Articles | Volume 13, issue 7
https://doi.org/10.5194/gmd-13-3145-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-3145-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An ensemble Kalman filter data assimilation system for the whole neutral atmosphere
Department of Earth and Planetary Science, The University of Tokyo, Tokyo, Japan
Kaoru Sato
Department of Earth and Planetary Science, The University of Tokyo, Tokyo, Japan
Kazuyuki Miyazaki
Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA, USA
Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
Shingo Watanabe
Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
Related authors
Dai Koshin, Kaoru Sato, Masashi Kohma, and Shingo Watanabe
Geosci. Model Dev., 15, 2293–2307, https://doi.org/10.5194/gmd-15-2293-2022, https://doi.org/10.5194/gmd-15-2293-2022, 2022
Short summary
Short summary
The 4D ensemble Kalman filter data assimilation system for the whole neutral atmosphere has been updated. The update includes the introduction of a filter to reduce the generation of spurious waves, change in the order of horizontal diffusion of the forecast model to reproduce more realistic tidal amplitudes, and use of additional satellite observations. As a result, the analysis performance has been greatly improved, even for disturbances with periods of less than 1 d.
John P. McCormack, V. Lynn Harvey, Cora E. Randall, Nicholas Pedatella, Dai Koshin, Kaoru Sato, Lawrence Coy, Shingo Watanabe, Fabrizio Sassi, and Laura A. Holt
Atmos. Chem. Phys., 21, 17577–17605, https://doi.org/10.5194/acp-21-17577-2021, https://doi.org/10.5194/acp-21-17577-2021, 2021
Short summary
Short summary
In order to have confidence in atmospheric predictions, it is important to know how well different numerical model simulations of the Earth’s atmosphere agree with one another. This work compares four different data assimilation models that extend to or beyond the mesosphere. Results shown here demonstrate that while the models are in close agreement below ~50 km, large differences arise at higher altitudes in the mesosphere and lower thermosphere that will need to be reconciled in the future.
Yunqian Zhu, Hideharu Akiyoshi, Valentina Aquila, Elisabeth Asher, Ewa M. Bednarz, Slimane Bekki, Christoph Brühl, Amy H. Butler, Parker Case, Simon Chabrillat, Gabriel Chiodo, Margot Clyne, Lola Falletti, Peter R. Colarco, Eric Fleming, Andrin Jörimann, Mahesh Kovilakam, Gerbrand Koren, Ales Kuchar, Nicolas Lebas, Qing Liang, Cheng-Cheng Liu, Graham Mann, Michael Manyin, Marion Marchand, Olaf Morgenstern, Paul Newman, Luke D. Oman, Freja F. Østerstrøm, Yifeng Peng, David Plummer, Ilaria Quaglia, William Randel, Samuel Rémy, Takashi Sekiya, Stephen Steenrod, Timofei Sukhodolov, Simone Tilmes, Kostas Tsigaridis, Rei Ueyama, Daniele Visioni, Xinyue Wang, Shingo Watanabe, Yousuke Yamashita, Pengfei Yu, Wandi Yu, Jun Zhang, and Zhihong Zhuo
EGUsphere, https://doi.org/10.5194/egusphere-2024-3412, https://doi.org/10.5194/egusphere-2024-3412, 2024
Short summary
Short summary
To understand the climate impact of the 2022 Hunga volcanic eruption, we developed a climate model-observation comparison project. The paper describes the protocols and models that participate in the experiments. We designed several experiments to achieve our goal of this activity: 1. evaluate the climate model performance; 2. understand the Earth system responses to this eruption.
Yasin Elshorbany, Jerald R. Ziemke, Sarah Strode, Hervé Petetin, Kazuyuki Miyazaki, Isabelle De Smedt, Kenneth Pickering, Rodrigo J. Seguel, Helen Worden, Tamara Emmerichs, Domenico Taraborrelli, Maria Cazorla, Suvarna Fadnavis, Rebecca R. Buchholz, Benjamin Gaubert, Néstor Y. Rojas, Thiago Nogueira, Thérèse Salameh, and Min Huang
Atmos. Chem. Phys., 24, 12225–12257, https://doi.org/10.5194/acp-24-12225-2024, https://doi.org/10.5194/acp-24-12225-2024, 2024
Short summary
Short summary
We investigated tropospheric ozone spatial variability and trends from 2005 to 2019 and related those to ozone precursors on global and regional scales. We also investigate the spatiotemporal characteristics of the ozone formation regime in relation to ozone chemical sources and sinks. Our analysis is based on remote sensing products of the tropospheric column of ozone and its precursors, nitrogen dioxide, formaldehyde, and total column CO, as well as ozonesonde data and model simulations.
Yoshio Kawatani, Kevin Hamilton, Shingo Watanabe, James A. Anstey, Jadwiga H. Richter, Neal Butchart, Clara Orbe, Scott M. Osprey, Hiroaki Naoe, Dillon Elsbury, Chih-Chieh Chen, Javier García-Serrano, Anne Glanville, Tobias Kerzenmacher, François Lott, Froila M. Palmerio, Mijeong Park, Federico Serva, Masakazu Taguchi, Stefan Versick, and Kohei Yoshioda
EGUsphere, https://doi.org/10.5194/egusphere-2024-3270, https://doi.org/10.5194/egusphere-2024-3270, 2024
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
The Quasi-Biennial Oscillation (QBO) of the tropical stratospheric mean winds has been relatively steady over the 7 decades it has been observed, but there are always cycle-to-cycle variations. This study used several global atmospheric models to investigate systematic modulation of the QBO by the El Niño/La Niña cycle. All models simulated shorter periods during El Niño, in agreement with observations. By contrast, the models disagreed even on the sign of the El Niño effect on QBO amplitude.
Sebastian Rhode, Peter Preusse, Jörn Ungermann, Inna Polichtchouk, Kaoru Sato, Shingo Watanabe, Manfred Ern, Karlheinz Nogai, Björn-Martin Sinnhuber, and Martin Riese
Atmos. Meas. Tech., 17, 5785–5819, https://doi.org/10.5194/amt-17-5785-2024, https://doi.org/10.5194/amt-17-5785-2024, 2024
Short summary
Short summary
We investigate the capabilities of a proposed satellite mission, CAIRT, for observing gravity waves throughout the middle atmosphere and present the necessary methodology for in-depth wave analysis. Our findings suggest that such a satellite mission is highly capable of resolving individual wave parameters and could give new insights into the role of gravity waves in general atmospheric circulation and atmospheric processes.
Edward Malina, Kevin W. Bowman, Valentin Kantchev, Le Kuai, Thomas P. Kurosu, Kazuyuki Miyazaki, Vijay Natraj, Gregory B. Osterman, Fabiano Oyafuso, and Matthew D. Thill
Atmos. Meas. Tech., 17, 5341–5371, https://doi.org/10.5194/amt-17-5341-2024, https://doi.org/10.5194/amt-17-5341-2024, 2024
Short summary
Short summary
Characterizing the distribution of ozone in the atmosphere is a challenging problem, with current Earth observation satellites using either thermal infrared (TIR) or ultraviolet (UV) instruments, sensitive to different portions of the atmosphere, making it difficult to gain a full picture. In this work, we combine measurements from the TIR and UV instruments Suomi NPP CrIS and Sentinel-5P/TROPOMI to improve sensitivity through the whole atmosphere and improve knowledge of ozone distribution.
Takashi Sekiya, Emanuele Emili, Kazuyuki Miyazaki, Antje Inness, Zhen Qu, R. Bradley Pierce, Dylan Jones, Helen Worden, William Y. Y. Cheng, Vincent Huijnen, and Gerbrand Koren
EGUsphere, https://doi.org/10.5194/egusphere-2024-2426, https://doi.org/10.5194/egusphere-2024-2426, 2024
Short summary
Short summary
Five global chemical reanalysis datasets were used to assess the relative impacts of assimilating satellite ozone and its precursors measurements on tropospheric ozone analyses for 2010. The multiple reanalysis system comparison allows for evaluating dependency of the impacts on different reanalysis systems. The results suggested the importance of satellite ozone and its precursor measurements for improving ozone analysis in the whole troposphere, with varying the magnitudes among the systems.
Daniele Visioni, Alan Robock, Jim Haywood, Matthew Henry, Simone Tilmes, Douglas G. MacMartin, Ben Kravitz, Sarah J. Doherty, John Moore, Chris Lennard, Shingo Watanabe, Helene Muri, Ulrike Niemeier, Olivier Boucher, Abu Syed, Temitope S. Egbebiyi, Roland Séférian, and Ilaria Quaglia
Geosci. Model Dev., 17, 2583–2596, https://doi.org/10.5194/gmd-17-2583-2024, https://doi.org/10.5194/gmd-17-2583-2024, 2024
Short summary
Short summary
This paper describes a new experimental protocol for the Geoengineering Model Intercomparison Project (GeoMIP). In it, we describe the details of a new simulation of sunlight reflection using the stratospheric aerosols that climate models are supposed to run, and we explain the reasons behind each choice we made when defining the protocol.
Pieter Rijsdijk, Henk Eskes, Arlene Dingemans, Folkert Boersma, Takashi Sekiya, Kazuyuki Miyazaki, and Sander Houweling
EGUsphere, https://doi.org/10.5194/egusphere-2024-632, https://doi.org/10.5194/egusphere-2024-632, 2024
Short summary
Short summary
Clustering high-resolution satellite observations into superobservations improves model validation and data assimilation applications. In our paper, we derive quantitative uncertainties for satellite NO2 column observations based on knowledge of the retrievals, including a detailed analysis of spatial error correlations and representativity errors. The superobservations and uncertainty estimates are tested in a global chemical data assimilation system and are found to improve the forecasts.
Drew C. Pendergrass, Daniel J. Jacob, Hannah Nesser, Daniel J. Varon, Melissa Sulprizio, Kazuyuki Miyazaki, and Kevin W. Bowman
Geosci. Model Dev., 16, 4793–4810, https://doi.org/10.5194/gmd-16-4793-2023, https://doi.org/10.5194/gmd-16-4793-2023, 2023
Short summary
Short summary
We have built a tool called CHEEREIO that allows scientists to use observations of pollutants or gases in the atmosphere, such as from satellites or surface stations, to update supercomputer models that simulate the Earth. CHEEREIO uses the difference between the model simulations of the atmosphere and real-world observations to come up with a good guess for the actual composition of our atmosphere, the true emissions of various pollutants, and whatever else they may want to study.
Sachiko Okamoto, Juan Cuesta, Matthias Beekmann, Gaëlle Dufour, Maxim Eremenko, Kazuyuki Miyazaki, Cathy Boonne, Hiroshi Tanimoto, and Hajime Akimoto
Atmos. Chem. Phys., 23, 7399–7423, https://doi.org/10.5194/acp-23-7399-2023, https://doi.org/10.5194/acp-23-7399-2023, 2023
Short summary
Short summary
We present a detailed analysis of the daily evolution of the lowermost tropospheric ozone documented by IASI+GOME2 multispectral satellite observations and that of its precursors from TCR-2 tropospheric chemistry reanalysis. It reveals that the ozone outbreak across Europe in July 2017 was produced during favorable condition for photochemical production of ozone and was associated with multiple sources of ozone precursors: biogenic, anthropogenic, and biomass burning emissions.
Daniele Visioni, Ben Kravitz, Alan Robock, Simone Tilmes, Jim Haywood, Olivier Boucher, Mark Lawrence, Peter Irvine, Ulrike Niemeier, Lili Xia, Gabriel Chiodo, Chris Lennard, Shingo Watanabe, John C. Moore, and Helene Muri
Atmos. Chem. Phys., 23, 5149–5176, https://doi.org/10.5194/acp-23-5149-2023, https://doi.org/10.5194/acp-23-5149-2023, 2023
Short summary
Short summary
Geoengineering indicates methods aiming to reduce the temperature of the planet by means of reflecting back a part of the incoming radiation before it reaches the surface or allowing more of the planetary radiation to escape into space. It aims to produce modelling experiments that are easy to reproduce and compare with different climate models, in order to understand the potential impacts of these techniques. Here we assess its past successes and failures and talk about its future.
Jagat S. H. Bisht, Prabir K. Patra, Masayuki Takigawa, Takashi Sekiya, Yugo Kanaya, Naoko Saitoh, and Kazuyuki Miyazaki
Geosci. Model Dev., 16, 1823–1838, https://doi.org/10.5194/gmd-16-1823-2023, https://doi.org/10.5194/gmd-16-1823-2023, 2023
Short summary
Short summary
In this study, we estimated CH4 fluxes using an advanced 4D-LETKF method. The system was tested and optimized using observation system simulation experiments (OSSEs), where a known surface emission distribution is retrieved from synthetic observations. The availability of satellite measurements has increased, and there are still many missions focused on greenhouse gas observations that have not yet launched. The technique being referred to has the potential to improve estimates of CH4 fluxes.
Madison J. Shogrin, Vivienne H. Payne, Susan S. Kulawik, Kazuyuki Miyazaki, and Emily V. Fischer
Atmos. Chem. Phys., 23, 2667–2682, https://doi.org/10.5194/acp-23-2667-2023, https://doi.org/10.5194/acp-23-2667-2023, 2023
Short summary
Short summary
We evaluate the spatiotemporal variability of peroxy acyl nitrates (PANs), important photochemical pollutants, over Mexico City using satellite observations. PANs exhibit a seasonal cycle that maximizes in spring. Wildfires contribute to observed interannual variability, and the satellite indicates several areas of frequent outflow. Recent changes in NOx emissions are not accompanied by changes in PANs. This work demonstrates analysis approaches that can be applied to other megacities.
Tai-Long He, Dylan B. A. Jones, Kazuyuki Miyazaki, Kevin W. Bowman, Zhe Jiang, Xiaokang Chen, Rui Li, Yuxiang Zhang, and Kunna Li
Atmos. Chem. Phys., 22, 14059–14074, https://doi.org/10.5194/acp-22-14059-2022, https://doi.org/10.5194/acp-22-14059-2022, 2022
Short summary
Short summary
We use a deep-learning (DL) model to estimate Chinese NOx emissions by combining satellite analysis and in situ measurements. Our results are consistent with conventional analyses of Chinese NOx emissions. Comparison with mobility data shows that the DL model has a better capability to capture changes in NOx. We analyse Chinese NOx emissions during the COVID-19 pandemic lockdown period. Our results illustrate the potential use of DL as a complementary tool for conventional air quality studies.
Vivienne H. Payne, Susan S. Kulawik, Emily V. Fischer, Jared F. Brewer, L. Gregory Huey, Kazuyuki Miyazaki, John R. Worden, Kevin W. Bowman, Eric J. Hintsa, Fred Moore, James W. Elkins, and Julieta Juncosa Calahorrano
Atmos. Meas. Tech., 15, 3497–3511, https://doi.org/10.5194/amt-15-3497-2022, https://doi.org/10.5194/amt-15-3497-2022, 2022
Short summary
Short summary
We compare new satellite measurements of peroxyacetyl nitrate (PAN) with reference aircraft measurements from two different instruments flown on the same platform. While there is a systematic difference between the two aircraft datasets, both show the same large-scale distribution of PAN and the discrepancy between aircraft datasets is small compared to the satellite uncertainties. The satellite measurements show skill in capturing large-scale variations in PAN.
Takashi Sekiya, Kazuyuki Miyazaki, Henk Eskes, Kengo Sudo, Masayuki Takigawa, and Yugo Kanaya
Atmos. Meas. Tech., 15, 1703–1728, https://doi.org/10.5194/amt-15-1703-2022, https://doi.org/10.5194/amt-15-1703-2022, 2022
Short summary
Short summary
This study gives a systematic comparison of TROPOMI version 1.2 and OMI QA4ECV tropospheric NO2 column through global chemical data assimilation (DA) integration for April–May 2018. DA performance is controlled by measurement sensitivities, retrieval errors, and coverage. Due to reduced errors in TROPOMI, agreements against assimilated and independent observations were improved by TROPOMI DA compared to OMI DA. These results demonstrate that TROPOMI DA improves global analyses of NO2 and ozone.
Dai Koshin, Kaoru Sato, Masashi Kohma, and Shingo Watanabe
Geosci. Model Dev., 15, 2293–2307, https://doi.org/10.5194/gmd-15-2293-2022, https://doi.org/10.5194/gmd-15-2293-2022, 2022
Short summary
Short summary
The 4D ensemble Kalman filter data assimilation system for the whole neutral atmosphere has been updated. The update includes the introduction of a filter to reduce the generation of spurious waves, change in the order of horizontal diffusion of the forecast model to reproduce more realistic tidal amplitudes, and use of additional satellite observations. As a result, the analysis performance has been greatly improved, even for disturbances with periods of less than 1 d.
John P. McCormack, V. Lynn Harvey, Cora E. Randall, Nicholas Pedatella, Dai Koshin, Kaoru Sato, Lawrence Coy, Shingo Watanabe, Fabrizio Sassi, and Laura A. Holt
Atmos. Chem. Phys., 21, 17577–17605, https://doi.org/10.5194/acp-21-17577-2021, https://doi.org/10.5194/acp-21-17577-2021, 2021
Short summary
Short summary
In order to have confidence in atmospheric predictions, it is important to know how well different numerical model simulations of the Earth’s atmosphere agree with one another. This work compares four different data assimilation models that extend to or beyond the mesosphere. Results shown here demonstrate that while the models are in close agreement below ~50 km, large differences arise at higher altitudes in the mesosphere and lower thermosphere that will need to be reconciled in the future.
Marta Abalos, Natalia Calvo, Samuel Benito-Barca, Hella Garny, Steven C. Hardiman, Pu Lin, Martin B. Andrews, Neal Butchart, Rolando Garcia, Clara Orbe, David Saint-Martin, Shingo Watanabe, and Kohei Yoshida
Atmos. Chem. Phys., 21, 13571–13591, https://doi.org/10.5194/acp-21-13571-2021, https://doi.org/10.5194/acp-21-13571-2021, 2021
Short summary
Short summary
The stratospheric Brewer–Dobson circulation (BDC), responsible for transporting mass, tracers and heat globally in the stratosphere, is evaluated in a set of state-of-the-art climate models. The acceleration of the BDC in response to increasing greenhouse gases is most robust in the lower stratosphere. At higher levels, the well-known inconsistency between model and observational BDC trends can be partly reconciled by accounting for limited sampling and large uncertainties in the observations.
Zhe Jiang, Hongrong Shi, Bin Zhao, Yu Gu, Yifang Zhu, Kazuyuki Miyazaki, Xin Lu, Yuqiang Zhang, Kevin W. Bowman, Takashi Sekiya, and Kuo-Nan Liou
Atmos. Chem. Phys., 21, 8693–8708, https://doi.org/10.5194/acp-21-8693-2021, https://doi.org/10.5194/acp-21-8693-2021, 2021
Short summary
Short summary
We use the COVID-19 pandemic as a unique natural experiment to obtain a more robust understanding of the effectiveness of emission reductions toward air quality improvement by combining chemical transport simulations and observations. Our findings imply a shift from current control policies in California: a strengthened control on primary PM2.5 emissions and a well-balanced control on NOx and volatile organic compounds are needed to effectively and sustainably alleviate PM2.5 and O3 pollution.
Benjamin Gaubert, Louisa K. Emmons, Kevin Raeder, Simone Tilmes, Kazuyuki Miyazaki, Avelino F. Arellano Jr., Nellie Elguindi, Claire Granier, Wenfu Tang, Jérôme Barré, Helen M. Worden, Rebecca R. Buchholz, David P. Edwards, Philipp Franke, Jeffrey L. Anderson, Marielle Saunois, Jason Schroeder, Jung-Hun Woo, Isobel J. Simpson, Donald R. Blake, Simone Meinardi, Paul O. Wennberg, John Crounse, Alex Teng, Michelle Kim, Russell R. Dickerson, Hao He, Xinrong Ren, Sally E. Pusede, and Glenn S. Diskin
Atmos. Chem. Phys., 20, 14617–14647, https://doi.org/10.5194/acp-20-14617-2020, https://doi.org/10.5194/acp-20-14617-2020, 2020
Short summary
Short summary
This study investigates carbon monoxide pollution in East Asia during spring using a numerical model, satellite remote sensing, and aircraft measurements. We found an underestimation of emission sources. Correcting the emission bias can improve air quality forecasting of carbon monoxide and other species including ozone. Results also suggest that controlling VOC and CO emissions, in addition to widespread NOx controls, can improve ozone pollution over East Asia.
Arata Amemiya and Kaoru Sato
Atmos. Chem. Phys., 20, 13857–13876, https://doi.org/10.5194/acp-20-13857-2020, https://doi.org/10.5194/acp-20-13857-2020, 2020
Short summary
Short summary
The spatial pattern of subseasonal variability of the Asian monsoon anticyclone (AMA) is analyzed using long-term reanalysis data, integrating two different views using potential vorticity and the geopotential height anomaly. This study provides a link between two existing description of the Asian monsoon anticyclone, which is important for the understanding of the whole life cycle of its characteristic subseasonal variability pattern.
Kazuyuki Miyazaki, Kevin Bowman, Takashi Sekiya, Henk Eskes, Folkert Boersma, Helen Worden, Nathaniel Livesey, Vivienne H. Payne, Kengo Sudo, Yugo Kanaya, Masayuki Takigawa, and Koji Ogochi
Earth Syst. Sci. Data, 12, 2223–2259, https://doi.org/10.5194/essd-12-2223-2020, https://doi.org/10.5194/essd-12-2223-2020, 2020
Short summary
Short summary
This study presents the results from the Tropospheric Chemistry Reanalysis version 2 (TCR-2) for 2005–2018 obtained from the assimilation of multiple satellite measurements of ozone, CO, NO2, HNO3, and SO2 from the OMI, SCIAMACHY, GOME-2, TES, MLS, and MOPITT instruments. The evaluation results demonstrate the capability of the reanalysis products to improve understanding of the processes controlling variations in atmospheric composition, including long-term changes in air quality and emissions.
Tomohiro Hajima, Michio Watanabe, Akitomo Yamamoto, Hiroaki Tatebe, Maki A. Noguchi, Manabu Abe, Rumi Ohgaito, Akinori Ito, Dai Yamazaki, Hideki Okajima, Akihiko Ito, Kumiko Takata, Koji Ogochi, Shingo Watanabe, and Michio Kawamiya
Geosci. Model Dev., 13, 2197–2244, https://doi.org/10.5194/gmd-13-2197-2020, https://doi.org/10.5194/gmd-13-2197-2020, 2020
Short summary
Short summary
We developed a new Earth system model (ESM) named MIROC-ES2L. This model is based on a state-of-the-art climate model and includes carbon–nitrogen cycles for the land and multiple biogeochemical cycles for the ocean. The model's performances on reproducing historical climate and biogeochemical changes are confirmed to be reasonable, and the new model is likely to be an
optimisticmodel in projecting future climate change among ESMs in the Coupled Model Intercomparison Project Phase 6.
Vincent Huijnen, Kazuyuki Miyazaki, Johannes Flemming, Antje Inness, Takashi Sekiya, and Martin G. Schultz
Geosci. Model Dev., 13, 1513–1544, https://doi.org/10.5194/gmd-13-1513-2020, https://doi.org/10.5194/gmd-13-1513-2020, 2020
Short summary
Short summary
We present the evaluation and intercomparison of global tropospheric ozone reanalyses that have been produced in recent years. Such reanalyses can be used to assess the current state and variability of tropospheric ozone.
The reanalyses show overall good agreements with independent ground and ozone-sonde observations for the diurnal, synoptical, seasonal, and interannual variabilities, with generally improved performances for the updated reanalyses.
Yuki Matsushita, Daiki Kado, Masashi Kohma, and Kaoru Sato
Ann. Geophys., 38, 319–329, https://doi.org/10.5194/angeo-38-319-2020, https://doi.org/10.5194/angeo-38-319-2020, 2020
Short summary
Short summary
Interannual variabilities of the zonal mean wind and temperature related to the Rossby wave forcing in the winter stratosphere of the Southern Hemisphere are studied using 38-year reanalysis data. Correlation of the mean fields to the wave forcing is extended to the subtropics of the Northern Hemisphere. This interhemispheric link is caused by the wave forcing which reduces the meridional gradient of the angular momentum and drives the meridional circulation over the Equator in the stratosphere.
Kazuyuki Miyazaki, Kevin W. Bowman, Keiya Yumimoto, Thomas Walker, and Kengo Sudo
Atmos. Chem. Phys., 20, 931–967, https://doi.org/10.5194/acp-20-931-2020, https://doi.org/10.5194/acp-20-931-2020, 2020
Short summary
Short summary
We introduce a multi-model, multi-constituent chemical data assimilation framework that directly accounts for model error in transport and chemistry by integrating a portfolio of forward chemical transport models. The assimilation was able to reduce ensemble forward model spread and bias relative to independent measurements. Diagnostic information readily available from the framework has the potential to improve chemical predictions through relationships such as emergent constraints.
Le Kuai, Kevin W. Bowman, Kazuyuki Miyazaki, Makoto Deushi, Laura Revell, Eugene Rozanov, Fabien Paulot, Sarah Strode, Andrew Conley, Jean-François Lamarque, Patrick Jöckel, David A. Plummer, Luke D. Oman, Helen Worden, Susan Kulawik, David Paynter, Andrea Stenke, and Markus Kunze
Atmos. Chem. Phys., 20, 281–301, https://doi.org/10.5194/acp-20-281-2020, https://doi.org/10.5194/acp-20-281-2020, 2020
Short summary
Short summary
The tropospheric ozone increase from pre-industrial to the present day leads to a radiative forcing. The top-of-atmosphere outgoing fluxes at the ozone band are controlled by ozone, water vapor, and temperature. We demonstrate a method to attribute the models’ flux biases to these key players using satellite-constrained instantaneous radiative kernels. The largest spread between models is found in the tropics, mainly driven by ozone and then water vapor.
Miho Yamamori, Yasuhiro Murayama, Kazuo Shibasaki, Isao Murata, and Kaoru Sato
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-837, https://doi.org/10.5194/acp-2019-837, 2019
Preprint withdrawn
Short summary
Short summary
The contribution of vertical and horizontal advection to the production of small-scale vertical ozone structures in the stratosphere is investigated using data from an ozonesonde observation performed at intervals of 3 h in Fairbanks, Alaska. A case is reported in which horizontal advection due to an inertia gravity wave with near-inertial frequency mainly contributes to the formation of a small-scale vertical ozone structure in the middle stratosphere.
Hiroaki Tatebe, Tomoo Ogura, Tomoko Nitta, Yoshiki Komuro, Koji Ogochi, Toshihiko Takemura, Kengo Sudo, Miho Sekiguchi, Manabu Abe, Fuyuki Saito, Minoru Chikira, Shingo Watanabe, Masato Mori, Nagio Hirota, Yoshio Kawatani, Takashi Mochizuki, Kei Yoshimura, Kumiko Takata, Ryouta O'ishi, Dai Yamazaki, Tatsuo Suzuki, Masao Kurogi, Takahito Kataoka, Masahiro Watanabe, and Masahide Kimoto
Geosci. Model Dev., 12, 2727–2765, https://doi.org/10.5194/gmd-12-2727-2019, https://doi.org/10.5194/gmd-12-2727-2019, 2019
Short summary
Short summary
For a deeper understanding of a wide range of climate science issues, the latest version of the Japanese climate model, called MIROC6, was developed. The climate model represents observed mean climate and climate variations well, for example tropical precipitation, the midlatitude westerlies, and the East Asian monsoon, which influence human activity all over the world. The improved climate simulations could add reliability to climate predictions under global warming.
Yugo Kanaya, Kazuyuki Miyazaki, Fumikazu Taketani, Takuma Miyakawa, Hisahiro Takashima, Yuichi Komazaki, Xiaole Pan, Saki Kato, Kengo Sudo, Takashi Sekiya, Jun Inoue, Kazutoshi Sato, and Kazuhiro Oshima
Atmos. Chem. Phys., 19, 7233–7254, https://doi.org/10.5194/acp-19-7233-2019, https://doi.org/10.5194/acp-19-7233-2019, 2019
Short summary
Short summary
Ozone and carbon monoxide levels were uniquely observed (for > 10 000 h) over oceans from 67° S to 75° N. Tropospheric chemistry reanalysis v2 reproduced the observed evolution of pollution plumes from continents but underpredicted and overpredicted ozone levels in the Arctic and in the western Pacific equatorial region, respectively. Processes to explain the gaps are proposed, including halogen-mediated destruction in the low latitudes. Our open data set will complement the TOAR data collection.
Kaoru Sato and Soichiro Hirano
Atmos. Chem. Phys., 19, 4517–4539, https://doi.org/10.5194/acp-19-4517-2019, https://doi.org/10.5194/acp-19-4517-2019, 2019
Short summary
Short summary
The climatology of the Brewer–Dobson circulation and the potential contribution of gravity waves (GWs) are examined using four modern reanalysis datasets for the annual mean and each season. In this study, unresolved waves are designated as GWs. GWs are essential to determine the high-latitude extension and the turn-around latitude except in summer, although their contribution to the upward mass flux is relatively small. Plausible deficiencies of the current GW parameterizations are discussed.
Wenfu Tang, Avelino F. Arellano, Benjamin Gaubert, Kazuyuki Miyazaki, and Helen M. Worden
Atmos. Chem. Phys., 19, 4269–4288, https://doi.org/10.5194/acp-19-4269-2019, https://doi.org/10.5194/acp-19-4269-2019, 2019
Ryosuke Shibuya and Kaoru Sato
Atmos. Chem. Phys., 19, 3395–3415, https://doi.org/10.5194/acp-19-3395-2019, https://doi.org/10.5194/acp-19-3395-2019, 2019
Short summary
Short summary
The first long-term simulation using the high-top non-hydrostatic general circulation model (NICAM) was executed to analyze mesospheric gravity waves. A new finding in this paper is that the spectrum of the vertical fluxes of the zonal momentum has an isolated peak at frequencies slightly lower than f at latitudes from 30 to 75° S at a height of 70 km. This study discusses the physical mechanism for an explanation of the existence of the isolated spectrum peak in the mesosphere.
Rumi Ohgaito, Ayako Abe-Ouchi, Ryouta O'ishi, Toshihiko Takemura, Akinori Ito, Tomohiro Hajima, Shingo Watanabe, and Michio Kawamiya
Clim. Past, 14, 1565–1581, https://doi.org/10.5194/cp-14-1565-2018, https://doi.org/10.5194/cp-14-1565-2018, 2018
Short summary
Short summary
The behaviour of dust in terms of climate can be investigated using past climate. The Last Glacial Maximum (LGM; 21000 years before present) is known to be dustier. We investigated the impact of plausible dust distribution on the climate of the LGM using an Earth system model and found that the higher dust load results in less cooling over the polar regions. The main finding is that radiative perturbation by the high dust loading does not necessarily cool the surface surrounding Antarctica.
Dejian Fu, Susan S. Kulawik, Kazuyuki Miyazaki, Kevin W. Bowman, John R. Worden, Annmarie Eldering, Nathaniel J. Livesey, Joao Teixeira, Fredrick W. Irion, Robert L. Herman, Gregory B. Osterman, Xiong Liu, Pieternel F. Levelt, Anne M. Thompson, and Ming Luo
Atmos. Meas. Tech., 11, 5587–5605, https://doi.org/10.5194/amt-11-5587-2018, https://doi.org/10.5194/amt-11-5587-2018, 2018
Ben Kravitz, Philip J. Rasch, Hailong Wang, Alan Robock, Corey Gabriel, Olivier Boucher, Jason N. S. Cole, Jim Haywood, Duoying Ji, Andy Jones, Andrew Lenton, John C. Moore, Helene Muri, Ulrike Niemeier, Steven Phipps, Hauke Schmidt, Shingo Watanabe, Shuting Yang, and Jin-Ho Yoon
Atmos. Chem. Phys., 18, 13097–13113, https://doi.org/10.5194/acp-18-13097-2018, https://doi.org/10.5194/acp-18-13097-2018, 2018
Short summary
Short summary
Marine cloud brightening has been proposed as a means of geoengineering/climate intervention, or deliberately altering the climate system to offset anthropogenic climate change. In idealized simulations that highlight contrasts between land and ocean, we find that the globe warms, including the ocean due to transport of heat from land. This study reinforces that no net energy input into the Earth system does not mean that temperature will necessarily remain unchanged.
Duoying Ji, Songsong Fang, Charles L. Curry, Hiroki Kashimura, Shingo Watanabe, Jason N. S. Cole, Andrew Lenton, Helene Muri, Ben Kravitz, and John C. Moore
Atmos. Chem. Phys., 18, 10133–10156, https://doi.org/10.5194/acp-18-10133-2018, https://doi.org/10.5194/acp-18-10133-2018, 2018
Short summary
Short summary
We examine extreme temperature and precipitation under climate-model-simulated solar dimming and stratospheric aerosol injection geoengineering schemes. Both types of geoengineering lead to lower minimum temperatures at higher latitudes and greater cooling of minimum temperatures and maximum temperatures over land compared with oceans. Stratospheric aerosol injection is more effective in reducing tropical extreme precipitation, while solar dimming is more effective over extra-tropical regions.
Juan Cuesta, Yugo Kanaya, Masayuki Takigawa, Gaëlle Dufour, Maxim Eremenko, Gilles Foret, Kazuyuki Miyazaki, and Matthias Beekmann
Atmos. Chem. Phys., 18, 9499–9525, https://doi.org/10.5194/acp-18-9499-2018, https://doi.org/10.5194/acp-18-9499-2018, 2018
Short summary
Short summary
This paper tackles a major issue for air quality over East Asia: ozone pollution produced over a major source, like the North China Plain, and the contribution of ozone produced while being transported across the continent and the surrounding seas. The main originality of the paper lays in the fact that this photochemical production of ozone is observationally quantified with new multispectral satellite observations offering unique skills to observe the ozone pollution plumes near the surface.
Neal Butchart, James A. Anstey, Kevin Hamilton, Scott Osprey, Charles McLandress, Andrew C. Bushell, Yoshio Kawatani, Young-Ha Kim, Francois Lott, John Scinocca, Timothy N. Stockdale, Martin Andrews, Omar Bellprat, Peter Braesicke, Chiara Cagnazzo, Chih-Chieh Chen, Hye-Yeong Chun, Mikhail Dobrynin, Rolando R. Garcia, Javier Garcia-Serrano, Lesley J. Gray, Laura Holt, Tobias Kerzenmacher, Hiroaki Naoe, Holger Pohlmann, Jadwiga H. Richter, Adam A. Scaife, Verena Schenzinger, Federico Serva, Stefan Versick, Shingo Watanabe, Kohei Yoshida, and Seiji Yukimoto
Geosci. Model Dev., 11, 1009–1032, https://doi.org/10.5194/gmd-11-1009-2018, https://doi.org/10.5194/gmd-11-1009-2018, 2018
Short summary
Short summary
This paper documents the numerical experiments to be used in phase 1 of the Stratosphere–troposphere Processes And their Role in Climate (SPARC) Quasi-Biennial Oscillation initiative (QBOi), which was set up to improve the representation of the QBO and tropical stratospheric variability in global climate models.
Takashi Sekiya, Kazuyuki Miyazaki, Koji Ogochi, Kengo Sudo, and Masayuki Takigawa
Geosci. Model Dev., 11, 959–988, https://doi.org/10.5194/gmd-11-959-2018, https://doi.org/10.5194/gmd-11-959-2018, 2018
Short summary
Short summary
We evaluate global tropospheric NO2 simulations using a chemical transport model (CTM) at horizontal resolutions of 0.56, 1.1, and 2.8°. Agreement against satellite retrievals improved greatly at 0.56 and 1.1° resolutions (compared to 2.8°) over polluted and biomass burning regions, especially over areas with strong local sources, such as a megacity. The evaluations demonstrate the potential of using a high-resolution global CTM for studying megacity-scale air pollutants across the entire globe.
Camilla W. Stjern, Helene Muri, Lars Ahlm, Olivier Boucher, Jason N. S. Cole, Duoying Ji, Andy Jones, Jim Haywood, Ben Kravitz, Andrew Lenton, John C. Moore, Ulrike Niemeier, Steven J. Phipps, Hauke Schmidt, Shingo Watanabe, and Jón Egill Kristjánsson
Atmos. Chem. Phys., 18, 621–634, https://doi.org/10.5194/acp-18-621-2018, https://doi.org/10.5194/acp-18-621-2018, 2018
Short summary
Short summary
Marine cloud brightening (MCB) has been proposed to help limit global warming. We present here the first multi-model assessment of idealized MCB simulations from the Geoengineering Model Intercomparison Project. While all models predict a global cooling as intended, there is considerable spread between the models both in terms of radiative forcing and the climate response, largely linked to the substantial differences in the models' representation of clouds.
Jieying Ding, Kazuyuki Miyazaki, Ronald Johannes van der A, Bas Mijling, Jun-ichi Kurokawa, SeogYeon Cho, Greet Janssens-Maenhout, Qiang Zhang, Fei Liu, and Pieternel Felicitas Levelt
Atmos. Chem. Phys., 17, 10125–10141, https://doi.org/10.5194/acp-17-10125-2017, https://doi.org/10.5194/acp-17-10125-2017, 2017
Short summary
Short summary
To evaluate the quality of the satellite-derived NOx emissions, we compare nine emission inventories of nitrogen oxides including four satellite-derived NOx inventories and bottom-up inventories for East Asia. The temporal and spatial distribution of NOx emissions over East Asia are evaluated. We analyse the differences in satellite-derived emissions from two different inversion methods. The paper ends with recommendations for future improvements of emission estimates.
Karen E. Cady-Pereira, Vivienne H. Payne, Jessica L. Neu, Kevin W. Bowman, Kazuyuki Miyazaki, Eloise A. Marais, Susan Kulawik, Zitely A. Tzompa-Sosa, and Jennifer D. Hegarty
Atmos. Chem. Phys., 17, 9379–9398, https://doi.org/10.5194/acp-17-9379-2017, https://doi.org/10.5194/acp-17-9379-2017, 2017
Short summary
Short summary
Air quality is a major issue for megacities. Our paper looks at satellite measurements over Mexico City and Lagos of several trace gases gases related to air quality to determine the temporal and spatial variability of these gases, and it relates this variability to local conditions, such as topography, winds and biomass burning events. We find that, while Mexico City is known for severe pollution events, the levels of of pollution in Lagos are much higher and more persistent.
Kazuyuki Miyazaki and Kevin Bowman
Atmos. Chem. Phys., 17, 8285–8312, https://doi.org/10.5194/acp-17-8285-2017, https://doi.org/10.5194/acp-17-8285-2017, 2017
Short summary
Short summary
The ACCMIP ensemble ozone simulations are evaluated by a state-of-the-art multi-constituent chemical reanalysis. The reanalysis product provides comprehensive and unique information on the weakness of the individual models and multi-model mean. The differences are less evident with the current sonde network, which is shown to provide biased regional and monthly ozone statistics. The evaluation results have implications for ozone radiative forcing and the response of chemistry to climate.
Zhe Jiang, Helen Worden, John R. Worden, Daven K. Henze, Dylan B. A. Jones, Avelino F. Arellano, Emily V. Fischer, Liye Zhu, Kazuyuki Miyazaki, K. Folkert Boersma, and Vivienne H. Payne
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-382, https://doi.org/10.5194/acp-2017-382, 2017
Preprint withdrawn
Short summary
Short summary
We investigated the variation of US tropospheric NO2 in the past decade. We demonstrated significant divergence between the time variation in tropospheric NO2 columns from OMI retrievals and surface measurements. Our analysis suggests limited contributions from local effects such as fossil fuel emissions, lightning, or instrument artifacts, and indicates possible important contributions from long-range transport of Asian emissions that are modulated by ENSO.
Hiroki Kashimura, Manabu Abe, Shingo Watanabe, Takashi Sekiya, Duoying Ji, John C. Moore, Jason N. S. Cole, and Ben Kravitz
Atmos. Chem. Phys., 17, 3339–3356, https://doi.org/10.5194/acp-17-3339-2017, https://doi.org/10.5194/acp-17-3339-2017, 2017
Short summary
Short summary
This study analyses shortwave radiation (SW) in the G4 experiment of the Geoengineering Model Intercomparison Project. G4 involves stratospheric injection of 5 Tg yr−1 of SO2 against the RCP4.5 scenario. The global mean forcing of the sulphate geoengineering has an inter-model variablity of −3.6 to −1.6 W m−2, implying a high uncertainty in modelled processes of sulfate aerosols. Changes in water vapour and cloud amounts due to the SO2 injection weaken the forcing at the surface by around 50 %.
Kazuyuki Miyazaki, Henk Eskes, Kengo Sudo, K. Folkert Boersma, Kevin Bowman, and Yugo Kanaya
Atmos. Chem. Phys., 17, 807–837, https://doi.org/10.5194/acp-17-807-2017, https://doi.org/10.5194/acp-17-807-2017, 2017
Short summary
Short summary
Global surface emissions of nitrogen oxides (NOx) over a 10-year period (2005–2014) are estimated from assimilation of multiple satellite datasets. We present detailed distributions of the estimated NOx emission distributions for all major regions, the diurnal, seasonal, and decadal variability. The estimated emissions show a positive trend over India, China, and the Middle East, and a negative trend over the United States, southern Africa, and western Europe.
Yoshio Kawatani, Kevin Hamilton, Kazuyuki Miyazaki, Masatomo Fujiwara, and James A. Anstey
Atmos. Chem. Phys., 16, 6681–6699, https://doi.org/10.5194/acp-16-6681-2016, https://doi.org/10.5194/acp-16-6681-2016, 2016
Short summary
Short summary
This paper compares the representation of the monthly-mean zonal wind in the equatorial stratosphere among major global atmospheric reanalysis data sets. Differences among reanalysis display a prominent equatorial maximum, indicating the particularly challenging nature of the reanalysis problem in the low-latitude stratosphere. Our study confirms that the high accuracy in situ wind measurements have provided important constraints to reanalyses of circulation in the tropical stratosphere.
Zhe Jiang, Kazuyuki Miyazaki, John R. Worden, Jane J. Liu, Dylan B. A. Jones, and Daven K. Henze
Atmos. Chem. Phys., 16, 6537–6546, https://doi.org/10.5194/acp-16-6537-2016, https://doi.org/10.5194/acp-16-6537-2016, 2016
Short summary
Short summary
We quantify the impacts of anthropogenic and natural sources on free tropospheric ozone over the Middle East, using the adjoint of the GEOS-Chem model with updated NOx emissions estimates from an ensemble Kalman filter. We show that the global total contribution of lightning NOx on free tropospheric O3 over the Middle East is about 2 times larger than that from global anthropogenic sources. The summertime free tropospheric O3 enhancement is primarily due to Asian NOx emissions.
Kazuyuki Miyazaki, Toshiki Iwasaki, Yoshio Kawatani, Chiaki Kobayashi, Satoshi Sugawara, and Michaela I. Hegglin
Atmos. Chem. Phys., 16, 6131–6152, https://doi.org/10.5194/acp-16-6131-2016, https://doi.org/10.5194/acp-16-6131-2016, 2016
Short summary
Short summary
We report a comparison of the stratospheric mean-meridional circulation and eddy mixing in the stratospheric Brewer-Dobson circulation (BDC) among the six reanalysis products. Overall, discrepancies between the different variables and trends therein as derived from the different reanalyses are still relatively large, suggesting that more investments in these products are needed in order to obtain a consolidated picture of observed changes in the BDC and the mechanisms that drive them.
Maria Mihalikova, Kaoru Sato, Masaki Tsutsumi, and Toru Sato
Ann. Geophys., 34, 543–555, https://doi.org/10.5194/angeo-34-543-2016, https://doi.org/10.5194/angeo-34-543-2016, 2016
B. Kravitz, A. Robock, S. Tilmes, O. Boucher, J. M. English, P. J. Irvine, A. Jones, M. G. Lawrence, M. MacCracken, H. Muri, J. C. Moore, U. Niemeier, S. J. Phipps, J. Sillmann, T. Storelvmo, H. Wang, and S. Watanabe
Geosci. Model Dev., 8, 3379–3392, https://doi.org/10.5194/gmd-8-3379-2015, https://doi.org/10.5194/gmd-8-3379-2015, 2015
K. Miyazaki, H. J. Eskes, and K. Sudo
Atmos. Chem. Phys., 15, 8315–8348, https://doi.org/10.5194/acp-15-8315-2015, https://doi.org/10.5194/acp-15-8315-2015, 2015
Short summary
Short summary
This paper reports on an 8-year reanalysis of tropospheric chemistry based on an assimilation of multiple satellite-derived data sets. The reanalysis performed well on regional and global scales and for seasonal and interannual variations. The simultaneous assimilation of multiple-species data, involving the optimisation of both concentration and emission fields, provides unique information on year-to-year variations in the atmospheric environment.
S. Watanabe, K. Sato, Y. Kawatani, and M. Takahashi
Geosci. Model Dev., 8, 1637–1644, https://doi.org/10.5194/gmd-8-1637-2015, https://doi.org/10.5194/gmd-8-1637-2015, 2015
K. Miyazaki, H. J. Eskes, K. Sudo, and C. Zhang
Atmos. Chem. Phys., 14, 3277–3305, https://doi.org/10.5194/acp-14-3277-2014, https://doi.org/10.5194/acp-14-3277-2014, 2014
R. Ohgaito, T. Sueyoshi, A. Abe-Ouchi, T. Hajima, S. Watanabe, H.-J. Kim, A. Yamamoto, and M. Kawamiya
Clim. Past, 9, 1519–1542, https://doi.org/10.5194/cp-9-1519-2013, https://doi.org/10.5194/cp-9-1519-2013, 2013
T. Sueyoshi, R. Ohgaito, A. Yamamoto, M. O. Chikamoto, T. Hajima, H. Okajima, M. Yoshimori, M. Abe, R. O'ishi, F. Saito, S. Watanabe, M. Kawamiya, and A. Abe-Ouchi
Geosci. Model Dev., 6, 819–836, https://doi.org/10.5194/gmd-6-819-2013, https://doi.org/10.5194/gmd-6-819-2013, 2013
M. Kohma and K. Sato
Atmos. Chem. Phys., 13, 3849–3864, https://doi.org/10.5194/acp-13-3849-2013, https://doi.org/10.5194/acp-13-3849-2013, 2013
Related subject area
Atmospheric sciences
Observational operator for fair model evaluation with ground NO2 measurements
Valid time shifting ensemble Kalman filter (VTS-EnKF) for dust storm forecasting
An updated parameterization of the unstable atmospheric surface layer in the Weather Research and Forecasting (WRF) modeling system
The impact of cloud microphysics and ice nucleation on Southern Ocean clouds assessed with single-column modeling and instrument simulators
An updated aerosol simulation in the Community Earth System Model (v2.1.3): dust and marine aerosol emissions and secondary organic aerosol formation
Exploring ship track spreading rates with a physics-informed Langevin particle parameterization
Do data-driven models beat numerical models in forecasting weather extremes? A comparison of IFS HRES, Pangu-Weather, and GraphCast
Development of the MPAS-CMAQ coupled system (V1.0) for multiscale global air quality modeling
Assessment of object-based indices to identify convective organization
The Global Forest Fire Emissions Prediction System version 1.0
NEIVAv1.0: Next-generation Emissions InVentory expansion of Akagi et al. (2011) version 1.0
FLEXPART version 11: improved accuracy, efficiency, and flexibility
Challenges of high-fidelity air quality modeling in urban environments – PALM sensitivity study during stable conditions
Air quality modeling intercomparison and multiscale ensemble chain for Latin America
Recommended coupling to global meteorological fields for long-term tracer simulations with WRF-GHG
Selecting CMIP6 global climate models (GCMs) for Coordinated Regional Climate Downscaling Experiment (CORDEX) dynamical downscaling over Southeast Asia using a standardised benchmarking framework
Improved definition of prior uncertainties in CO2 and CO fossil fuel fluxes and its impact on multi-species inversion with GEOS-Chem (v12.5)
RASCAL v1.0: an open-source tool for climatological time series reconstruction and extension
Introducing graupel density prediction in Weather Research and Forecasting (WRF) double-moment 6-class (WDM6) microphysics and evaluation of the modified scheme during the ICE-POP field campaign
Enabling high-performance cloud computing for the Community Multiscale Air Quality Model (CMAQ) version 5.3.3: performance evaluation and benefits for the user community
Atmospheric-river-induced precipitation in California as simulated by the regionally refined Simple Convective Resolving E3SM Atmosphere Model (SCREAM) Version 0
Recent improvements and maximum covariance analysis of aerosol and cloud properties in the EC-Earth3-AerChem model
GPU-HADVPPM4HIP V1.0: using the heterogeneous-compute interface for portability (HIP) to speed up the piecewise parabolic method in the CAMx (v6.10) air quality model on China's domestic GPU-like accelerator
Preliminary evaluation of the effect of electro-coalescence with conducting sphere approximation on the formation of warm cumulus clouds using SCALE-SDM version 0.2.5–2.3.0
Exploring the footprint representation of microwave radiance observations in an Arctic limited-area data assimilation system
Orbital-Radar v1.0.0: A tool to transform suborbital radar observations to synthetic EarthCARE cloud radar data
Analysis of model error in forecast errors of extended atmospheric Lorenz 05 systems and the ECMWF system
Description and validation of Vehicular Emissions from Road Traffic (VERT) 1.0, an R-based framework for estimating road transport emissions from traffic flows
AeroMix v1.0.1: a Python package for modeling aerosol optical properties and mixing states
Impact of ITCZ width on global climate: ITCZ-MIP
Deep-learning-driven simulations of boundary layer clouds over the Southern Great Plains
Mixed-precision computing in the GRIST dynamical core for weather and climate modelling
A conservative immersed boundary method for the multi-physics urban large-eddy simulation model uDALES v2.0
RCEMIP-II: mock-Walker simulations as phase II of the radiative–convective equilibrium model intercomparison project
Objective identification of meteorological fronts and climatologies from ERA-Interim and ERA5
TAMS: a tracking, classifying, and variable-assigning algorithm for mesoscale convective systems in simulated and satellite-derived datasets
Development of the adjoint of the unified tropospheric–stratospheric chemistry extension (UCX) in GEOS-Chem adjoint v36
New explicit formulae for the settling speed of prolate spheroids in the atmosphere: theoretical background and implementation in AerSett v2.0.2
ZJU-AERO V0.5: an Accurate and Efficient Radar Operator designed for CMA-GFS/MESO with the capability to simulate non-spherical hydrometeors
The Year of Polar Prediction site Model Intercomparison Project (YOPPsiteMIP) phase 1: project overview and Arctic winter forecast evaluation
Evaluating CHASER V4.0 global formaldehyde (HCHO) simulations using satellite, aircraft, and ground-based remote-sensing observations
Global variable-resolution simulations of extreme precipitation over Henan, China, in 2021 with MPAS-Atmosphere v7.3
The CHIMERE chemistry-transport model v2023r1
tobac v1.5: introducing fast 3D tracking, splits and mergers, and other enhancements for identifying and analysing meteorological phenomena
Merged Observatory Data Files (MODFs): an integrated observational data product supporting process-oriented investigations and diagnostics
Simulation of marine stratocumulus using the super-droplet method: numerical convergence and comparison to a double-moment bulk scheme using SCALE-SDM 5.2.6-2.3.1
Modeling of PAHs From Global to Regional Scales: Model Development and Investigation of Health Risks from 2013 to 2018 in China
WRF-Comfort: simulating microscale variability in outdoor heat stress at the city scale with a mesoscale model
Representing effects of surface heterogeneity in a multi-plume eddy diffusivity mass flux boundary layer parameterization
Can TROPOMI NO2 satellite data be used to track the drop in and resurgence of NOx emissions in Germany between 2019–2021 using the multi-source plume method (MSPM)?
Li Fang, Jianbing Jin, Arjo Segers, Ke Li, Ji Xia, Wei Han, Baojie Li, Hai Xiang Lin, Lei Zhu, Song Liu, and Hong Liao
Geosci. Model Dev., 17, 8267–8282, https://doi.org/10.5194/gmd-17-8267-2024, https://doi.org/10.5194/gmd-17-8267-2024, 2024
Short summary
Short summary
Model evaluations against ground observations are usually unfair. The former simulates mean status over coarse grids and the latter the surrounding atmosphere. To solve this, we proposed the new land-use-based representative (LUBR) operator that considers intra-grid variance. The LUBR operator is validated to provide insights that align with satellite measurements. The results highlight the importance of considering fine-scale urban–rural differences when comparing models and observation.
Mijie Pang, Jianbing Jin, Arjo Segers, Huiya Jiang, Wei Han, Batjargal Buyantogtokh, Ji Xia, Li Fang, Jiandong Li, Hai Xiang Lin, and Hong Liao
Geosci. Model Dev., 17, 8223–8242, https://doi.org/10.5194/gmd-17-8223-2024, https://doi.org/10.5194/gmd-17-8223-2024, 2024
Short summary
Short summary
The ensemble Kalman filter (EnKF) improves dust storm forecasts but faces challenges with position errors. The valid time shifting EnKF (VTS-EnKF) addresses this by adjusting for position errors, enhancing accuracy in forecasting dust storms, as proven in tests on 2021 events, even with smaller ensembles and time intervals.
Prabhakar Namdev, Maithili Sharan, Piyush Srivastava, and Saroj Kanta Mishra
Geosci. Model Dev., 17, 8093–8114, https://doi.org/10.5194/gmd-17-8093-2024, https://doi.org/10.5194/gmd-17-8093-2024, 2024
Short summary
Short summary
Inadequate representation of surface–atmosphere interaction processes is a major source of uncertainty in numerical weather prediction models. Here, an effort has been made to improve the Weather Research and Forecasting (WRF) model version 4.2.2 by introducing a unique theoretical framework under convective conditions. In addition, to enhance the potential applicability of the WRF modeling system, various commonly used similarity functions under convective conditions have also been installed.
Andrew Gettelman, Richard Forbes, Roger Marchand, Chih-Chieh Chen, and Mark Fielding
Geosci. Model Dev., 17, 8069–8092, https://doi.org/10.5194/gmd-17-8069-2024, https://doi.org/10.5194/gmd-17-8069-2024, 2024
Short summary
Short summary
Supercooled liquid clouds (liquid clouds colder than 0°C) are common at higher latitudes (especially over the Southern Ocean) and are critical for constraining climate projections. We compare a single-column version of a weather model to observations with two different cloud schemes and find that both the dynamical environment and atmospheric aerosols are important for reproducing observations.
Yujuan Wang, Peng Zhang, Jie Li, Yaman Liu, Yanxu Zhang, Jiawei Li, and Zhiwei Han
Geosci. Model Dev., 17, 7995–8021, https://doi.org/10.5194/gmd-17-7995-2024, https://doi.org/10.5194/gmd-17-7995-2024, 2024
Short summary
Short summary
This study updates the CESM's aerosol schemes, focusing on dust, marine aerosol emissions, and secondary organic aerosol (SOA) . Dust emission modifications make deflation areas more continuous, improving results in North America and the sub-Arctic. Humidity correction to sea-salt emissions has a minor effect. Introducing marine organic aerosol emissions, coupled with ocean biogeochemical processes, and adding aqueous reactions for SOA formation advance the CESM's aerosol modelling results.
Lucas A. McMichael, Michael J. Schmidt, Robert Wood, Peter N. Blossey, and Lekha Patel
Geosci. Model Dev., 17, 7867–7888, https://doi.org/10.5194/gmd-17-7867-2024, https://doi.org/10.5194/gmd-17-7867-2024, 2024
Short summary
Short summary
Marine cloud brightening (MCB) is a climate intervention technique to potentially cool the climate. Climate models used to gauge regional climate impacts associated with MCB often assume large areas of the ocean are uniformly perturbed. However, a more realistic representation of MCB application would require information about how an injected particle plume spreads. This work aims to develop such a plume-spreading model.
Leonardo Olivetti and Gabriele Messori
Geosci. Model Dev., 17, 7915–7962, https://doi.org/10.5194/gmd-17-7915-2024, https://doi.org/10.5194/gmd-17-7915-2024, 2024
Short summary
Short summary
Data-driven models are becoming a viable alternative to physics-based models for weather forecasting up to 15 d into the future. However, it is unclear whether they are as reliable as physics-based models when forecasting weather extremes. We evaluate their performance in forecasting near-surface cold, hot, and windy extremes globally. We find that data-driven models can compete with physics-based models and that the choice of the best model mainly depends on the region and type of extreme.
David C. Wong, Jeff Willison, Jonathan E. Pleim, Golam Sarwar, James Beidler, Russ Bullock, Jerold A. Herwehe, Rob Gilliam, Daiwen Kang, Christian Hogrefe, George Pouliot, and Hosein Foroutan
Geosci. Model Dev., 17, 7855–7866, https://doi.org/10.5194/gmd-17-7855-2024, https://doi.org/10.5194/gmd-17-7855-2024, 2024
Short summary
Short summary
This work describe how we linked the meteorological Model for Prediction Across Scales – Atmosphere (MPAS-A) with the Community Multiscale Air Quality (CMAQ) air quality model to form a coupled modelling system. This could be used to study air quality or climate and air quality interaction at a global scale. This new model scales well in high-performance computing environments and performs well with respect to ground surface networks in terms of ozone and PM2.5.
Giulio Mandorli and Claudia J. Stubenrauch
Geosci. Model Dev., 17, 7795–7813, https://doi.org/10.5194/gmd-17-7795-2024, https://doi.org/10.5194/gmd-17-7795-2024, 2024
Short summary
Short summary
In recent years, several studies focused their attention on the disposition of convection. Lots of methods, called indices, have been developed to quantify the amount of convection clustering. These indices are evaluated in this study by defining criteria that must be satisfied and then evaluating the indices against these standards. None of the indices meet all criteria, with some only partially meeting them.
Kerry Anderson, Jack Chen, Peter Englefield, Debora Griffin, Paul A. Makar, and Dan Thompson
Geosci. Model Dev., 17, 7713–7749, https://doi.org/10.5194/gmd-17-7713-2024, https://doi.org/10.5194/gmd-17-7713-2024, 2024
Short summary
Short summary
The Global Forest Fire Emissions Prediction System (GFFEPS) is a model that predicts smoke and carbon emissions from wildland fires. The model calculates emissions from the ground up based on satellite-detected fires, modelled weather and fire characteristics. Unlike other global models, GFFEPS uses daily weather conditions to capture changing burning conditions on a day-to-day basis. GFFEPS produced lower carbon emissions due to the changing weather not captured by the other models.
Samiha Binte Shahid, Forrest G. Lacey, Christine Wiedinmyer, Robert J. Yokelson, and Kelley C. Barsanti
Geosci. Model Dev., 17, 7679–7711, https://doi.org/10.5194/gmd-17-7679-2024, https://doi.org/10.5194/gmd-17-7679-2024, 2024
Short summary
Short summary
The Next-generation Emissions InVentory expansion of Akagi (NEIVA) v.1.0 is a comprehensive biomass burning emissions database that allows integration of new data and flexible querying. Data are stored in connected datasets, including recommended averages of ~1500 constituents for 14 globally relevant fire types. Individual compounds were mapped to common model species to allow better attribution of emissions in modeling studies that predict the effects of fires on air quality and climate.
Lucie Bakels, Daria Tatsii, Anne Tipka, Rona Thompson, Marina Dütsch, Michael Blaschek, Petra Seibert, Katharina Baier, Silvia Bucci, Massimo Cassiani, Sabine Eckhardt, Christine Groot Zwaaftink, Stephan Henne, Pirmin Kaufmann, Vincent Lechner, Christian Maurer, Marie D. Mulder, Ignacio Pisso, Andreas Plach, Rakesh Subramanian, Martin Vojta, and Andreas Stohl
Geosci. Model Dev., 17, 7595–7627, https://doi.org/10.5194/gmd-17-7595-2024, https://doi.org/10.5194/gmd-17-7595-2024, 2024
Short summary
Short summary
Computer models are essential for improving our understanding of how gases and particles move in the atmosphere. We present an update of the atmospheric transport model FLEXPART. FLEXPART 11 is more accurate due to a reduced number of interpolations and a new scheme for wet deposition. It can simulate non-spherical aerosols and includes linear chemical reactions. It is parallelised using OpenMP and includes new user options. A new user manual details how to use FLEXPART 11.
Jaroslav Resler, Petra Bauerová, Michal Belda, Martin Bureš, Kryštof Eben, Vladimír Fuka, Jan Geletič, Radek Jareš, Jan Karel, Josef Keder, Pavel Krč, William Patiño, Jelena Radović, Hynek Řezníček, Matthias Sühring, Adriana Šindelářová, and Ondřej Vlček
Geosci. Model Dev., 17, 7513–7537, https://doi.org/10.5194/gmd-17-7513-2024, https://doi.org/10.5194/gmd-17-7513-2024, 2024
Short summary
Short summary
Detailed modeling of urban air quality in stable conditions is a challenge. We show the unprecedented sensitivity of a large eddy simulation (LES) model to meteorological boundary conditions and model parameters in an urban environment under stable conditions. We demonstrate the crucial role of boundary conditions for the comparability of results with observations. The study reveals a strong sensitivity of the results to model parameters and model numerical instabilities during such conditions.
Jorge E. Pachón, Mariel A. Opazo, Pablo Lichtig, Nicolas Huneeus, Idir Bouarar, Guy Brasseur, Cathy W. Y. Li, Johannes Flemming, Laurent Menut, Camilo Menares, Laura Gallardo, Michael Gauss, Mikhail Sofiev, Rostislav Kouznetsov, Julia Palamarchuk, Andreas Uppstu, Laura Dawidowski, Nestor Y. Rojas, María de Fátima Andrade, Mario E. Gavidia-Calderón, Alejandro H. Delgado Peralta, and Daniel Schuch
Geosci. Model Dev., 17, 7467–7512, https://doi.org/10.5194/gmd-17-7467-2024, https://doi.org/10.5194/gmd-17-7467-2024, 2024
Short summary
Short summary
Latin America (LAC) has some of the most populated urban areas in the world, with high levels of air pollution. Air quality management in LAC has been traditionally focused on surveillance and building emission inventories. This study performed the first intercomparison and model evaluation in LAC, with interesting and insightful findings for the region. A multiscale modeling ensemble chain was assembled as a first step towards an air quality forecasting system.
David Ho, Michał Gałkowski, Friedemann Reum, Santiago Botía, Julia Marshall, Kai Uwe Totsche, and Christoph Gerbig
Geosci. Model Dev., 17, 7401–7422, https://doi.org/10.5194/gmd-17-7401-2024, https://doi.org/10.5194/gmd-17-7401-2024, 2024
Short summary
Short summary
Atmospheric model users often overlook the impact of the land–atmosphere interaction. This study accessed various setups of WRF-GHG simulations that ensure consistency between the model and driving reanalysis fields. We found that a combination of nudging and frequent re-initialization allows certain improvement by constraining the soil moisture fields and, through its impact on atmospheric mixing, improves atmospheric transport.
Phuong Loan Nguyen, Lisa V. Alexander, Marcus J. Thatcher, Son C. H. Truong, Rachael N. Isphording, and John L. McGregor
Geosci. Model Dev., 17, 7285–7315, https://doi.org/10.5194/gmd-17-7285-2024, https://doi.org/10.5194/gmd-17-7285-2024, 2024
Short summary
Short summary
We use a comprehensive approach to select a subset of CMIP6 models for dynamical downscaling over Southeast Asia, taking into account model performance, model independence, data availability and the range of future climate projections. The standardised benchmarking framework is applied to assess model performance through both statistical and process-based metrics. Ultimately, we identify two independent model groups that are suitable for dynamical downscaling in the Southeast Asian region.
Ingrid Super, Tia Scarpelli, Arjan Droste, and Paul I. Palmer
Geosci. Model Dev., 17, 7263–7284, https://doi.org/10.5194/gmd-17-7263-2024, https://doi.org/10.5194/gmd-17-7263-2024, 2024
Short summary
Short summary
Monitoring greenhouse gas emission reductions requires a combination of models and observations, as well as an initial emission estimate. Each component provides information with a certain level of certainty and is weighted to yield the most reliable estimate of actual emissions. We describe efforts for estimating the uncertainty in the initial emission estimate, which significantly impacts the outcome. Hence, a good uncertainty estimate is key for obtaining reliable information on emissions.
Álvaro González-Cervera and Luis Durán
Geosci. Model Dev., 17, 7245–7261, https://doi.org/10.5194/gmd-17-7245-2024, https://doi.org/10.5194/gmd-17-7245-2024, 2024
Short summary
Short summary
RASCAL is an open-source Python tool designed for reconstructing daily climate observations, especially in regions with complex local phenomena. It merges large-scale weather patterns with local weather using the analog method. Evaluations in central Spain show that RASCAL outperforms ERA20C reanalysis in reconstructing precipitation and temperature. RASCAL offers opportunities for broad scientific applications, from short-term forecasts to local-scale climate change scenarios.
Sun-Young Park, Kyo-Sun Sunny Lim, Kwonil Kim, Gyuwon Lee, and Jason A. Milbrandt
Geosci. Model Dev., 17, 7199–7218, https://doi.org/10.5194/gmd-17-7199-2024, https://doi.org/10.5194/gmd-17-7199-2024, 2024
Short summary
Short summary
We enhance the WDM6 scheme by incorporating predicted graupel density. The modification affects graupel characteristics, including fall velocity–diameter and mass–diameter relationships. Simulations highlight changes in graupel distribution and precipitation patterns, potentially influencing surface snow amounts. The study underscores the significance of integrating predicted graupel density for a more realistic portrayal of microphysical properties in weather models.
Christos I. Efstathiou, Elizabeth Adams, Carlie J. Coats, Robert Zelt, Mark Reed, John McGee, Kristen M. Foley, Fahim I. Sidi, David C. Wong, Steven Fine, and Saravanan Arunachalam
Geosci. Model Dev., 17, 7001–7027, https://doi.org/10.5194/gmd-17-7001-2024, https://doi.org/10.5194/gmd-17-7001-2024, 2024
Short summary
Short summary
We present a summary of enabling high-performance computing of the Community Multiscale Air Quality Model (CMAQ) – a state-of-the-science community multiscale air quality model – on two cloud computing platforms through documenting the technologies, model performance, scaling and relative merits. This may be a new paradigm for computationally intense future model applications. We initiated this work due to a need to leverage cloud computing advances and to ease the learning curve for new users.
Peter A. Bogenschutz, Jishi Zhang, Qi Tang, and Philip Cameron-Smith
Geosci. Model Dev., 17, 7029–7050, https://doi.org/10.5194/gmd-17-7029-2024, https://doi.org/10.5194/gmd-17-7029-2024, 2024
Short summary
Short summary
Using high-resolution and state-of-the-art modeling techniques we simulate five atmospheric river events for California to test the capability to represent precipitation for these events. We find that our model is able to capture the distribution of precipitation very well but suffers from overestimating the precipitation amounts over high elevation. Increasing the resolution further has no impact on reducing this bias, while increasing the domain size does have modest impacts.
Manu Anna Thomas, Klaus Wyser, Shiyu Wang, Marios Chatziparaschos, Paraskevi Georgakaki, Montserrat Costa-Surós, Maria Gonçalves Ageitos, Maria Kanakidou, Carlos Pérez García-Pando, Athanasios Nenes, Twan van Noije, Philippe Le Sager, and Abhay Devasthale
Geosci. Model Dev., 17, 6903–6927, https://doi.org/10.5194/gmd-17-6903-2024, https://doi.org/10.5194/gmd-17-6903-2024, 2024
Short summary
Short summary
Aerosol–cloud interactions occur at a range of spatio-temporal scales. While evaluating recent developments in EC-Earth3-AerChem, this study aims to understand the extent to which the Twomey effect manifests itself at larger scales. We find a reduction in the warm bias over the Southern Ocean due to model improvements. While we see footprints of the Twomey effect at larger scales, the negative relationship between cloud droplet number and liquid water drives the shortwave radiative effect.
Kai Cao, Qizhong Wu, Lingling Wang, Hengliang Guo, Nan Wang, Huaqiong Cheng, Xiao Tang, Dongxing Li, Lina Liu, Dongqing Li, Hao Wu, and Lanning Wang
Geosci. Model Dev., 17, 6887–6901, https://doi.org/10.5194/gmd-17-6887-2024, https://doi.org/10.5194/gmd-17-6887-2024, 2024
Short summary
Short summary
AMD’s heterogeneous-compute interface for portability was implemented to port the piecewise parabolic method solver from NVIDIA GPUs to China's GPU-like accelerators. The results show that the larger the model scale, the more acceleration effect on the GPU-like accelerator, up to 28.9 times. The multi-level parallelism achieves a speedup of 32.7 times on the heterogeneous cluster. By comparing the results, the GPU-like accelerators have more accuracy for the geoscience numerical models.
Ruyi Zhang, Limin Zhou, Shin-ichiro Shima, and Huawei Yang
Geosci. Model Dev., 17, 6761–6774, https://doi.org/10.5194/gmd-17-6761-2024, https://doi.org/10.5194/gmd-17-6761-2024, 2024
Short summary
Short summary
Solar activity weakly ionises Earth's atmosphere, charging cloud droplets. Electro-coalescence is when oppositely charged droplets stick together. We introduce an analytical expression of electro-coalescence probability and use it in a warm-cumulus-cloud simulation. Results show that charge cases increase rain and droplet size, with the new method outperforming older ones. The new method requires longer computation time, but its impact on rain justifies inclusion in meteorology models.
Máté Mile, Stephanie Guedj, and Roger Randriamampianina
Geosci. Model Dev., 17, 6571–6587, https://doi.org/10.5194/gmd-17-6571-2024, https://doi.org/10.5194/gmd-17-6571-2024, 2024
Short summary
Short summary
Satellite observations provide crucial information about atmospheric constituents in a global distribution that helps to better predict the weather over sparsely observed regions like the Arctic. However, the use of satellite data is usually conservative and imperfect. In this study, a better spatial representation of satellite observations is discussed and explored by a so-called footprint function or operator, highlighting its added value through a case study and diagnostics.
Lukas Pfitzenmaier, Pavlos Kollias, Nils Risse, Imke Schirmacher, Bernat Puigdomenech Treserras, and Katia Lamer
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-129, https://doi.org/10.5194/gmd-2024-129, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Orbital-radar is a Python tool transferring sub-orbital radar data (ground-based, airborne, and forward-simulated NWP) into synthetical space-borne cloud profiling radar data mimicking the platform characteristics, e.g. EarthCARE or CloudSat CPR. The novelty of orbital-radar is the simulation platform characteristic noise floors and errors. By this long time data sets can be transformed into synthetic observations for Cal/Valor sensitivity studies for new or future satellite missions.
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 17, 6489–6511, https://doi.org/10.5194/gmd-17-6489-2024, https://doi.org/10.5194/gmd-17-6489-2024, 2024
Short summary
Short summary
The forecast error growth of atmospheric phenomena is caused by initial and model errors. When studying the initial error growth, it may turn out that small-scale phenomena, which contribute little to the forecast product, significantly affect the ability to predict this product. With a negative result, we investigate in the extended Lorenz (2005) system whether omitting these phenomena will improve predictability. A theory explaining and describing this behavior is developed.
Giorgio Veratti, Alessandro Bigi, Sergio Teggi, and Grazia Ghermandi
Geosci. Model Dev., 17, 6465–6487, https://doi.org/10.5194/gmd-17-6465-2024, https://doi.org/10.5194/gmd-17-6465-2024, 2024
Short summary
Short summary
In this study, we present VERT (Vehicular Emissions from Road Traffic), an R package designed to estimate transport emissions using traffic estimates and vehicle fleet composition data. Compared to other tools available in the literature, VERT stands out for its user-friendly configuration and flexibility of user input. Case studies demonstrate its accuracy in both urban and regional contexts, making it a valuable tool for air quality management and transport scenario planning.
Sam P. Raj, Puna Ram Sinha, Rohit Srivastava, Srinivas Bikkina, and Damu Bala Subrahamanyam
Geosci. Model Dev., 17, 6379–6399, https://doi.org/10.5194/gmd-17-6379-2024, https://doi.org/10.5194/gmd-17-6379-2024, 2024
Short summary
Short summary
A Python successor to the aerosol module of the OPAC model, named AeroMix, has been developed, with enhanced capabilities to better represent real atmospheric aerosol mixing scenarios. AeroMix’s performance in modeling aerosol mixing states has been evaluated against field measurements, substantiating its potential as a versatile aerosol optical model framework for next-generation algorithms to infer aerosol mixing states and chemical composition.
Angeline G. Pendergrass, Michael P. Byrne, Oliver Watt-Meyer, Penelope Maher, and Mark J. Webb
Geosci. Model Dev., 17, 6365–6378, https://doi.org/10.5194/gmd-17-6365-2024, https://doi.org/10.5194/gmd-17-6365-2024, 2024
Short summary
Short summary
The width of the tropical rain belt affects many aspects of our climate, yet we do not understand what controls it. To better understand it, we present a method to change it in numerical model experiments. We show that the method works well in four different models. The behavior of the width is unexpectedly simple in some ways, such as how strong the winds are as it changes, but in other ways, it is more complicated, especially how temperature increases with carbon dioxide.
Tianning Su and Yunyan Zhang
Geosci. Model Dev., 17, 6319–6336, https://doi.org/10.5194/gmd-17-6319-2024, https://doi.org/10.5194/gmd-17-6319-2024, 2024
Short summary
Short summary
Using 2 decades of field observations over the Southern Great Plains, this study developed a deep-learning model to simulate the complex dynamics of boundary layer clouds. The deep-learning model can serve as the cloud parameterization within reanalysis frameworks, offering insights into improving the simulation of low clouds. By quantifying biases due to various meteorological factors and parameterizations, this deep-learning-driven approach helps bridge the observation–modeling divide.
Siyuan Chen, Yi Zhang, Yiming Wang, Zhuang Liu, Xiaohan Li, and Wei Xue
Geosci. Model Dev., 17, 6301–6318, https://doi.org/10.5194/gmd-17-6301-2024, https://doi.org/10.5194/gmd-17-6301-2024, 2024
Short summary
Short summary
This study explores strategies and techniques for implementing mixed-precision code optimization within an atmosphere model dynamical core. The coded equation terms in the governing equations that are sensitive (or insensitive) to the precision level have been identified. The performance of mixed-precision computing in weather and climate simulations was analyzed.
Sam O. Owens, Dipanjan Majumdar, Chris E. Wilson, Paul Bartholomew, and Maarten van Reeuwijk
Geosci. Model Dev., 17, 6277–6300, https://doi.org/10.5194/gmd-17-6277-2024, https://doi.org/10.5194/gmd-17-6277-2024, 2024
Short summary
Short summary
Designing cities that are resilient, sustainable, and beneficial to health requires an understanding of urban climate and air quality. This article presents an upgrade to the multi-physics numerical model uDALES, which can simulate microscale airflow, heat transfer, and pollutant dispersion in urban environments. This upgrade enables it to resolve realistic urban geometries more accurately and to take advantage of the resources available on current and future high-performance computing systems.
Allison A. Wing, Levi G. Silvers, and Kevin A. Reed
Geosci. Model Dev., 17, 6195–6225, https://doi.org/10.5194/gmd-17-6195-2024, https://doi.org/10.5194/gmd-17-6195-2024, 2024
Short summary
Short summary
This paper presents the experimental design for a model intercomparison project to study tropical clouds and climate. It is a follow-up from a prior project that used a simplified framework for tropical climate. The new project adds one new component – a specified pattern of sea surface temperatures as the lower boundary condition. We provide example results from one cloud-resolving model and one global climate model and test the sensitivity to the experimental parameters.
Philip G. Sansom and Jennifer L. Catto
Geosci. Model Dev., 17, 6137–6151, https://doi.org/10.5194/gmd-17-6137-2024, https://doi.org/10.5194/gmd-17-6137-2024, 2024
Short summary
Short summary
Weather fronts bring a lot of rain and strong winds to many regions of the mid-latitudes. We have developed an updated method of identifying these fronts in gridded data that can be used on new datasets with small grid spacing. The method can be easily applied to different datasets due to the use of open-source software for its development and shows improvements over similar previous methods. We present an updated estimate of the average frequency of fronts over the past 40 years.
Kelly M. Núñez Ocasio and Zachary L. Moon
Geosci. Model Dev., 17, 6035–6049, https://doi.org/10.5194/gmd-17-6035-2024, https://doi.org/10.5194/gmd-17-6035-2024, 2024
Short summary
Short summary
TAMS is an open-source Python-based package for tracking and classifying mesoscale convective systems that can be used to study observed and simulated systems. Each step of the algorithm is described in this paper with examples showing how to make use of visualization and post-processing tools within the package. A unique and valuable feature of this tracker is its support for unstructured grids in the identification stage and grid-independent tracking.
Irene C. Dedoussi, Daven K. Henze, Sebastian D. Eastham, Raymond L. Speth, and Steven R. H. Barrett
Geosci. Model Dev., 17, 5689–5703, https://doi.org/10.5194/gmd-17-5689-2024, https://doi.org/10.5194/gmd-17-5689-2024, 2024
Short summary
Short summary
Atmospheric model gradients provide a meaningful tool for better understanding the underlying atmospheric processes. Adjoint modeling enables computationally efficient gradient calculations. We present the adjoint of the GEOS-Chem unified chemistry extension (UCX). With this development, the GEOS-Chem adjoint model can capture stratospheric ozone and other processes jointly with tropospheric processes. We apply it to characterize the Antarctic ozone depletion potential of active halogen species.
Sylvain Mailler, Sotirios Mallios, Arineh Cholakian, Vassilis Amiridis, Laurent Menut, and Romain Pennel
Geosci. Model Dev., 17, 5641–5655, https://doi.org/10.5194/gmd-17-5641-2024, https://doi.org/10.5194/gmd-17-5641-2024, 2024
Short summary
Short summary
We propose two explicit expressions to calculate the settling speed of solid atmospheric particles with prolate spheroidal shapes. The first formulation is based on theoretical arguments only, while the second one is based on computational fluid dynamics calculations. We show that the first method is suitable for virtually all atmospheric aerosols, provided their shape can be adequately described as a prolate spheroid, and we provide an implementation of the first method in AerSett v2.0.2.
Hejun Xie, Lei Bi, and Wei Han
Geosci. Model Dev., 17, 5657–5688, https://doi.org/10.5194/gmd-17-5657-2024, https://doi.org/10.5194/gmd-17-5657-2024, 2024
Short summary
Short summary
A radar operator plays a crucial role in utilizing radar observations to enhance numerical weather forecasts. However, developing an advanced radar operator is challenging due to various complexities associated with the wave scattering by non-spherical hydrometeors, radar beam propagation, and multiple platforms. In this study, we introduce a novel radar operator named the Accurate and Efficient Radar Operator developed by ZheJiang University (ZJU-AERO) which boasts several unique features.
Jonathan J. Day, Gunilla Svensson, Barbara Casati, Taneil Uttal, Siri-Jodha Khalsa, Eric Bazile, Elena Akish, Niramson Azouz, Lara Ferrighi, Helmut Frank, Michael Gallagher, Øystein Godøy, Leslie M. Hartten, Laura X. Huang, Jareth Holt, Massimo Di Stefano, Irene Suomi, Zen Mariani, Sara Morris, Ewan O'Connor, Roberta Pirazzini, Teresa Remes, Rostislav Fadeev, Amy Solomon, Johanna Tjernström, and Mikhail Tolstykh
Geosci. Model Dev., 17, 5511–5543, https://doi.org/10.5194/gmd-17-5511-2024, https://doi.org/10.5194/gmd-17-5511-2024, 2024
Short summary
Short summary
The YOPP site Model Intercomparison Project (YOPPsiteMIP), which was designed to facilitate enhanced weather forecast evaluation in polar regions, is discussed here, focussing on describing the archive of forecast data and presenting a multi-model evaluation at Arctic supersites during February and March 2018. The study highlights an underestimation in boundary layer temperature variance that is common across models and a related inability to forecast cold extremes at several of the sites.
Hossain Mohammed Syedul Hoque, Kengo Sudo, Hitoshi Irie, Yanfeng He, and Md Firoz Khan
Geosci. Model Dev., 17, 5545–5571, https://doi.org/10.5194/gmd-17-5545-2024, https://doi.org/10.5194/gmd-17-5545-2024, 2024
Short summary
Short summary
Using multi-platform observations, we validated global formaldehyde (HCHO) simulations from a chemistry transport model. HCHO is a crucial intermediate in the chemical catalytic cycle that governs the ozone formation in the troposphere. The model was capable of replicating the observed spatiotemporal variability in HCHO. In a few cases, the model's capability was limited. This is attributed to the uncertainties in the observations and the model parameters.
Zijun Liu, Li Dong, Zongxu Qiu, Xingrong Li, Huiling Yuan, Dongmei Meng, Xiaobin Qiu, Dingyuan Liang, and Yafei Wang
Geosci. Model Dev., 17, 5477–5496, https://doi.org/10.5194/gmd-17-5477-2024, https://doi.org/10.5194/gmd-17-5477-2024, 2024
Short summary
Short summary
In this study, we completed a series of simulations with MPAS-Atmosphere (version 7.3) to study the extreme precipitation event of Henan, China, during 20–22 July 2021. We found the different performance of two built-in parameterization scheme suites (mesoscale and convection-permitting suites) with global quasi-uniform and variable-resolution meshes. This study holds significant implications for advancing the understanding of the scale-aware capability of MPAS-Atmosphere.
Laurent Menut, Arineh Cholakian, Romain Pennel, Guillaume Siour, Sylvain Mailler, Myrto Valari, Lya Lugon, and Yann Meurdesoif
Geosci. Model Dev., 17, 5431–5457, https://doi.org/10.5194/gmd-17-5431-2024, https://doi.org/10.5194/gmd-17-5431-2024, 2024
Short summary
Short summary
A new version of the CHIMERE model is presented. This version contains both computational and physico-chemical changes. The computational changes make it easy to choose the variables to be extracted as a result, including values of maximum sub-hourly concentrations. Performance tests show that the model is 1.5 to 2 times faster than the previous version for the same setup. Processes such as turbulence, transport schemes and dry deposition have been modified and updated.
G. Alexander Sokolowsky, Sean W. Freeman, William K. Jones, Julia Kukulies, Fabian Senf, Peter J. Marinescu, Max Heikenfeld, Kelcy N. Brunner, Eric C. Bruning, Scott M. Collis, Robert C. Jackson, Gabrielle R. Leung, Nils Pfeifer, Bhupendra A. Raut, Stephen M. Saleeby, Philip Stier, and Susan C. van den Heever
Geosci. Model Dev., 17, 5309–5330, https://doi.org/10.5194/gmd-17-5309-2024, https://doi.org/10.5194/gmd-17-5309-2024, 2024
Short summary
Short summary
Building on previous analysis tools developed for atmospheric science, the original release of the Tracking and Object-Based Analysis (tobac) Python package, v1.2, was open-source, modular, and insensitive to the type of gridded input data. Here, we present the latest version of tobac, v1.5, which substantially improves scientific capabilities and computational efficiency from the previous version. These enhancements permit new uses for tobac in atmospheric science and potentially other fields.
Taneil Uttal, Leslie M. Hartten, Siri Jodha Khalsa, Barbara Casati, Gunilla Svensson, Jonathan Day, Jareth Holt, Elena Akish, Sara Morris, Ewan O'Connor, Roberta Pirazzini, Laura X. Huang, Robert Crawford, Zen Mariani, Øystein Godøy, Johanna A. K. Tjernström, Giri Prakash, Nicki Hickmon, Marion Maturilli, and Christopher J. Cox
Geosci. Model Dev., 17, 5225–5247, https://doi.org/10.5194/gmd-17-5225-2024, https://doi.org/10.5194/gmd-17-5225-2024, 2024
Short summary
Short summary
A Merged Observatory Data File (MODF) format to systematically collate complex atmosphere, ocean, and terrestrial data sets collected by multiple instruments during field campaigns is presented. The MODF format is also designed to be applied to model output data, yielding format-matching Merged Model Data Files (MMDFs). MODFs plus MMDFs will augment and accelerate the synergistic use of model results with observational data to increase understanding and predictive skill.
Chongzhi Yin, Shin-ichiro Shima, Lulin Xue, and Chunsong Lu
Geosci. Model Dev., 17, 5167–5189, https://doi.org/10.5194/gmd-17-5167-2024, https://doi.org/10.5194/gmd-17-5167-2024, 2024
Short summary
Short summary
We investigate numerical convergence properties of a particle-based numerical cloud microphysics model (SDM) and a double-moment bulk scheme for simulating a marine stratocumulus case, compare their results with model intercomparison project results, and present possible explanations for the different results of the SDM and the bulk scheme. Aerosol processes can be accurately simulated using SDM, and this may be an important factor affecting the behavior and morphology of marine stratocumulus.
Zichen Wu, Xueshun Chen, Zifa Wang, Huansheng Chen, Zhe Wang, Qing Mu, Lin Wu, Wending Wang, Xiao Tang, Jie Li, Ying Li, Qizhong Wu, Yang Wang, Zhiyin Zou, and Zijian Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1437, https://doi.org/10.5194/egusphere-2024-1437, 2024
Short summary
Short summary
We developed a model to simulate polycyclic aromatic hydrocarbons (PAHs) from global to regional scales. The model can well reproduce the distribution of PAHs. The concentration of BaP (indicator species for PAHs) could exceed the target values of 1 ng m-3 over some areas (e.g., in central Europe, India, and eastern China). The change of BaP is less than PM2.5 from 2013 to 2018. China still faces significant potential health risks posed by BaP although "the Action Plan" has been implemented.
Alberto Martilli, Negin Nazarian, E. Scott Krayenhoff, Jacob Lachapelle, Jiachen Lu, Esther Rivas, Alejandro Rodriguez-Sanchez, Beatriz Sanchez, and José Luis Santiago
Geosci. Model Dev., 17, 5023–5039, https://doi.org/10.5194/gmd-17-5023-2024, https://doi.org/10.5194/gmd-17-5023-2024, 2024
Short summary
Short summary
Here, we present a model that quantifies the thermal stress and its microscale variability at a city scale with a mesoscale model. This tool can have multiple applications, from early warnings of extreme heat to the vulnerable population to the evaluation of the effectiveness of heat mitigation strategies. It is the first model that includes information on microscale variability in a mesoscale model, something that is essential for fully evaluating heat stress.
Nathan P. Arnold
Geosci. Model Dev., 17, 5041–5056, https://doi.org/10.5194/gmd-17-5041-2024, https://doi.org/10.5194/gmd-17-5041-2024, 2024
Short summary
Short summary
Earth system models often represent the land surface at smaller scales than the atmosphere, but surface–atmosphere coupling uses only aggregated surface properties. This study presents a method to allow heterogeneous surface properties to modify boundary layer updrafts. The method is tested in single column experiments. Updraft properties are found to reasonably covary with surface conditions, and simulated boundary layer variability is enhanced over more heterogeneous land surfaces.
Enrico Dammers, Janot Tokaya, Christian Mielke, Kevin Hausmann, Debora Griffin, Chris McLinden, Henk Eskes, and Renske Timmermans
Geosci. Model Dev., 17, 4983–5007, https://doi.org/10.5194/gmd-17-4983-2024, https://doi.org/10.5194/gmd-17-4983-2024, 2024
Short summary
Short summary
Nitrogen dioxide (NOx) is produced by sources such as industry and traffic and is directly linked to negative impacts on health and the environment. The current construction of emission inventories to keep track of NOx emissions is slow and time-consuming. Satellite measurements provide a way to quickly and independently estimate emissions. In this study, we apply a consistent methodology to derive NOx emissions over Germany and illustrate the value of having such a method for fast projections.
Cited articles
Akmaev, R. A.: Whole Atmosphere Modeling: Connecting Terrestrial and Space
Weather, Rev. Geophys., 49, RG4004, https://doi.org/10.1029/2011RG000364, 2011.
Baldwin, M. P. and Dunkerton, T. J.: Stratospheric Harbingers of Anomalous
Weather Regimes, Science, 294, 581–584, https://doi.org/10.1126/science.1063315, 2001.
Batubara, M., Suryana, R., Manik, T., and Sitompul, P.: Kototabang – West
Sumatera meteor radar: System design and initial results of a large scale
meteor echo, TSSA, 17–21, https://doi.org/10.1109/TSSA.2011.6095399, 2011.
Becker, E.: Mean-Flow Effects of Thermal Tides in the Mesosphere and Lower
Thermosphere, J. Atmos. Sci., 74, 2043–2063, https://doi.org/10.1175/JAS-D-16-0194.1,
2017.
Becker, E. and Vadas, S. L.: Secondary Gravity Waves in the Winter
Mesosphere: Results From a High-Resolution Global Circulation Model, J.
Geophys. Res.-Atmos., 123, 2605–2627, https://doi.org/10.1002/2017JD027460, 2018.
Becker, E., Müllemann, A., Lübken, F.-J., Körnich, H., Hoffmann,
P., and Rapp, M.: High Rossby-wave activity in austral winter 2002:
Modulation of the general circulation of the MLT during the MaCWAVE/MIDAS
northern summer program, Geophys. Res. Lett., 31, L24S03,
https://doi.org/10.1029/2004GL019615, 2004.
Cagnazzo, C. and Manzini, E.: Impact of the Stratosphere on the Winter
Tropospheric Teleconnections between ENSO and the North Atlantic and
European Region, J. Climate, 22, 1223–1238, https://doi.org/10.1175/2008JCLI2549.1,
2009.
Chandran, A., Garcia, R. R., Collins, R. L., and Chang, L. C.: Secondary
planetary waves in the middle and upper atmosphere following the
stratospheric sudden warming event of January 2012, Geophys. Res. Lett., 40,
1861–1867, https://doi.org/10.1002/grl.50373, 2013.
Cohen, N. Y., Gerber, E. P., and Bühler, O.: Compensation between
Resolved and Unresolved Wave Driving in the Stratosphere: Implications for
Downward Control, J. Atmos. Sci., 70, 3780–3798,
https://doi.org/10.1175/JAS-D-12-0346.1, 2013.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, I., Biblot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Greer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Holm, E. V., Isaksen, L., Kallberg, P., Kohler, M.,
Matricardi, M., McNally, A. P., Mong-Sanz, B. M., Morcette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thepaut, J. N., and Vitart,
F.: The ERA-Interim reanalysis: Configuration and performance of the data
assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Dhadly, M. S., Emmert, J. T., Drob, D. P., McCormack, J. P., and Niciejewski,
R. J.: Short-Term and Interannual Variations of Migrating Diurnal and
Semidiurnal Tides in the Mesosphere and Lower Thermosphere, J. Geophys. Res.-Space, 123, 7106–7123, https://doi.org/10.1029/2018JA025748, 2018.
Eckermann, S. D., Ma, J., Hoppel, K. W., Kuhl, D. D., Allen, D. R., Doyle,
J. A., Viner, K. C., Ruston, B. C., Baker, N. L., Swadley, S. D., Whitcomb,
T. R., Reynolds, C. A., Xu, L., Kaifler, N., Kaifler, B., Reid, I. M.,
Murphy, D. J., and Love, P. T.: High-Altitude (0–100 km) Global Atmospheric
Reanalysis System: Description and Application to the 2014 Austral Winter of
the Deep Propagating Gravity Wave Experiment (DEEPWAVE), Mon. Weather Rev.,
146, 2639–2666, https://doi.org/10.1175/MWR-D-17-0386.1, 2018.
Ehard, B., Malardel, S., Dörnbrack, A., Kaifler, B., Kaifler, N., and
Wedi, N.: Comparing ECMWF high-resolution analyses with lidar temperature
measurements in the middle atmosphere, Q. J. Roy. Meteor. Soc., 144,
633–640, https://doi.org/10.1002/qj.3206, 2018.
Enomoto, T., Miyoshi, T., Moteki, Q., Inoue, J., Hattori, M.,
Kuwano-Yoshida, A., Komori, N., and Yamane, S.: Observing-system research and
ensemble data assimilation at JAMSTEC, in: Data Assimilation for
Atmospheric, Oceanic and Hydrologic Applications, Vol. II, edited by: Park, S. K. and
Xu, L., Springer, Berlin, Heidelberg, 509–526,
https://doi.org/10.1007/978-3-642-35088-7_21, 2013.
Ern, M., Preusse, P., Kalisch, S., Kaufmann, M., and Riese, M.: Role of
gravity waves in the forcing of quasi two-day waves in the mesosphere: An
observational study, J. Geophys. Res.-Atmos., 118, 3467–3485,
https://doi.org/10.1029/2012JD018208, 2013.
Evensen, G.: The Ensemble Kalman Filter: theoretical formulation and
practical implementation, Ocean Dyn., 53, 343–367,
https://doi.org/10.1007/s10236-003-0036-9, 2003.
Fritts, D. C. and Alexander, M. J.: Gravity wave dynamics and effects in the
middle atmosphere, Rev. Geophys., 41, 1003, https://doi.org/10.1029/2001RG000106, 2003.
Fritts, D. C., Smith, R. B., Taylor, M. J., Doyle, J. D., Eckermann, S. D.,
Dörnbrack, A., Rapp, M., Williams, B. P., Pautet, P.-D., Bossert, K.,
Criddle, N. R., Reynolds, C. A., Reinecke, P. A., Uddstrom, M., Revell, M.
J., Turner, R., Kaifler, B., Wagner, J. S., Mixa, T., Kruse, C. G., Nugent,
A. D., Watson, C. D., Gisinger, S., Smith, S. M., Lieberman, R. S.,
Laughman, B., Moore, J. J., Brown, W. O., Haggerty, J. A., Rockwell, A.,
Stossmeister, G. J., Williams, S. F., Hernandez, G., Murphy, D. J.,
Klekociuk, A. R., Reid, I. M., and Ma, J.: The Deep Propagating Gravity Wave
Experiment (DEEPWAVE): An Airborne and Ground-Based Exploration of Gravity
Wave Propagation and Effects from Their Sources throughout the Lower and
Middle Atmosphere, B. Am. Meteorol. Soc., 97, 425–453,
https://doi.org/10.1175/BAMS-D-14-00269.1, 2016.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan,
K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate, 30,
5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Goddard Earth Sciences Data and Information Services Center (GES DISC): Aura MLS data, available at: https://acdisc.gesdisc.eosdis.nasa.gov/data/Aura_MLS_Level2/ (last access: 26 June 2020), 2016.
Gumbel, J. and Karlsson, B.: Intra- and inter-hemispheric coupling effects
on the polar summer mesosphere, Geophys. Res. Lett., 38, L14804,
https://doi.org/10.1029/2011GL047968, 2011.
Hall, C. M., Husly, B. O., Aso, T., and Tsutsumi, M.: The Nippon/Norway
Svalbard Meteor Radar: First results of small-scale structure observations,
Chinese J. Polar Sci., 13, 47–54, 2002.
Hamilton, K., Wilson, R. J., and Hemler, R. S.: Middle Atmosphere Simulated
with High Vertical and Horizontal Resolution Versions of a GCM: Improvements
in the Cold Pole Bias and Generation of a QBO-like Oscillation in the
Tropics, J. Atmos. Sci., 56, 3829–3846,
https://doi.org/10.1175/1520-0469(1999)056<3829:MASWHV>2.0.CO;2,
1999.
Hayashi, Y. and Sato, K.: Formation of Two-Dimensional Circulation in
Response to Unsteady Wave Forcing in the Middle Atmosphere, J. Atmos. Sci.,
75, 125–142, https://doi.org/10.1175/JAS-D-16-0374.1, 2018.
Hersbach, H., de Rosnay, P., Bell, B., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Alonso-Balmaseda, M., Balsamo, G., Bechtold, P., Berrisford, P., Bidlot, J.-R., de Boisséson, E., Bonavita, M., Browne, P., Buizza, R., Dahlgren, P., Dee, D., Dragani, R., Diamantakis, M., Flemming, J., Forbes, R., Geer, A. J., Haiden, T., Hólm, E., Haimberger, L., Hogan, R., Horányi, A., Janiskova, M., Laloyaux, P., Lopez, P., Munoz-Sabater, J., Peubey, C., Radu, R., Richardson, D., Thépaut, J.-N., Vitart, F., Yang, X., Zsótér, E., and Zuo, H.: Operational global reanalysis: progress, future
directions and synergies with NWP, ERA Report Series,
https://doi.org/10.21957/tkic6g3wm,
2018.
Hines, C. O.: Doppler-spread parameterization of gravity-wave momentum
deposition in the middle atmosphere. Part 1: Basic formulation, J. Atmos.
Solar-Terr. Phys., 59, 371–386, https://doi.org/10.1016/S1364-6826(96)00079-X, 1997.
Holt, L. A., Alexander, M. J., Coy, L., Molod, A., Putman, W., and Pawson,
S.: Tropical Waves and the Quasi-Biennial Oscillation in a 7-km Global
Climate Simulation, J. Atmos. Sci., 73, 3771–3783,
https://doi.org/10.1175/JAS-D-15-0350.1, 2016.
Holton, J. R. and Hakim, G. J.: An Introduction to Dynamic Meteorology,
Academic Press, 532 pp., 2013.
Holton, J. R. and Tan, H.: The Influence of the Equatorial Quasi-Biennial
Oscillation on the Global Circulation at 50 mb, J. Atmos. Sci., 37,
2200–2208, https://doi.org/10.1175/1520-0469(1980)037<2200:TIOTEQ>2.0.CO;2, 1980.
Hoppel, K. W., Baker, N. L., Coy, L., Eckermann, S. D., McCormack, J. P.,
Nedoluha, G. E. and Siskind, D. E.: Assimilation of stratospheric and
mesospheric temperatures from MLS and SABER into a global NWP model, Atmos.
Chem. Phys., 8, 6103–6116, https://doi.org/10.5194/acp-8-6103-2008, 2008.
Hoppel, K. W., Eckermann, S. D., Coy, L., Nedoluha, G. E., Allen, D. R.,
Swadley, S. D., and Baker, N. L.: Evaluation of SSMIS Upper Atmosphere
Sounding Channels for High-Altitude Data Assimilation, Mon. Weather Rev., 141,
3314–3330, https://doi.org/10.1175/MWR-D-13-00003.1, 2013.
Horel, J. D. and Wallace, J. M.: Planetary-Scale Atmospheric Phenomena
Associated with the Southern Oscillation, Mon. Weather Rev., 109, 813–829,
https://doi.org/10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2,
1981.
Hunt, B. R., Kalnay, E., Kostelich, E. J., Ott, E., Patil, D. J., Sauer, T.,
Szunyogh, I., Yorke, J. A., and Zimin, A. V.: Four-dimensional ensemble
Kalman filtering, Tellus A, 56, 273–277, https://doi.org/10.3402/tellusa.v56i4.14424,
2004.
Hunt, B. R., Kostelich, E. J., and Szunyogh, I.: Efficient data assimilation
for spatiotemporal chaos: A local ensemble transform Kalman filter, Physica
D, 230, 112–126, https://doi.org/10.1016/j.physd.2006.11.008,
2007.
IUGONET: Meteor radar data from Kototabang, Inter-university
Upper atmosphere Global Observation NETwork (IUGONET), available at: http://search.iugonet.org/metadata/001/00000158 (last access: 26 June 2020), 2016.
Jewtoukoff, V., Hertzog, A., Plougonven, R., Cámara, A. d. l., and Lott,
F.: Comparison of Gravity Waves in the Southern Hemisphere Derived from
Balloon Observations and the ECMWF Analyses, J. Atmos. Sci., 72, 3449–3468,
https://doi.org/10.1175/JAS-D-14-0324.1, 2015.
Jin, H., Miyoshi, Y., Pancheva, D., Mukhtarov, P., Fujiwara, H., and
Shinagawa, H.: Response of migrating tides to the stratospheric sudden
warming in 2009 and their effects on the ionosphere studied by a whole
atmosphere-ionosphere model GAIA with COSMIC and TIMED/SABER observations,
J. Geophys. Res., 117, A10323, https://doi.org/10.1029/2012JA017650, 2012.
Karlsson, B., Randall, C. E., Benze, S., Mills, M., Harvey, V. L., Bailey,
S. M., and Russell III, J. M.: Intra-seasonal variability of polar
mesospheric clouds due to inter-hemispheric coupling, Geophys. Res. Lett.,
36, L20802, https://doi.org/10.1029/2009GL040348, 2009.
Kawatani, Y., Hamilton, K., Miyazaki, K., Fujiwara, M., and Anstey, J. A.: Representation of the tropical stratospheric zonal wind in global atmospheric reanalyses, Atmos. Chem. Phys., 16, 6681–6699, https://doi.org/10.5194/acp-16-6681-2016, 2016.
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi,
K., Kamahori, H., Kobayashi, C., Endo, H., Miyakoda, K., and Takahashi, K.:
The JRA-55 Reanalysis: General Specifications and Basic Characteristics, J.
Meteorol. Soc. Jpn,, 93, 5–48, https://doi.org/10.2151/jmsj.2015-001, 2015.
Körnich, H. and Becker, E.: A simple model for the interhemispheric
coupling of the middle atmosphere circulation, Adv. Space Res., 45,
661–668, https://doi.org/10.1016/j.asr.2009.11.001, 2010.
Livesey, N. J., William, R. G., Paul, W. A., Lucien, F., Alyn, L., Gloria,
M. L., Luis, M. V. F., Hugh, P. C., Michelle, S. L., Michael, S. J., Shuhui,
W., Ryan, F. A., Robert, J. F., Brian, K. W., Elmain, M., and Richard, L. R.:
Aura Microwave Limb Sounder (MLS) Version 4.2x Level 2 data quality and
description document, Jet Propulsion Laboratory, Pasadena, California,
163 pp., available at: https://mls.jpl.nasa.gov/data/v4-2_data_quality_document.pdf (last access: 26 June 2020), 2018.
McCormack, J., Hoppel, K., Kuhl, D., de Wit, R., Stober, G., Espy, P.,
Baker, N., Brown, P., Fritts, D., Jacobi, C., Janches, D., Mitchell, N.,
Ruston, B., Swadley, S., Viner, K., Whitcomb, T., and Hibbins, R.: Comparison
of mesospheric winds from a high-altitude meteorological analysis system and
meteor radar observations during the boreal winters of 2009–2010 and
2012–2013, J. Atmos. Solar-Terr. Phys., 154, 132–166,
https://doi.org/10.1016/j.jastp.2016.12.007, 2017.
McFarlane, N. A.: The Effect of Orographically Excited Gravity Wave Drag on
the General Circulation of the Lower Stratosphere and Troposphere, J. Atmos.
Sci., 44, 1775–1800, https://doi.org/10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2, 1987.
Ménard, R. and Chang, L.: Assimilation of Stratospheric Chemical Tracer
Observations Using a Kalman Filter. Part II: χ2-Validated Results and
Analysis of Variance and Correlation Dynamics, Mon. Weather Rev., 128,
2672–2686, https://doi.org/10.1175/1520-0493(2000)128<2672:AOSCTO>2.0.CO;2, 2000.
Miyoshi, T.: LETKF code, GitHub, available at: https://github.com/takemasa-miyoshi/letkf (last access: 26 June 2020), 2016.
Miyoshi, T. and Sato, Y.: Assimilating Satellite Radiances with a Local
Ensemble Transform Kalman Filter (LETKF) Applied to the JMA Global Model
(GSM), SOLA, 3, 37–40, https://doi.org/10.2151/sola.2007-010, 2007.
Miyoshi, T. and Yamane, S.: Local Ensemble Transform Kalman Filtering with
an AGCM at a T159/L48 Resolution, Mon. Weather Rev., 135, 3841–3861,
https://doi.org/10.1175/2007MWR1873.1, 2007.
Miyoshi, T., Yamane, S., and Enomoto, T.: The AFES-LETKF Experimental
Ensemble Reanalysis: ALERA, SOLA, 3, 45–48, https://doi.org/10.2151/sola.2007-012,
2007.
Miyoshi, T., Kondo, K., and Imamura, T.: The 10,240-member ensemble Kalman
filtering with an intermediate AGCM, Geophys. Res. Lett., 41, 5264–5271,
https://doi.org/10.1002/2014GL060863, 2014.
Miyoshi, Y. and Yiğit, E.: Impact of gravity wave drag on the thermospheric circulation: implementation of a nonlinear gravity wave parameterization in a whole-atmosphere model, Ann. Geophys., 37, 955–969, https://doi.org/10.5194/angeo-37-955-2019, 2019.
National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce: NCEP ADP Global Upper Air and Surface Weather Observations (PREPBUFR format), Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, https://doi.org/10.5065/Z83F-N512 (last access: 24 June 2020), 2008.
Nezlin, Y., Rochon, Y. J., and Polavarapu, S.: Impact of tropospheric and
stratospheric data assimilation on mesospheric prediction, Tellus A, 61,
154–159, https://doi.org/10.1111/j.1600-0870.2008.00368.x, 2009.
Nitta, T.: Convective Activities in the Tropical Western Pacific and Their
Impact on the Northern Hemisphere Summer Circulation, J. Meteorol. Soc.
Jpn., 65, 373–390, https://doi.org/10.2151/jmsj1965.65.3_373, 1987.
Pancheva, D., Mukhtarov, P., Siskind, D. E., and Smith, A. K.: Global
distribution and variability of quasi 2-day waves based on the NOGAPS-ALPHA
reanalysis model, J. Geophys. Res.-Space, 121, 11422–11449,
https://doi.org/10.1002/2016JA023381, 2016.
PANSY Research Group: PANSY radar observational data, Program of the Antarctic Syowa MST/IS Radar (PANSY), available at: http://pansy.eps.s.u-tokyo.ac.jp/ (last access: 26 June 2020), 2012.
Pedatella, N. M., Fuller-Rowell, T., Wang, H., Jin, H., Miyoshi, Y.,
Fujiwara, H., Shinagawa, H., Liu, H.-L., Sassi, F., Schmidt, H., Matthias,
V., and Goncharenko, L.: The neutral dynamics during the 2009 sudden
stratosphere warming simulated by different whole atmosphere models, J.
Geophys. Res.-Space, 119, 1306–1324, https://doi.org/10.1002/2013JA019421, 2014a.
Pedatella, N. M., Raeder, K., Anderson, J. L., and Liu, H.-L.: Ensemble data
assimilation in the Whole Atmosphere Community Climate Model, J. Geophys.
Res.-Atmos., 119, 9793–9809, https://doi.org/10.1002/2014JD021776, 2014b.
Pedatella, N. M., Oberheide, J., Sutton, E. K., Liu, H.-L., Anderson, J. L.,
and Raeder, K.: Short-term nonmigrating tide variability in the mesosphere,
thermosphere, and ionosphere, J. Geophys. Res.-Space, 121,
3621–3633, https://doi.org/10.1002/2016JA022528, 2016.
Pedatella, N. M., Liu, H.-L., Marsh, D. R., Raeder, K., Anderson, J. L.,
Chau, J. L., Goncharenko, L. P., and Siddiqui, T. A.: Analysis and Hindcast
Experiments of the 2009 Sudden Stratospheric Warming in WACCMX+DART, J.
Geophys. Res.-Space, 123, 3131–3153, https://doi.org/10.1002/2017JA025107, 2018.
Polavarapu, S., Shepherd, T. G., Rochon, Y., and Ren, S.: Some challenges of
middle atmosphere data assimilation, Q. J. Roy. Meteor. Soc., 131,
3513–3527, https://doi.org/10.1256/qj.05.87, 2005.
Randel, W. J., Smith, A. K., Wu, F., Zou, C., and Qian, H.: Stratospheric
Temperature Trends over 1979–2015 Derived from Combined SSU, MLS, and SABER
Satellite Observations, J. Climate, 29, 4843–4859,
https://doi.org/10.1175/JCLI-D-15-0629.1, 2016.
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L.
V., Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of sea
surface temperature, sea ice, and night marine air temperature since the
late nineteenth century, J. Geophys. Res., 108, 4407,
https://doi.org/10.1029/2002JD002670, 2003.
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J.,
Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G., Bloom, S.,
Chen, J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J., Koster,
R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P., Redder,
C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz, M., and
Woollen, J.: MERRA: NASA's Modern-Era Retrospective Analysis for Research
and Applications, J. Climate, 24, 3624–3648, https://doi.org/10.1175/JCLI-D-11-00015.1,
2011.
Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer,
D., Hou, Y., Chuang, H., Iredell, M., Ek, M., Meng, J., Yang, R., Mendez, M.
P., van, d. D., Zhang, Q., Wang, W., Chen, M., and Becker, E.: The NCEP
Climate Forecast System Version 2, J. Climate, 27, 2185–2208,
https://doi.org/10.1175/JCLI-D-12-00823.1, 2014.
Saha, S., Moorthi, S., Pan, H., Wu, X., Wang, J., Nadiga, S., Tripp, P.,
Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R.,
Gayno, G., Wang, J., Hou, Y., Chuang, H., Juang, H. H., Sela, J., Iredell,
M., Treadon, R., Kleist, D., Van Delst, P., Keyser, D., Derber, J., Ek, M.,
Meng, J., Wei, H., Yang, R., Lord, S., van, d. D., Kumar, A., Wang, W.,
Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J., Ebisuzaki, W., Lin,
R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou, C., Liu, Q., Chen, Y.,
Han, Y., Cucurull, L., Reynolds, R. W., Rutledge, G., and Goldberg, M.: The
NCEP Climate Forecast System Reanalysis, B. Am. Meteorol. Soc., 91,
1015–1058, https://doi.org/10.1175/2010BAMS3001.1, 2010.
Sankey, D., Ren, S., Polavarapu, S., Rochon, Y. J., Nezlin, Y., and Beagley,
S.: Impact of data assimilation filtering methods on the mesosphere, J.
Geophys. Res., 112, D24104, https://doi.org/10.1029/2007JD008885, 2007.
Sassi, F., Liu, H., Ma, J., and Garcia, R. R.: The lower thermosphere during
the northern hemisphere winter of 2009: A modeling study using high-altitude
data assimilation products in WACCM-X, J. Geophys. Res.-Atmos., 118,
8954–8968, https://doi.org/10.1002/jgrd.50632, 2013.
Sassi, F., Siskind, D. E., Tate, J. L., Liu, H., and Randall, C. E.:
Simulations of the Boreal Winter Upper Mesosphere and Lower Thermosphere
With Meteorological Specifications in SD-WACCM-X, J. Geophys. Res.-Atmos.,
123, 3791–3811, https://doi.org/10.1002/2017JD027782, 2018.
Sato, K. and Yoshiki, M.: Gravity Wave Generation around the Polar Vortex in
the Stratosphere Revealed by 3-Hourly Radiosonde Observations at Syowa
Station, J. Atmos. Sci., 65, 3719–3735, https://doi.org/10.1175/2008JAS2539.1, 2008.
Sato, K. and Nomoto, M.: Gravity Wave–Induced Anomalous Potential Vorticity
Gradient Generating Planetary Waves in the Winter Mesosphere, J. Atmos.
Sci., 72, 3609–3624, https://doi.org/10.1175/JAS-D-15-0046.1, 2015.
Sato, K., Kumakura, T., and Takahashi, M.: Gravity Waves Appearing in a
High-Resolution GCM Simulation, J. Atmos. Sci., 56, 1005–1018,
https://doi.org/10.1175/1520-0469(1999)056<1005:GWAIAH>2.0.CO;2,
1999.
Sato, K., Watanabe, S., Kawatani, Y., Tomikawa, Y., Miyazaki, K., and
Takahashi, M.: On the origins of mesospheric gravity waves, Geophys. Res.
Lett., 36, L19801, https://doi.org/10.1029/2009GL039908, 2009.
Sato, K., Tateno, S., Watanabe, S., and Kawatani, Y.: Gravity Wave
Characteristics in the Southern Hemisphere Revealed by a High-Resolution
Middle-Atmosphere General Circulation Model, J. Atmos. Sci., 69, 1378–1396,
https://doi.org/10.1175/JAS-D-11-0101.1, 2012.
Sato, K., Sato, T., Tsutsumi, M., Nakamura, T., Saito, A., Tomikawa, Y.,
Nishimura, K., Kohma, M., Yamagishi, H., and Yamanouchi, T.: Program of the
Antarctic Syowa MST/IS radar (PANSY), J. Atmos. Solar-Terr. Phys., 118,
2–15, https://doi.org/10.1016/j.jastp.2013.08.022, 2014.
Sato, K., Kohma, M., Tsutsumi, M., and Sato, T.: Frequency spectra and
vertical profiles of wind fluctuations in the summer Antarctic mesosphere
revealed by MST radar observations, J. Geophys. Res.-Atmos., 122, 3–19,
https://doi.org/10.1002/2016JD025834, 2017.
Sato, K., Yasui, R., and Miyoshi, Y.: The Momentum Budget in the
Stratosphere, Mesosphere, and Lower Thermosphere. Part I: Contributions of
Different Wave Types and In Situ Generation of Rossby Waves, J. Atmos. Sci.,
75, 3613–3633, https://doi.org/10.1175/JAS-D-17-0336.1, 2018.
Shepherd, T. G., Koshyk, J. N., and Ngan, K.: On the nature of large-scale
mixing in the stratosphere and mesosphere, J. Geophys. Res., 105,
12433–12446, https://doi.org/10.1029/2000JD900133, 2000.
Shibuya, R., Sato, K., Tsutsumi, M., Sato, T., Tomikawa, Y., Nishimura, K., and Kohma, M.: Quasi-12 h inertia–gravity waves in the lower mesosphere observed by the PANSY radar at Syowa Station (39.6∘ E, 69.0∘ S), Atmos. Chem. Phys., 17, 6455–6476, https://doi.org/10.5194/acp-17-6455-2017, 2017.
Smith, A. K., Pedatella, N. M., Marsh, D. R., and Matsuo, T.: On the
Dynamical Control of the Mesosphere–Lower Thermosphere by the Lower and
Middle Atmosphere, J. Atmos. Sci., 74, 933–947,
https://doi.org/10.1175/JAS-D-16-0226.1, 2017.
Snyder, C., Muraki, D. J., Plougonven, R., and Zhang, F.: Inertia–Gravity
Waves Generated within a Dipole Vortex, J. Atmos. Sci., 64, 4417–4431,
https://doi.org/10.1175/2007JAS2351.1, 2007.
Swadley, S. D., Poe, G. A., Bell, W., Ye Hong, Kunkee, D. B., McDermid, I.
S., and Leblanc, T.: Analysis and Characterization of the SSMIS Upper
Atmosphere Sounding Channel Measurements, TGRS, 46, 962–983,
https://doi.org/10.1109/TGRS.2008.916980, 2008.
Terasaki, K., Sawada, M., and Miyoshi, T.: Local Ensemble Transform Kalman
Filter Experiments with the Nonhydrostatic Icosahedral Atmospheric Model
NICAM, SOLA, 11, 23–26, https://doi.org/10.2151/sola.2015-006, 2015.
UK Universities Global Atmospheric Modelling Programme (UGAMP): Global Ozone
Climatology Project Dataset. NCAS British Atmospheric Data Centre, available at: http://badc.nerc.ac.uk/data/ugamp-o3-climatology/, last access: 4 September 2019.
Vadas, S. L. and Becker, E.: Numerical Modeling of the Excitation,
Propagation, and Dissipation of Primary and Secondary Gravity Waves during
Wintertime at McMurdo Station in the Antarctic, J. Geophys. Res.-Atmos.,
123, 9326–9369, https://doi.org/10.1029/2017JD027974, 2018.
Wang, H., Fuller-Rowell, T., Akmaev, R. A., Hu, M., Kleist, D. T., and
Iredell, M. D.: First simulations with a whole atmosphere data assimilation
and forecast system: The January 2009 major sudden stratospheric warming, J.
Geophys. Res., 116, A12321, https://doi.org/10.1029/2011JA017081, 2011.
Watanabe, S.: Constraints on a Non-orographic Gravity Wave Drag
Parameterization Using a Gravity Wave Resolving General Circulation Model,
SOLA, 4, 61–64, https://doi.org/10.2151/sola.2008-016, 2008.
Watanabe, S. and Miyahara, S.: Quantification of the gravity wave forcing of
the migrating diurnal tide in a gravity wave–resolving general circulation
model, J. Geophys. Res., 114, D07110, https://doi.org/10.1029/2008JD011218, 2009.
Watanabe, S., Kawatani, Y., Tomikawa, Y., Miyazaki, K., Takahashi, M., and
Sato, K.: General aspects of a T213L256 middle atmosphere general
circulation model, J. Geophys. Res., 113, D12110, https://doi.org/10.1029/2008JD010026,
2008.
Watanabe, S., Tomikawa, Y., Sato, K., Kawatani, Y., Miyazaki, K., and
Takahashi, M.: Simulation of the eastward 4-day wave in the Antarctic winter
mesosphere using a gravity wave resolving general circulation model, J.
Geophys. Res., 114, D16111, https://doi.org/10.1029/2008JD011636, 2009.
Watanabe, S., Sato, K., Kawatani, Y., and Takahashi, M.: Vertical resolution dependence of gravity wave momentum flux simulated by an atmospheric general circulation model, Geosci. Model Dev., 8, 1637–1644, https://doi.org/10.5194/gmd-8-1637-2015, 2015.
Whitaker, J. S., Hamill, T. M., Wei, X., Song, Y., and Toth, Z.: Ensemble
Data Assimilation with the NCEP Global Forecast System, Mon. Weather Rev., 136,
463–482, https://doi.org/10.1175/2007MWR2018.1, 2008.
Xu, J., She, C. Y., Yuan, W., Mertens, C., Mlynczak, M., and Russell, J.:
Comparison between the temperature measurements by TIMED/SABER and lidar in
the midlatitude, J. Geophys. Res., 111, A10S09, https://doi.org/10.1029/2005JA011439,
2006.
Xu, X., Manson, A. H., Meek, C. E., Jacobi, C., Hall, C. M., and Drummond, J.
R.: Verification of the mesospheric winds within the Canadian Middle
Atmosphere Model Data Assimilation System using radar measurements, J.
Geophys. Res., 116, D16108, https://doi.org/10.1029/2011JD015589, 2011.
Yasui, R., Sato, K., and Miyoshi, Y.: The Momentum Budget in the
Stratosphere, Mesosphere, and Lower Thermosphere. Part II: The In Situ
Generation of Gravity Waves, J. Atmos. Sci., 75, 3635–3651,
https://doi.org/10.1175/JAS-D-17-0337.1, 2018.
Yoshikawa, M. and Miyahara, S.: Excitations of nonmigrating diurnal tides in
the mesosphere and lower thermosphere simulated by the Kyushu-GCM, Adv.
Space Res., 35, 1918–1924, https://doi.org/10.1016/j.asr.2005.03.023, 2005.
Short summary
A new data assimilation system with a 4D local ensemble transform Kalman filter for the whole neutral atmosphere is developed using a T42L124 general circulation model. A conventional observation dataset and bias-corrected satellite temperature data are assimilated. After the improvements of the forecast model, the assimilation parameters are optimized. The minimum optimal number of ensembles is also examined. Results are evaluated using the reanalysis data and independent radar observations.
A new data assimilation system with a 4D local ensemble transform Kalman filter for the whole...