ×

13D
12D (t)

+mZ(t) ×
13Z
12Z (t)

+mP(t) ×
13P
12P (t)

+ ηP(t) ×
13P
12P (t)

)
.

(C9)

C4 Detritus (D)

Unlike the other biological tracers, the standard detritus
tracer (12D) is updated using a semi-implicit scheme:

D(t+1t,k)−D(t,k)

1t
=

dD
dt bio(t,k)

+
dD
dt sink_in(t+1t,k−1)

−
dD
dt sink_out(t+1t,k)

(C10)

D(t+1t,k)−D(t,k) =1t ×Dbio(t,k) +1t ×
γ

dz/100

×D(t+1t,k−1)−1t ×
γ

dz/100
×D(t+1t,k) (C11)

D(t+1t,k)+1t ×
γ

dz/100
×D(t+1t,k)

=D(t,k)+1t ×Dbio(t,k) +1t

×
γ

dz/100
×D(t+1t,k−1) (C12)

D(t+1t,k)×

(
1+1t ×

γ

dz/100

)
=D(t,k)+1t

×Dbio(t,k) +1t ×
γ

dz/100
×D(t+1t,k−1) (C13)

D(t+1t,k)

=

D(t,k)+1t ×Dbio(t,k) +1t ×
γ

dz/100 ×D(t+1t,k−1)

1+1t × γ
dz/100

(C14)

D(t+1t,k) =D(t,k)+
dD
dt (t,k)

(C15)

dD
dt (t,k)

=D(t+1t,k)−D(t,k) (C16)
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dD
dt (t,k)

=

D(t,k)+1t ×Dbio(t,k) +1t ×
γ

dz/100 ×D(t+1t,k−1)

1+1t × γ
dz/100

−D(t,k),

(C17)

where t is the current time step, k is the model level, dD/dtbio
is the change in detritus due to biological effects (Eq. C19),
γ is the sinking rate, which is parameterised at 10 md−1, dz
is the depth of the layer (in cm), and D is the detritus con-
centration.

Following the same principles, the 13D tracer is updated
using

d13D

dt (t,k)

=

13D(t,k)+1t ×
13Dbio(t,k) +1t ×

γ
dz/100 ×

13D(t+1t,k−1)

1+1t × γ
dz/100

−
13D(t,k).

(C18)

C4.1 Biological effects

The standard equation for calculating the change in detritus
(12D) due to biology is

dD
dt bio

=mZ+mP− λD−GD− (1−βP)×GP

− (1−βD)×GD, (C19)

where mZ represents zooplankton mortality due to predation
and natural causes, mP represents phytoplankton mortality
due to overpopulation, λD is detrital remineralisation, which
is specified at a constant rate (0.1 d−1 in the uppermost 250 m
of the ocean and 0.02 d−1 at all other depths), and βP and βD
are the assimilation efficiencies associated with zooplankton
grazing on phytoplankton (GP) and detritus (GD), respec-
tively.

The equation for calculating the change in 13D due to bi-
ology is

d13D

dt bio
=mZ×

13Z
12Z
+mP×

13P
12P
− λD×

13D
12D
−GD×

13D
12D

− (1−βP)×GP×
13P
12P
− (1−βD)×GD×

13D
12D

,

(C20)

where 13Z/12Z, 13P/12P, and 13D/12D are the isotopic ratios
of zooplankton, phytoplankton, and detritus, respectively.

C4.2 Reflux

The small amount of detritus that reaches the ocean floor is
immediately refluxed back to the surface layer to conserve
nitrogen and carbon.

dD
dt sink_in(k=1)

=
γ

dz/100
×D(k=KMT), (C21)

where k is the model level, γ is the sinking rate, which is pa-
rameterised at 10 md−1, dz is the depth of the layer (in cm),
D is the detritus concentration, and KMT is the maximum
depth of the ocean. The same equation applies for 13D.
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Code availability. FAMOUS can be obtained from http://cms.
ncas.ac.uk/wiki/UmFamous (last access: 23 December 2019). The
code detailing the advances described in this paper is avail-
able via the Research Data Leeds Repository (Dentith, 2019,
https://doi.org/10.5518/621) under a Creative Commons Attribu-
tion 4.0 International (CCBY 4.0) license. These files are known
as code modification (“mod”) files and should be applied to the
original model code, which can be viewed online at http://cms.
ncas.ac.uk/code_browsers/UM4.5/UMbrowser/index.html (last ac-
cess: 23 December 2019). All of the additional modification files
that are required to run the simulations described in this paper are
available in the Supplement. These standard FAMOUS updates –
some of which have been described by Smith et al. (2008), Smith
(2012), and Valdes et al. (2017) – and the original model code are
protected under UK Crown Copyright. The UM configuration (“ba-
sis”) files for the simulations described in this paper are also avail-
able in the Supplement.

The simulations described in this study, as denoted by their
unique five-letter Met Office UM identifiers and the notation used
within this paper, are as follows:

– XOAVB: std spin-up (0 to 10 000 years)

– XOAVI: std transient (1765 to 2000 CE)

– XOGNC: std control (1765 to 2000 CE)

– XOAVD: ki-fract-only (0 to 10 000 years)

– XOAVE: no-bio-fract (0 to 10 000 years)

– XOAVF: no-asgx-fract (0 to 10 000 years)

– XOAVK: L95 spin-up (0 to 10 000 years)

– XOAVU: L95 transient (1765 to 2000 CE)

– XOAVL: L97 spin-up (0 to 10 000 years)

– XOAVW: L97 transient (1765 to 2000 CE)

Data availability. The data are available via the Research Data
Leeds Repository (https://doi.org/10.5518/621, Dentith, 2019).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-13-3529-2020-supplement.
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