
Geosci. Model Dev., 13, 3145–3177, 2020
https://doi.org/10.5194/gmd-13-3145-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

An ensemble Kalman filter data assimilation system for the whole
neutral atmosphere
Dai Koshin1, Kaoru Sato1, Kazuyuki Miyazaki2,3, and Shingo Watanabe3

1Department of Earth and Planetary Science, The University of Tokyo, Tokyo, Japan
2Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
3Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

Correspondence: Dai Koshin (koshin@eps.s.u-tokyo.ac.jp)

Received: 9 September 2019 – Discussion started: 7 November 2019
Revised: 10 May 2020 – Accepted: 14 May 2020 – Published: 13 July 2020

Abstract. A data assimilation system with a four-
dimensional local ensemble transform Kalman filter (4D-
LETKF) is developed to make a new analysis dataset for
the atmosphere up to the lower thermosphere using the
Japanese Atmospherics General Circulation model for Up-
per Atmosphere Research. The time period from 10 January
to 20 February 2017, when an international radar network ob-
servation campaign was performed, is focused on. The model
resolution is T42L124, which can resolve phenomena at syn-
optic and larger scales. A conventional observation dataset
provided by the National Centers for Environmental Predic-
tion, PREPBUFR, and satellite temperature data from the
Aura Microwave Limb Sounder (MLS) for the stratosphere
and mesosphere are assimilated. First, the performance of the
forecast model is improved by modifying the vertical pro-
file of the horizontal diffusion coefficient and modifying the
source intensity in the non-orographic gravity wave param-
eterization by comparing it with radar wind observations in
the mesosphere. Second, the MLS observational bias is esti-
mated as a function of the month and latitude and removed
before the data assimilation. Third, data assimilation param-
eters, such as the degree of gross error check, localization
length, inflation factor, and assimilation window, are opti-
mized based on a series of sensitivity tests. The effect of in-
creasing the ensemble member size is also examined. The
obtained global data are evaluated by comparison with the
Modern-Era Retrospective analysis for Research and Appli-
cations version 2 (MERRA-2) reanalysis data covering pres-
sure levels up to 0.1 hPa and by the radar mesospheric obser-
vations, which are not assimilated.

1 Introduction

It is well known that the earth’s climate is remotely cou-
pled: for example, when El Niño occurs, convective activ-
ity in the tropics strongly affects midlatitude climate with
the appearance of the Pacific–North American pattern (Horel
and Wallace, 1981). Convective activity in maritime conti-
nents also modulates midlatitude climates by generating the
Pacific–Japan pattern (Nitta, 1987). Most of these climate
couplings between the tropics and midlatitude regions are
caused by the horizontal propagation of stationary Rossby
waves (Holton and Hakim, 2013). Teleconnection through
stratospheric processes has also been known. For example,
the sea-level pressure in the Arctic rises during El Niño. It
was shown that this teleconnection occurs by modulation of
planetary wave intensity and propagation in the stratosphere
(Cagnazzo and Manzini, 2009). It is also well known that
the occurrence frequency of stratospheric sudden warming
(SSW), which exerts a strong influence on the Arctic oscil-
lation of sea-level pressure (Baldwin and Dunkerton, 2001),
is high during the easterly phase of the quasi-biennial oscil-
lation (QBO) in the equatorial stratosphere (Holton and Tan,
1980). This is also due to the modulation of the propagation
of planetary waves in the stratosphere. Thus, the stratosphere
is an important area that brings about the remote coupling of
climate.

Recently, the presence of interhemispheric coupling
through the mesosphere has been reported as well. When the
temperature in the polar winter stratosphere is high, the tem-
perature in the polar summer upper mesosphere is also high,
with a slight delay (Karlsson et al., 2009). This coupling is
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clear for at least a 1-month average (Gumbel and Karlsson,
2011). The interhemispheric coupling, which is initiated by
SSW in the winter hemisphere, occurs at shorter timescales
(Körnich and Becker, 2010). When SSW occurs in associa-
tion with the breaking of strong planetary waves originating
from the troposphere, the westerly wind of the polar night jet
significantly weakens or, in strong cases, even turns easterly.
The critical-level filtering of the gravity waves toward the
mesosphere is then modulated, and the gravity wave forcing
that drives the mesospheric meridional circulation with an
upward (downward) branch on the equatorial (polar) side be-
comes weak. Thus, the temperature in the equatorial region
increases and the poleward temperature gradient in the sum-
mer hemisphere weakens. The weak wind layer above the
easterly jet in the summer hemisphere lowers so as to satisfy
the thermal wind relation. The eastward gravity wave forc-
ing region near the weak wind layer also descends and the
upward branch of the meridional circulation, which main-
tains extremely low temperature in the summer polar upper
mesosphere, weakens.

However, there is little observational evidence of grav-
ity wave modulation in the mesosphere. The Interhemi-
spheric Coupling Study by Observations and Modeling (IC-
SOM: http://pansy.eps.s.u-tokyo.ac.jp/icsom/, last access:
26 June 2020) is a project to understand mesospheric grav-
ity wave modulation associated with SSWs on a global scale
through a comprehensive international observation campaign
with a network of mesosphere–stratosphere–troposphere
(MST), meteor, and medium-frequency (MF) radars as well
as complementary optical and satellite-borne instruments.
Since 2016, four campaigns have been successfully per-
formed.

In the ICSOM project, we are also proceeding with a
model study using a gravity-wave-permitting high-top gen-
eral atmospheric circulation model (GCM) that covers the
entire troposphere and middle atmosphere (up to the lower
thermosphere) simultaneously. However, this is not easy be-
cause the GCMs including the entire middle atmosphere are
not yet sufficiently mature even for relatively low resolu-
tions that do not allow explicit gravity wave simulation (e.g.,
Smith et al., 2017). Therefore, verification of the GCMs
by high-resolution observations is necessary. In the ICSOM
project, by validating the high-top GCM using data from the
comprehensive international radar observation campaigns, it
is expected to reproduce high-resolution global data with
high reliability. Using these global data, we plan to confirm
the regional representation of gravity wave characteristics
detected by each radar and deepen the understanding of in-
terhemispheric coupling quantitatively with a resolution of
gravity wave scales.

Gravity wave simulation research using high-resolution
GCMs has been performed in the past (e.g., Hamilton et
al., 1999; Sato et al., 1999, 2009, 2012; Watanabe et al.,
2008; Holt et al., 2016). However, reproducing gravity wave
fields in the global atmosphere at a specific date and time

requires significant effort (Eckermann et al., 2018; Becker
et al., 2004). Data assimilation up to the scale of gravity
waves is ideal to create global high-resolution grid data se-
quentially. However, current data assimilation schemes work
well for geostrophic motions such as Rossby waves but not
necessarily for ageostrophic motions such as gravity waves.
Recent studies (Jewtoukoff, et al., 2015; Ehard et al., 2018)
reported that gravity waves observed in the European Cen-
ter for Medium-Range Weather Forecasts (ECMWF) opera-
tional data are partly realistic in the lower and middle strato-
sphere, but more validation with observation data is neces-
sary. It has also been shown that the difference in horizon-
tal winds between reanalysis datasets is quite large in the
equatorial region where the Coriolis parameter becomes zero
(Kawatani et al., 2016). The reasons for this problem may
be the insufficient maturity of the models to accurately ex-
press ageostrophic motions and/or the shortage of observa-
tion data, including gravity waves, to be assimilated.

Data assimilation for the mesosphere is particularly not
easy, partly because the energy ratio of Rossby waves and
gravity waves is reversed there (Shepherd et al., 2000) and
partly because observational data for the mesosphere are sig-
nificantly limited compared to those for the lower atmo-
sphere. In addition, it has been shown that, in the upper
stratosphere and the mesosphere, Rossby waves are gener-
ated in situ due to baroclinic–barotropic instability caused
by wave forcing associated with breaking or critical-level ab-
sorption of gravity waves propagating from the troposphere
(Watanabe et al., 2009; Ern et al., 2013; Sato and Nomoto,
2015; Sato et al., 2018). It has been found that gravity waves
are spontaneously generated in the middle atmosphere from
the imbalance of the polar night jet (Sato and Yoshiki, 2008;
Snyder et al., 2007; Shibuya et al., 2017), from an imbalance
caused by the wave forcing due to primary gravity waves
(Vadas and Becker, 2018; Hayashi and Sato, 2018), and also
by shear instability caused by primary gravity wave forcing
(Yasui et al., 2018). The Rossby wave generation in the mid-
dle atmosphere due to primary gravity wave forcing is re-
garded as a compensation problem, which makes it difficult
to understand the change in the Brewer–Dobson circulation
in terms of the relative roles of Rossby waves and gravity
waves for climate projection with the models (Cohen et al.,
2013). However, these instabilities and the in situ generation
of waves in the middle atmosphere could significantly affect
the momentum and energy budget in the middle atmosphere
and above (Sato et al., 2018; Becker, 2017). Hence, it is nec-
essary to understand the roles of these waves as accurately
as possible based on credible, high-resolution model simula-
tions validated by high-resolution observations.

In view of the situation described above, the following
method may be one of the best existing ways to create high-
resolution data for the entire middle atmosphere including
gravity waves to understand the teleconnection through the
mesosphere. First, a data assimilation is performed using a
high-top but relatively low-resolution model to create grid
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data for the real atmosphere from the ground to the lower
thermosphere including only larger-scale phenomena such as
Rossby waves. Second, the analysis data obtained by the as-
similation are used as initial values for a free run of high-
resolution GCMs to simulate gravity waves. Eckermann et
al. (2018) and Becker and Vadas (2018) have performed pio-
neering studies on the effectiveness of such free runs.

Reanalysis data over a long time period are produced us-
ing modern data assimilation schemes and released by mete-
orological organizations for climate analysis. These include
the following: the ECMWF interim reanalysis (ERA-Interim;
Dee et al., 2011) and the fifth reanalysis (ERA5; Hersbach
et al., 2018) produced by a four-dimensional (4D) varia-
tional assimilation scheme (Var); MERRA (Rienecker et al.,
2011) and the following version 2 (MERRA-2; Gelaro et
al., 2017) by the National Aeronautics and Space Admin-
istration (NASA) by a three-dimensional Var (3D-Var); the
National Centers for Environmental Prediction (NCEP) Cli-
mate Forecast System Reanalysis (CFSR; Saha et al., 2010)
and the Climate Forecast System version 2 (CFSv2; Saha
et al., 2014); and the Japanese 55-year reanalysis (JRA-
55; Kobayashi et al., 2015) by a 4D-Var. ERA-Interim and
JRA-55 cover up to a pressure of 0.1 hPa, NCEP/CFSR and
NCEP/CFSv2 up to 0.266 hPa, and MERRA, MERRA-2,
and ERA5 up to 0.1 hPa. However, global data for the middle
and upper mesosphere to the lower thermosphere are not cre-
ated regularly. As stated above, considering the importance
of ageostrophic motions in the mesosphere and lower ther-
mosphere (MLT), the data assimilation used for such meteo-
rological organizations may not work very well for the mid-
dle stratosphere and above (Polavarapu et al., 2005). There-
fore, in recent years, significant efforts have been made to as-
similate data using GCMs that include the MLT region. Cur-
rently, the data available for studying the MLT region come
from the Aura Microwave Limb Sounder (Aura MLS; begin-
ning in 2004), Thermosphere Ionosphere Mesosphere Ener-
getics and Dynamics (TIMED) Sounding of the Atmosphere
using Broadband Emission Radiometry (SABER; beginning
in 2002), and the Defense Meteorological Satellite Program
(DMSP) Special Sensor Microwave Imager/Sounder (SS-
MIS; Swadley et al., 2008).

Global data for the atmosphere including the MLT region
are valuable from the following viewpoints. First, they can
improve prediction of the polar stratosphere (e.g., Hoppel et
al., 2008, 2013; Polavarapu et al., 2005). It seems that anoma-
lies in the MLT region start about 1 week earlier than strato-
spheric anomalies such as SSWs, propagating down to the
troposphere. Thus, better understanding the MLT physics and
chemistry has the potential to improve long-range weather
forecasts. Second, it is possible to quantitatively understand
the transport of minor species from the MLT region (e.g.,
Hoppel et al., 2008; Polavarapu et al., 2005). For example,
high-energy particles originating from the upper atmosphere
contribute to the production of NOx , which modulates the
ozone chemistry in the stratosphere. Thus, the quantitative

evaluation of the transport of such species is important for the
prediction of the ozone layer. Third, they contribute to space-
weather prediction, particularly for the prediction of the near-
space environment (e.g., Hoppel et al., 2013). Atmospheric
waves excited in the lower and middle atmosphere, includ-
ing gravity waves, Rossby waves, and tides, are main drivers
of the general circulation in the height range of 100–150 km
in the lower thermosphere (e.g., Akmaev, 2011; Miyoshi and
Yigit, 2019). Thus, it is important to examine the properties
of these waves in the mesosphere. Last but not least, it is
interesting to understand middle atmosphere processes as a
pure science (e.g., Hoppel et al., 2008).

The first attempt to create analysis data for the whole mid-
dle atmosphere using data assimilation was made by a Cana-
dian group. They employed 3D-Var using the Canadian Mid-
dle Atmosphere Model (CMAM) with full interactive chem-
istry and nonlocal thermodynamic equilibrium (non-LTE) ra-
diation (Polavarapu et al., 2005; Nezlin et al., 2009). The
assimilation of the data in the troposphere and stratosphere
has been shown to improve the analysis of large-scale phe-
nomena (zonal wavenumber s < 10) in the mesosphere (Ne-
zlin et al., 2009). The daily mean time series from their data
assimilation are validated by radar observations (Xu et al.,
2011). Sankey et al. (2007) used the CMAM to carefully
discuss the effectiveness of digital filters in the data assim-
ilation. A series of studies at the Naval Research Labora-
tory (NRL) is remarkable. Hoppel et al. (2008) performed
the first mesospheric data assimilation at the Advanced Level
Physics and High-Altitude (ALPHA) prototype of the Navy
Operational Global Atmospheric Prediction System (NO-
GAPS) using a 3D-Var assimilation system (NAVDAS). Af-
ter that, they introduced a 4D-Var to assimilate data using
the NRL Navy Global Environmental Model (NAVGEM),
a successor of NOGAPS (Hoppel et al., 2013). In this sys-
tem, the SSMIS data were also assimilated along with the
SABER and Aura MLS data. The calculation of the back-
ground error covariance matrix was accelerated by intro-
ducing ensemble forecasts, and assimilation shocks to the
model were reduced by using digital filters (McCormack et
al., 2017; Eckermann et al., 2018). Global data with short
time intervals were made by combining model forecasts with
the assimilation products, and both short-term and annual
variations of diurnal migrating tides were successfully cap-
tured (McCormack et al., 2017; Dhadley et al., 2018; Eck-
ermann et al., 2018). These assimilation data products are
utilized for the study of quasi-2 d waves and 5 d waves, as
well as tides (Eckermann et al., 2009, 2018; Pancheva et al.,
2016), and for observation projects such as the Deep Prop-
agating Gravity Wave Experiment (DEEPWAVE; Fritts et
al., 2016). A data assimilation study using the Whole At-
mosphere Community Climate Model (WACCM) at the Na-
tional Center for Atmospheric Research (NCAR) has been
also conducted. Pedatella et al. (2014b) applied a Data Anal-
ysis Research Testbed (DART) ensemble adjustment Kalman
filter (EAKF), which is a 3D-Var combined with a statisti-
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cal scheme, to the WACCM and made analysis data for the
largest recorded SSW event, which occurred in 2009. They
indicated that better analysis of the mesosphere requires as-
similation of the mesospheric observational data. A similar
discussion was made by Sassi et al. (2018) using the Speci-
fied Dynamics WACCM (SD-WACCM), in which a nudging
method was implemented. The reality of the analysis highly
depends on the model’s performance in the MLT region. One
of the critical components to determine the MLT region in
the model is gravity wave parameterizations (Pedatella et
al., 2014a; Smith et al., 2017). According to Pedatella et
al. (2018), the analysis of the SSW in 2009 by the WACCM
using DART showed that the expression of the downward
transport of chemical components by the data assimilation is
better than by the nudging method.

Nowadays whole-atmosphere models covering the sur-
face to the exosphere have been developed (Akmaev, 2011).
Data assimilation and data nudging studies using a whole-
atmosphere model were performed focusing on the SSW in
2009. These include studies using the whole-atmosphere data
assimilation system (WDAS), which includes the whole-
atmosphere model and a 3D-Var analysis system (Wang et
al., 2011), the Ground-to-topside model of Atmosphere and
Ionosphere for Aeronomy (GAIA) with a nudging method
(Jin et al., 2012), and SD-WACCM (Chandran et al., 2013;
Sassi et al., 2013). Outputs from a long-term run using
GAIA, which was nudged to the reanalysis data up to the
lower stratosphere, were used for a momentum budget anal-
ysis in the whole middle atmosphere, and the importance of
the in situ generation of gravity waves and Rossby waves in
the middle atmosphere was suggested (Sato et al., 2018; Ya-
sui et al., 2018).

Although most 4D data assimilation studies described
above used 4D-Var, the method using an ensemble Kalman
filter is also possible. The 4D-Var codes need to be developed
for each model. In contrast, the four-dimensional local en-
semble transform Kalman filter (4D-LETKF) developed by
Miyoshi and Yamane (2007), which is a statistical assimila-
tion method, is versatile and can thus be implemented in any
model relatively easily. This study develops an assimilation
system using the 4D-LETKF with a GCM with a top in the
lower thermosphere. As the first step of the ICSOM project,
we used a low-resolution version of the GCM and examined
the best parameters of the assimilation system for the mid-
dle atmosphere (i.e., the atmosphere up to the turbopause,
∼ 100 km), as no studies employ the 4D-LETKF to assimi-
late data for such a high atmospheric region. The observation
datasets used for the data assimilation are Aura MLS (v.4.2)
temperature, which covers the whole stratosphere and meso-
sphere, and NCEP PREPBUFR, which is a standard dataset
for the troposphere and lower stratosphere. The target time
period is from January to February 2017, which includes the
second ICSOM observation campaign. On 1 February 2017,
the criteria of the major SSW were satisfied. The structure
of this paper is as follows. Section 2 describes the forecast

model, observation data, and data assimilation system. Sec-
tion 3 presents the results of the parameter assessment. Sec-
tion 4 presents the results of analysis regarding fields in the
middle atmosphere in ICSOM-2 using data from the best pa-
rameter setting. Section 5 gives the summary and concluding
remarks.

2 Methodology

2.1 Forecast model

We used the Japanese Atmospheric GCM for Upper Atmo-
sphere Research (Watanabe and Miyahara, 2009) as a fore-
cast model, which we refer to as JAGUAR in this paper.
This model has a high model top of approximately 150 km
and is based on the T213L256 middle atmosphere GCM de-
veloped for the Kanto project (Watanabe et al., 2008) and
the Kyushu-GCM (e.g., Yoshikawa and Miyahara, 2005).
This model uses important physical parameterizations for the
MLT region such as radiative transfer processes, including
non-LTE and solar radiative heating due to molecular oxygen
and ozone. The effects of ion drag, chemical heating, dissipa-
tion heating, and molecular diffusion are also parameterized
in the model. In this study, a standard-resolution JAGUAR
with a triangularly truncated spectral resolution of T42 cor-
responding to a horizontal resolution of about 300 km (a lat-
itudinal interval of 2.8125◦) is used for the assimilation. The
model has 124 vertical layers with a uniform vertical spac-
ing of approximately 1 km in the middle atmosphere and
100–800 m in the troposphere (see Fig. A1 of Watanabe et
al., 2015, for the vertical layers). Unlike a high-resolution
JAGUAR, which resolves a certain portion of gravity waves
(Watanabe and Miyahara, 2009), gravity waves are sub-grid-
scale phenomena for a standard-resolution JAGUAR. For
this reason, both orographic (McFarlane, 1987) and non-
orographic (Hines, 1997) gravity wave parameterizations are
used. The wave source distribution of non-orographic param-
eterization is given based on the results of a gravity-wave-
resolving high-resolution GCM (Watanabe, 2008), and the
intensity of the source is treated as one of the tuning param-
eters. Horizontal diffusion is set as an e-folding time of 0.9 d
for the minimum resolved wave length in the troposphere and
stratosphere, and it exponentially increases with increasing
height over the MLT region. In this study, the vertical profile
of horizontal diffusion above the stratopause is also treated as
one of the tuning parameters. The monthly ozone mixing ra-
tio from United Kingdom Universities Global Atmospheric
Modeling Programme (UGAMP; Li and Shine, 1999) and
monthly sea surface temperature and sea ice concentration
from the Met Office Hadley Centre sea ice and sea surface
temperature dataset (HadISST; Rayner et al., 2003) are lin-
early interpolated in time and used as boundary conditions.
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2.2 Measurements used in the assimilation

2.2.1 PREPBUFR

Observation data used for the assimilation include the PREP-
BUFR global observation dataset compiled by the National
Centers for Environmental Prediction and archived at the
University Corporation for Atmospheric Research (https://
rda.ucar.edu/datasets/ds337.0/, last access: 26 June 2020),
which includes surface pressure as a function of longitude
and latitude, as well as temperature, wind, and humidity as
functions of longitude, latitude, and pressure (or height) from
radiosondes, aircrafts, wind profilers, and satellites. Ground-
based observations are mainly distributed in the height range
from the ground to the lower stratosphere, and approximately
70 % of the data are taken at stations located in the Northern
Hemisphere. Since May 1997, daily data have been uploaded
with a delay of several days. The number of data points
per one assimilation step (every 6 h) is 1000–20 000 for
balloon-borne radiosonde measurements, ∼ 1000 for aircraft
measurements, ∼ 40 000 for satellite wind measurements,
∼ 10 000 for meteorological radar measurements, ∼ 50 000
for measurements at the ground, and ∼ 500 000 for sea scat-
terometer measurements.

The observation errors provided in the PREPBUFR dataset
as a function of the type of measurements and altitude1 were
used in the data assimilation. For example, the observation
errors in radiosonde temperature data are 1.2 K at 1000 hPa,
0.8 K at 100 hPa, and 1.5 K at 10 hPa. The horizontal res-
olution of the GCM used in this study is not sufficient to
represent the fine structure captured by these observations.
Representativeness errors, which come from the difference in
resolutions between individual measurements and the model,
could degrade the data assimilation performance. If represen-
tation errors are random and large numbers of observations
are assimilated, their impact could be negligible. Because
substantial numbers of observations are available within a
model grid cell in a data assimilation cycle in our analysis,
the observation data were thinned before assimilation to re-
duce the computational cost of the data assimilation analysis.
Original data from aircraft and satellite winds are trimmed by
taking one of every four consecutive data points. Radiosonde
data at the standard pressure levels of 1000, 925, 850, 700,
500, 400, 300, 250, 200, 150, 100, 70, 50, and 10 hPa were
used for the data assimilation. These settings are the same as
the ALERA2 (Enomoto et al., 2013)

2.2.2 Aura MLS

The MLS instrument onboard the Aura satellite was launched
in 2004. The satellite takes the polar orbit 14 times a day.
Vertical profiles of several atmospheric parameters are re-
trieved from a limb sounding of the thermal emissions of

1http://www.emc.ncep.noaa.gov/mmb/data_processing/
obserror.htm (last access: 26 June 2020)

the atmosphere. We used temperature data (v.4.2) retrieved
from the radiation of oxygen (O2; 118 GHz) and the oxy-
gen isotope (O18O; 239 GHz) of Aura MLS (Livesey et al.,
2018) for the assimilation. The data are distributed at 55 ver-
tical layers from 261 to 0.001 hPa at ∼ 2 km intervals. The
estimated retrieval errors are ∼ 0.5 K at 261–10 hPa, ∼ 1 K
at 10–0.3 hPa, ∼ 2 K for 0.3–0.04 hPa, and ∼ 3 K for 0.04–
0.001 hPa. For the observation operator, we included weight-
ing functions (called “averaging kernels”) to consider the
vertical sensitivity of the measurements. The weighting func-
tions at the Equator and at 70◦ N are available on the Aura
MLS mission website (https://mls.jpl.nasa.gov/data/ak/, last
access: 26 June 2020). Assuming that the measurement verti-
cal sensitivity is invariant for a wide area, the averaging ker-
nel for the Equator and that for 70◦ N are respectively ap-
plied to the latitudinal range of 40◦ S–40◦ N and the remain-
ing high-latitude regions (i.e., 40–90◦ N and 40–90◦ S).

The horizontal intervals of the Aura MLS observation data
along the track, which is almost parallel to the meridional di-
rection, are approximately 2◦, so two or three profiles are
included in the area represented by a grid point of the fore-
cast model. Note that the horizontal intervals of the Aura
MLS observation data between subsequent orbits are approx-
imately 30◦, which is much coarser than the model resolu-
tion. To reduce the computational cost of the data assimila-
tion, the observations are horizontally averaged for the along-
track direction to reduce the resolution comparable to the
forecast model resolution before the assimilation, without
considering any correlation between individual observation
errors. Errors in the retrievals in some parameters can be cor-
related in space, but their quantitative estimates are difficult.
The measurement error is used as the diagonal component
of the observation error covariance matrix. Moreover, this
average is effective to remove gravity waves that cannot be
resolved by the current model. We have confirmed the im-
portance of the averaging by comparing the results with and
without the averaging (not shown).

It has been suggested that the Aura MLS data include ob-
servation bias (e.g., Randel et al., 2016). In this study, a bias
correction is performed, and the effect of the bias correction
on the analysis data is examined. In addition to the retrieval
quality flag information, a gross error check was applied in
the quality control to exclude observations that are far from
the first guess. The best settings for the gross error check are
considered to be different between the mesosphere and lower
atmosphere because of the different growth rates of model er-
ror in a specific period of time (e.g., a data assimilation win-
dow). Thus, the appropriate degrees of the gross error check
are also examined.

2.3 Data assimilation system

The 4D-LETKF (Miyoshi and Yamane, 2007) is used as a
data assimilation method. This method is an extension of
the 3D-LETKF (Hunt et al., 2007), which includes the di-
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mension of time (4D ensemble Kalman filter; Hunt et al.,
2004). The base of the program used in this study has already
been applied to many types of forecast models, such as the
Global Spectral Model (GSM; Miyoshi and Sato, 2007), the
Atmospheric GCM for Earth Simulator (AFES; Miyoshi et
al., 2007), and the Non-hydrostatic Icosahedral Atmospheric
Model (NICAM; Terasaki et al., 2015).

This section introduces the formulas used in the 4D-
LETKF. The analyses, forecasts, and observations are de-
noted by xa, xf, and yo, respectively. The optimal value of
xa is derived from xf and yo by the following equation:

xa
= xf
+K

(
yo
−Hxf

)
= xf
+Kd, (1)

where K is a weighting function, d(≡ yo
−Hxf) is the in-

novation, and H is an observation operator that converts
the model space variables into observational space variables.
For assimilating MLS retrievals, the observation operator in-
cludes the averaging kernel and the spatial operator. The
second term on the right-hand side represents data assim-
ilation corrections (i.e., increments). Using the differences
from the true value (xt), δxa

= xa
− xt, δxf

= xf
− xt, and

δyo
= yo
−Hxt, Eq. (1) can be rewritten as follows:

δxa
= δxf

+K
(
δyo
−Hδxf

)
= (I−KH)δxf

+Kδyo, (2)

where I is an identity matrix. The analysis error covariance
is defined as

Pa
≡ 〈δxa(δxa)T〉 = (I−KH)Pf(I−KH)T+KRKT, (3)

where Pf
≡ 〈δxf(δxf)T〉 is the forecast error covariance and

R≡ 〈δyo(δyo)T〉 is the observation error covariance. The
correlation between the forecast error and the observation er-
ror is supposed to be zero (〈δxf(δyo)T〉 = 0). The optimal xa

should minimize the summation of the analysis error covari-
ance (tr(Pa)). This means that

∂

∂K
tr
(
Pa)
= 0. (4)

Solving Eq. (4) with respect to the weight matrix K yields

K= PfHT
(

HPfHT
+R

)−1
, (5)

and the analysis xa is derived by Eq. (1). The weight matrix
K is called the “Kalman gain”. Using K, the analysis error
covariance Pa is rewritten as

Pa
= (I−KH)Pf, (6)

which gives the relationship K= PaHTR−1.
The size of Pf and Pa is the square of the degree of freedom

in the model. Thus, for systems with huge degrees of free-
dom, such as GCMs, the calculation of Pf and Pa requires a
large computational cost. This problem is avoided by replac-
ing the forecast, analysis, and each error with the mean and

variance for m members of an ensemble. This is called the
ensemble Kalman filter (EnKF; Evensen, 2003). The ensem-
ble mean x and background error covariance matrix P are
written as follows:

x =
1
m

m∑
i=1

xi, (7)

P= 〈δx(δx)T〉 ≈
1

m− 1

m∑
i=1
(xi − x)(xi − x)T

=
1

m− 1

m∑
i=1

δxi(δxi)
T. (8)

However, with a limited number of ensembles, the forecast
error tends to be underestimated in a system with a large de-
gree of freedom. A variety of methods have been proposed
to overcome this problem (e.g., Whitaker et al., 2008). In our
study, the forecast ensemble perturbation (δxf) is multiplied
by the factor F , which is a little larger than 1 (F = 1+1; 1
is called an “inflation factor”):

δxf
i← (1+1)δxf

i (9)

is employed, and the 1 value is optimized.
The Kalman gain is simply written by using E, which is

the root of P. Using
√
m− 1E≡ [δx1|. . .|δxm] , (10)

K= PfHT
(

HPfHT
+R

)−1

= Ef
(

HEf
)T
[

HEf
(

HEf
)T
+ (m− 1)R

]−1

(11)

is derived. Further manipulation yields another expression of
K:

K= Ef
[
(m− 1)I+

(
HEf

)T
R−1HEf

]−1(
HEf

)T
R−1. (12)

To reduce the calculation cost, the inverse matrix of Eq. (11)
or Eq. (12) with a smaller size is chosen. Usually, as the num-
ber of the ensemble is much smaller than the number of ob-
servations, Eq. (14) is used.

The LETKF treats the analysis error covariance matrix,

P̃a
≡

[
(m− 1)I+

(
HEf

)T
R−1HEf

]−1

, (13)

in the ensemble space. The relationship between this matrix
in the ensemble space and the analysis error covariance ma-
trix in the model space is expressed as Pa

= EfP̃a(Ef)T, and
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Ea
= Ef(P̃a)

1
2 is the ensemble update. In this way, the analy-

sis xa
i is obtained as

xa
i = xa

+ δxa
i = xf

+ δxa
i +EfP̃a

(
HEf

)T
R−1d. (14)

Using the shape of the N×mmatrix, where N is the number
of the variables, Eq. (14) is written as

[xa
1|. . .|x

a
m] = [x

f
|. . .|xf

] +EfW, (15)

where

W= (P̃a)
1
2 +

[
P̃a
(

HEf
)T

R−1d|· · ·|P̃a
(

HEf
)T

R−1d

]
. (16)

To avoid unrealistic correction caused by remote observa-
tions with the use of a limited ensemble size, a weighting
function based on the distance from the analysis point is mul-
tiplied by the observation error. This method is called “local-
ization”. The calculation is independently performed at each
grid so it can be performed in parallel with high computa-
tional efficiency. The length of localization is also a setting
parameter of the data assimilation system, and the sensitivity
of the assimilation performance to this parameter is exam-
ined in Sect. 3.3.2.

When an analysis ensemble is derived, each ensemble
takes its own time evolution calculated by the forecast model,
and the forecast at the next step is derived by

xf
i,t+1 =M

(
xa
i,t

)
. (17)

In this way, the forecast and analysis steps are repeated
through the data assimilation cycles.

Here we extend to a 4D analysis. By the modification of
the observation operator, the observation at any time (j2) can
be assimilated as the information on time development from
the target time (j1). One such assimilation is called the 4D-
EnKF (Hunt et al., 2004).

The forecast at the time step j1 is written as a weighted
mean of forecast ensembles:

xf
j1 = [x

f
1,j1|· · ·|x

f
m,j1]w≡ Xf

j1w. (18)

The weighting matrix w is unknown but is calculated by the
pseudo-inverse matrix:

w=
(
(Xf

j1)
TXf

j1

)−1(
Xf
j1

)T
xf
j1. (19)

On the other hand, the (unknown) forecast at the time step j2
is also written as a weighted mean of forecast ensembles:

xf
j2 = Xf

j2w. (20)

Substituting Eq. (16) into this equation, the following for-
mula is obtained:

xf
j2 = Xf

j2w= Xf
j2

((
Xf
j1

)T
Xf
j1

)−1(
Xf
j1

)T
xf
j1. (21)

Finally, the modified observation operator to assimilate the
observation at time step j2 to the forecast at time step j1 is
written as follows:

H′ =HXf
j2

((
Xf
j1

)T
Xf
j1

)−1(
Xf
j1

)T
. (22)

Appendix A explains that directly assimilating the observa-
tion at a certain time step by the modified observation oper-
ator is the same as assimilating at the time of observation
and then calculating the time evolution after the assimila-
tion. Thus, this method is regarded as a kind of 4D assim-
ilation including the information on the time development.
Another advantage of this method is that future observations
can be assimilated, as it is similar to the Kalman smoother.
In this study, this extended LETKF with 4D assimilation is
used. The time interval (called the “assimilation window”)
between the observations and the analysis is one of the set-
ting parameters.

The EnKF initial condition is obtained using the time-
lagged method as follows. First, a 6-month free run is per-
formed from a climatological restart file for 1 June. The re-
sults from the free run over about 10 d with a center of 1 Jan-
uary are used as the initial condition for each ensemble mem-
ber on 1 January. For the runs with 30 ensemble members, 30
initial conditions at a time interval of 6 h are used. For runs
with 90 and 200 ensemble members, the time intervals for
the initial conditions are taken as 4 and 2 h, respectively. The
analysis data for the first 10 d of the assimilation are regarded
as a spin-up and are hence not used to examine the assimila-
tion performance.

2.4 The method of parameter validation in the data
assimilation system

As already mentioned, the parameter set of data assimilation
usually made for the troposphere and stratosphere is not nec-
essarily appropriate for the analysis when the MLT region
is included. This is because the dominant physical processes
and scales of motions could be different (e.g., Shepherd et
al., 2000; Watanabe et al., 2008). This section describes the
parameters that should be optimized for the data assimila-
tion system for the whole neutral atmosphere from the tropo-
sphere up to the lower thermosphere. The relevance criteria
of the data assimilation for each parameter are also described.

The parameters included in the data assimilation system
are divided into two categories. The first category includes
two parameters describing the GCM: the horizontal diffusion
coefficient and the factor of gravity wave source intensity in
the gravity wave parameterization. The second category in-
cludes five parameters related to the data assimilation: the de-
gree of gross error check, the localization length, the inflation
factor, the length of assimilation window, and the number of
ensembles. The sensitivity of the performance of assimila-
tion is tested by changing one parameter among the standard
set of the parameters as shown in Table 1. Finally, the perfor-
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Table 1. Parameter settings for sensitivity tests. Boldface shows the difference from the control (the first line). The control setting is equivalent
to DB, P0.7, G20, L600, I15, W6, and M30.

Diffusion GWP source Gross error Localization Inflation Window Number of
coeff. intensity check for MLS length (km) coeff. (%) length (h) members

Ctrl B 0.7 20 600 15 6 30
DC C 0.7 20 600 15 6 30
P0.5 B 0.5 20 600 15 6 30
P1 B 1.0 20 600 15 6 30
G5 B 0.7 5 600 15 6 30
L300 B 0.7 20 300 15 6 30
L1000 B 0.7 20 1000 15 6 30
I7 B 0.7 20 600 7 6 30
I25 B 0.7 20 600 25 6 30
W3 B 0.7 20 600 15 3 30
W12 B 0.7 20 600 15 12 30
M90 B 0.7 20 600 15 6 90
M200 B 0.7 20 600 15 6 200

mance of the assimilation with the best set of parameters is
confirmed.

The criteria used for the evaluation of the data assimila-
tion for each parameter setting are observation minus fore-
cast (OmF) and observation minus analysis (OmA) in the
observational space. One more criterion for examining the
quality of data assimilation is χ2, which was introduced by
Ménard and Chang (2000):

χ2
= tr

(
YYT) ,

Y=
1
√
m

(
y−H

(
xf
))(

HEf
(

HEf
)T
+R

)− 1
2
.

The parameter χ2 describes the consistency between the in-
novation with the covariance matrices for the model forecast
and the observations. The χ2 values should be close to 1 if
the background and observation errors are properly specified
in the assimilation system. The χ2 values higher (lower) than
1 mean that the background or observation error has been
underestimated (overestimated) against the innovation in the
observational space.

3 Results

In this section, two types of parameter sensitivity experi-
ments are performed. One is a parameter tuning of the fore-
cast model to reduce the systematic biases of the model in
the MLT region. The other is an optimization of parameters
related to the data assimilation module. Table 1 summarizes
the experiments that we performed, and the best parameter
set among them is shown as “Ctrl”. The grounds for regard-
ing this parameter set as the best are described in detail in the
following subsections. It is also worth noting that we tested
many parameter sets other than those shown in Table 1 that
did not work due to computational instability.

3.1 Forecast model improvement

To reduce the model bias in the mesosphere, the vertical
profile of the horizontal diffusion coefficient and the grav-
ity wave source intensity in the non-orographic gravity wave
parameterization are examined by comparing observations in
the summertime Antarctic mesosphere. Here, the zonal wind
observed by an MST radar called the PANSY radar in the
Antarctic (Sato et al., 2014) is used as a reference of the
mesospheric wind. Note that the temporal and longitudinal
variation of the dynamical field is relatively small in January
and February in the summertime Antarctic mesosphere. The
model performance may depend on the parameters describ-
ing the MLT processes, although we used default values of
the model for this study. For example, climatological con-
centrations of chemical species are used for the calculation
of the radiative heating rate, although the O3 and NO concen-
trations are affected by the solar activity in a short timescale.
The effects of ion drag are neglected because it is important
mainly above the height of ∼ 200 km. The chemical heating
caused by the recombination of atomic oxygen is incorpo-
rated using a global mean vertical profile of its density, and
we neglected spatial and temporal changes.

3.1.1 Horizontal diffusion coefficient

The downscale energy cascade from resolved motions to un-
resolved turbulent motions is represented by numerical dif-
fusion in most atmospheric models. A fourth-order horizon-
tal diffusion scheme is used in the present version of the
JAGUAR to prevent the accumulation of energy at the min-
imum wavelength. However, it is difficult to directly con-
strain the horizontal diffusion coefficient with observational
data. In the present study, the horizontal diffusion coefficient
is set to be constant up to the lower mesosphere and then
exponentially increase above to reproduce realistic tempera-
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Figure 1. The vertical profiles of the horizontal diffusion coeffi-
cients given in the forecast model. Profile B was used for the data
assimilation.

ture and wind structures. As the horizontal diffusion in the
model top is sufficiently strong to damp small-scale distur-
bances including (resolved) gravity waves, a sponge layer,
which is usually included at the uppermost layers of GCMs,
is not used in the model.

To optimize the tuning parameters of the forecast model, a
series of free-run experiments with three different profiles of
horizontal diffusion coefficients are performed. The impact
of the difference in the horizontal diffusion coefficient is ex-
amined, focusing on the zonal mean zonal wind field. All ex-
periments are started with the same initial conditions, which
are obtained from a free-run simulation with climatological
external conditions (hereafter referred to as “the climatolog-
ical simulation”).

Figure 1 shows the three vertical profiles of the hori-
zontal diffusion coefficient. The horizontal axis denotes the
e-folding time at the highest resolved wavenumber (total
wavenumber n= 42). Note that a smaller value on the hor-
izontal axis means stronger horizontal diffusion. The stan-
dard diffusion profile of the JAGUAR is denoted by A: the
horizontal diffusion coefficient is constant below ∼ 65 km
(0.1 hPa) and rapidly increases above. For this setting, we
found synoptic-scale disturbances with large amplitudes that
are not observed in the free runs around 0.1 hPa. To reduce
the amplitudes of the waves, we performed experiments us-
ing two other vertical profiles of the horizontal diffusion co-
efficient denoted by B and C. The diffusion in the B and C
profiles is stronger than A below ∼ 60 km, but the increase
in the diffusion for B is small compared to A. The diffusion
for B is smaller than A above ∼ 105 km. We also performed
model runs with other diffusion profiles. We show results of
the first (B) and second best (C) profiles as well as the default
one.

A free run was performed using the model with each dif-
fusion coefficient profile. The model fields at 00:00 UTC on

5 January of the climatological simulation were used for the
same initial condition for the three free-run experiments. The
results are examined for the zonal mean model fields aver-
aged over 40 d from 00:00 UTC on 12 January to 23:59 UTC
on 20 February at 68.4◦ S as shown in Fig. 2. Zonal winds
observed by the PANSY radar (69.0◦ S, 39.6◦ E) and zonal
mean zonal winds calculated from the geopotential height of
the MLS observation at 67.5–72.5◦ S assuming the gradient
wind balance are also plotted for comparison. We confirmed
that similar results are obtained if we take a slightly different
latitude and/or a slightly wider latitude range for the model
and MLS data. The interannual variation, such as the SSW in
the northern-latitude winter, and the intra-annual variation,
such as the QBO in the equatorial region, are large. In con-
trast, it is expected that the interannual and longitudinal vari-
ations in the Southern Hemisphere in summer are relatively
small because the Carney and Drazin theorem indicates that
planetary waves from the troposphere cannot propagate in
the westward background wind in the middle atmosphere.
This is the reason we compared the observation and model
only for the Southern Hemisphere.

It is also worth noting that the vertical axis in Fig. 2 de-
notes the geometric altitude. The log–pressure height vertical
coordinate commonly used in GCM studies is approximately
5 km higher than the geometric height in the upper meso-
sphere at high latitudes. This difference is taken into account
using the model’s geopotential height as the vertical coor-
dinate for comparison with the radar wind data, which are
obtained as a function of geometric height.

The zonal wind for the experiment with the A profile
is more eastward above 87 km and more westward below
85 km than observations. As a result, the vertical shear be-
low 87.5 km is unrealistically strong. In contrast, the results
of the experiments with the B and C diffusion profiles show
similar profiles as the observations. The difference between
the B and C experiments is observed in the vertical shear of
zonal wind in the displayed upper mesosphere, which is large
for B and small for C. The vertical shear is more realistic for
B, although the wind magnitude itself is more realistic for
C. We take B because this experiment has a zero-wind layer
around 87 km, which is absent in the C experiment, as the
zero-wind layer is an important feature observed in the upper
mesosphere. We expect the model with the B diffusion co-
efficient profile to produce realistic vertical wind shear and
hence potentially produce realistic wind fields including the
zero-wind layer using the data assimilation.

Figure 2d shows the results of the data assimilation exper-
iments with the B and C diffusion profiles for the time period
of 12 January to 20 February 2017. The best set of parame-
ters except for the diffusion profiles in the data assimilation,
which will be shown later in detail, was used for these exper-
iments. The results from the B experiment are more realistic
in the vertical shear and the location of the zero-wind layer
than those of the C experiment, although the difference is
not large. Further comparison is performed for the latitude–
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Figure 2. Vertical profiles of the zonal mean zonal wind averaged for the time period of 12 January to 20 February from free runs with
different horizontal diffusions (A: green curves, B: red curves, C: blue curves) for (a) 2016, (b) 2017, and (c) 2018. PANSY radar and MLS
observations are also shown by black solid curves and dashed curves, respectively. Gray shading denotes the range of standard deviation for
the PANSY radar observation during the time period. (d) Results of the data assimilation with the Ctrl parameter set for 2017.

height cross section of zonal mean zonal wind and Eliassen
and Palm (E–P) flux (Fig. 3) from the data assimilation with
the B (left) and C (right) diffusion profiles. The meridional
structures for the zonal mean zonal wind and the E–P flux in
the stratosphere are similar below∼ 70 km. The difference is
observed above. The zonal mean zonal wind and E–P flux are
strongly damped above 70 km for C because of strong diffu-
sion given there. This is probably unrealistic. The vertically
fine structure is observed for the E–P flux in midlatitude and
high-latitude regions from 90 to 100 km, which is probably
not real but due instead to numerical instability. From these
results, we concluded that the best profile of the horizontal
diffusion coefficient is B.

3.1.2 Gravity wave source intensity

The source intensity in the model’s non-orographic gravity
wave parameterization is tuned as well. The amplitude of
upward-propagating gravity waves increases with increasing
altitude due to an exponential decrease in the atmospheric
density. In the upper mesosphere, breaking gravity waves
cause strong forcing to the background winds, which main-
tains the weak wind layer near the mesopause (Fritts and
Alexander, 2003). As the gravity waves, which affect the
mesosphere most in the summer, are non-orographically gen-
erated, we tuned the source intensity of the non-orographic
gravity wave parameterization. It is expected that high source
intensity lowers the wave breaking level and hence lowers the
weak wind layer around the mesopause.

Figure 4a compares vertical profiles of the zonal mean
zonal wind at 68.37◦ S averaged for the time period of 12 Jan-

uary to 20 February from free runs with different source in-
tensities of the non-orographic gravity wave parameteriza-
tion. The original source intensity is denoted by P1.0, and
the modified intensities are 0.5 and 0.7 times the original
source intensity, denoted by P0.5 and P0.7, respectively. The
PANSY radar and MLS observations are plotted for compari-
son similar to Fig. 2. Results of the climatological simulation
are used as the initial condition for the free run, which is the
same as for the free-run experiments with different horizontal
diffusion coefficients.

As we expected, the zonal mean zonal wind is weaker and
the height of the zero-wind layer is lower for stronger source
intensity. It seems that the zonal wind is weaker and the zero-
wind layer is lower for P1.0 than those in the observations.

Figure 4d shows the results of the data assimilation ex-
periments with P0.5, P0.7, and P1.0 for the time period of
12 January to 20 February 2017. For these experiments, the
best set of parameters except for the source intensity was
used in the data assimilation, which will be shown later in
detail. Although all the profiles are consistent with observa-
tions within the standard deviation range, the profile for P0.7
is the most similar to observations in terms of the magnitude
and the height of the zero-wind layer. From these results, we
determined that the best source intensity is 0.7 times the orig-
inal one (i.e., P0.7).

3.2 Aura MLS bias correction

According to the Aura MLS data quality document (Livesey
et al., 2018), the MLS temperature data have a bias compared
to the SABER ones as a function of the pressure, which is−5
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Figure 3. The meridional cross sections of the zonal mean zonal
wind (a, b), the meridional component of the E–P flux (c, d), and the
vertical component of the E–P flux (e, f). The images in panels (a),
(c), and (e) (b, d, and f) were obtained using the results of the data
assimilation for DB (Ctrl) (DC) and averaged for the time period
of 12 January to 20 February 2017. Contour intervals are 10 m s−1

for (a) and (b), 50 m2 s−2 for (c) and (d), and 0.2 m2 s−2 for (e)
and (f).

to +1 K for pressure levels of 1–0.1 hPa, −3 to 0 K for 0.1–
0.01 hPa, and −10 K for 0.001 hPa. Thus, before performing
the data assimilation, the MLS observation bias was removed
as much as possible. Previous studies treated the bias correc-
tion in various ways: Hoppel et al. (2008) used bias-corrected
SABER (v.1.06) data with the MLS data (v.2.2). Eckermann
et al. (2009) used SABER (v.1.07) and MLS (v.2.2) temper-
atures for their assimilation in which the SABER (v.1.07)
temperatures at altitudes below 2.7 hPa were bias-corrected
using the mean difference from MLS (v.2.2), and the MLS
temperatures above 2 hPa were bias-corrected using the mean
difference relative to other satellite, suborbital, and analysis
temperatures. Note that these studies used different versions
of the SABER data (v.1.0X) from that we used (v.2.0). Pe-
datella et al. (2014b) did not perform the bias correction. Pe-
datella et al. (2016) adjusted the SABER temperatures to ac-
count for the bias between SABER (v.2.0) and MLS (v.2.2)
temperatures. Eckermann et al. (2018) performed a bias cor-
rection for the MLS temperatures (v.4.0) above 5 hPa using
the mean difference between MLS and SABER (v.2.0) tem-
peratures, as well as the SABER temperatures for the pres-
sure levels from 68 to 5 hPa using the mean difference be-
tween MLS and SABER. McCormack et al. (2017) and Pe-
datella et al. (2018) do not state explicitly whether or not a
bias correction is applied, so it is not clear which bias correc-
tion was performed in their studies. We confirmed that the
bias estimated in this study is similar to the globally aver-
aged mean differences between MLS temperature and other
correlative datasets shown in the data quality document (Li-
versey et al., 2018) at each height.

In this study, the MLS observation bias is first estimated as
a function of the calendar day at each latitude and each pres-
sure in a range of 177.838 to 0.001 hPa. As the reference for
the correction, we used the TIMED SABER temperature data
(v.2.0), which are considered to have little observation bias,
at least in the altitude range from 85 to 100 km, as confirmed
by Xu et al. (2006), who used data from the sodium lidar
at Colorado State University, providing the absolute value of
the temperature. Xu et al. (2006) attributed the disagreement
below 85 km to high photon noise contaminating the lidar
observations. Thus, we used the SABER temperature data
for the Aura MLS bias estimation in the height range of 10–
100 km.

The observation view of SABER is altered every∼ 60 d by
switching between northward (50◦ S–82◦ N) and southward
(82◦ S–50◦ N) view modes. Thus, the latitudinal coverage of
the SABER data is narrow compared to the MLS data. How-
ever, both datasets overlap for a long time period sufficient
for statistical comparison between them.

The bias is estimated using data from 2005 to 2015. The
original vertical resolution of MLS (∼ 1–5 km) is coarser
than that of SABER (∼ 0.5 km). First, the vertical mean of
the SABER data corresponding to the vertical resolution at
each of the 55 height levels of MLS data is obtained. Next,
by linear interpolation, data at the grid of 25◦ (longitude) ×
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Figure 4. The vertical profiles of the zonal mean zonal wind averaged for the time period of 12 January to 20 February from free runs with
gravity wave parameterizations of different source intensities (P0.5: green curves, P0.7: red curves, P1.0: blue curves) for (a) 2016, (b) 2017,
and (c) 2018. PANSY radar and MLS observations are also shown by black solid curves and dashed curves, respectively. Gray shading
denotes the range of standard deviation for the PANSY radar observation during the time period. (d) Results of the data assimilation with the
Ctrl parameter set for 2017.

Figure 5. The day–latitude section of MLS bias at (a) 10 hPa, (b) 1 hPa, (c) 0.1 hPa, and (d) 0.01 hPa. The contour intervals are 0.5 K.
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Figure 6. The vertical profile of the global average of the Aura
MLS temperature bias (the solid black curve) with standard devi-
ation (gray shading). Error bars denote reported bias (Livesey et al.,
2018).

5◦ (latitude) at a time interval of 3 h are made for MLS and
SABER data. The MLS and SABER data made at a 3 h in-
terval have a lot of missing values because observations are
sparse. These missing values are not used for the bias cal-
culation. This means that the bias was estimated using MLS
and SABER data at nearly the same local time. Whereas the
longitudinal variation of the bias is small (1 K at the most),
there is large annual variation in addition to the dependence
on latitude and height. Thus, the MLS bias Tbias is obtained
as a function of the latitude (y), height (z), and calendar day
(t):

Tbias (y,z, t)= Tmean (y,z)+A(y,z)cos
(

2π
t

365

)
+B (y,z)sin

(
2π

t

365

)
,

where Tmean represents the annual mean, and the coefficients
A and B are estimated by the least-squares method.

Figure 5 shows the estimated MLS bias as a function of
calendar day and latitude at 10, 1, 0.1, and 0.01 hPa. The
MLS bias shows a strong dependence on the altitude and lati-
tude and has an annual cycle with amplitudes of 2 to 4 K. Fig-
ure 6 shows the vertical profiles of global mean Aura MLS
bias along with the bias reported in the data quality document
(Liversey et al., 2018). For example, the global mean MLS

biases estimated by the present study are −1.6± 0.7 K at
56.2 hPa, 2.0±1.4 K at 1 hPa, and−3.8±1.1 K at 0.316 hPa.
These are comparable to the biases described in the data qual-
ity document, which are −2 to 0 K at 56.2 hPa, 0 to 5 K at
1 hPa, and −7 to 4 K at 0.316. This consistency indicates the
validity of using the SABER data as a reference to estimate
the MLS bias.

To evaluate the effect of the bias correction, data assimi-
lation was performed using the MLS data with and without
bias correction. Figure 7 compares the latitude and pressure
section of the zonal mean temperature and zonal wind be-
tween the two analyses. The difference in zonal mean tem-
perature between the two (Fig. 7c) resembles the corrected
bias (Fig. 7d). In contrast, the difference in the zonal mean
zonal wind is not very large (Fig. 7g). This is because the lat-
itudinal difference in the bias, which largely affects the zonal
mean zonal wind through the thermal wind balance, is not
large compared to the vertical difference. In our study, the
bias correction of the MLS data is made before the data as-
similation, as in standard assimilation parameter setting.

3.3 Data assimilation setting optimization for 30
ensemble members

A series of sensitivity tests were performed to obtain the best
values of each parameter in the data assimilation system with
30 ensemble members. This number of members is practical
for the data assimilation up to the lower thermosphere with
current supercomputer technology. The examined assimila-
tion parameters are the gross error coefficient, localization
length, inflation coefficient, and assimilation window length.
The best parameter set obtained by the sensitivity tests is de-
noted by Ctrl in Table 1. There are six assimilation parame-
ters to be examined. We performed an assimilation run with
almost all combinations of the parameters. Several parame-
ter settings did not work due to computational instability. We
found a parameter set that provides the best assimilation re-
sults in our system. This best parameter set is placed as the
control setting (Ctrl), and the parameter dependence of the
assimilation performance is examined by using the results in
which one of the parameters is changed from the Ctrl set.
Section 3.3.5 gives a short summary of the data assimilation
setting optimization for 30 ensemble members.

3.3.1 Gross error coefficient

The gross error check is a method of quality control (QC) for
the observation data used for the assimilation. In this method,
an observation is assimilated only if its OmF is smaller than
expected, assuming that the forecast model provides a rea-
sonable representation of the true atmosphere. In many previ-
ous studies, observations are not assimilated when the OmF
exceeds 3–5 times the observational error for the troposphere
and stratosphere. However, this criterion may not be suit-
able for the mesosphere and lower thermosphere, in which
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Figure 7. The meridional cross sections of zonal mean temperature (a, b) and zonal wind (e, f). The results in panels (a) and (e) (b and f) are
from assimilating Aura MLS data without (with) bias correction, which are averaged for the time period of 12 January to 20 February 2017.
(c) The difference between (a) and (b); (g) difference between (e) and (f). (d) The corrected bias for the same time period. Contour intervals
are 10 K for (a) and (b), 2 K for (c) and (d), 10 m s−1 for (e) and (f), and 5 m s−1 for (g).

the systematic bias and predictability of the model are likely
higher and lower, respectively (e.g., Pedatella et al., 2014a).
Thus, the maximal allowable difference between the MLS
observations and model forecasts normalized by the obser-
vational error, which is called the “gross error coefficient”,
is set at 20 (hereafter referred to as the G20) for the MLS
measurements as a control experiment of the present study,
whereas it is set at 5 for the PREPBUFR dataset as in pre-
vious studies such as Miyoshi et al. (2007). Consequently,
this setting uses most of the MLS observations to correct the
model forecast. To investigate the effect of the enlarged gross
error check coefficient, the result for the G20 is also com-
pared to the experiment with the gross error coefficient of 5
for the MLS measurement (G5). Note that the other parame-
ters in addition to the gross error coefficient are taken to be
the same for the G20 (Ctrl) and G5 (see Table 1).

Figure 8 compares the histograms of the OmF (a gray
curve) and OmA (a black curve) for the G20 (left) and G5

(right) experiments at 0.1, 1, and 10 hPa. For both settings,
the mean OmF values are slightly negative, whereas both the
mean bias and standard deviations of the OmA are smaller
than those of the OmF at most pressure levels. As expected,
the OmF is more widely distributed for the G20 than for the
G5. This reflects the inclusion of more observations for the
assimilation with the G20. Although the OmF distribution for
the G20 is close to the normal distribution, the distribution of
for the G5 seems distorted, probably by an overly strict se-
lection of observations close to the model forecasts, which
can be seen from the number of assimilated observations, as
indicated by the area of the histogram in Fig. 8, which is only
a half or a third the number for the G20.

Figure 9 shows vertical profiles of the mean OmF, OmA,
and χ2 (see Sect. 2.4). Absolute values of the mean OmA
are smaller than those of the mean OmF at almost all levels
for both the G20 and G5 experiments. Note that the bias of
the OmA is smaller than the standard deviation, as shown in
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Figure 8. Histogram of the OmF (thin curves) and OmA (thick curves) at 0.1 hPa (a, b), 1 hPa (c, d), and 10 hPa (e, f). Panels (a), (c), and
(e) are the results from G20 (b, d, and f for G5) for the time period of 12 January to 20 February 2017.

Fig. 8 as an example. The absolute values of the mean OmF
for the G20 are 1.5–2 times larger than those for the G5, im-
plying that more observations that deviate largely from the
forecasts are assimilated for the G20. It is worth noting that
the absolute value of the mean OmF tends to increase with
height, indicating that the forecast is less reliable in the up-
per stratosphere and mesosphere. The χ2 values with the G20
are larger than those with the G5 at all levels, reflecting a
larger OmF for the G20. Generally speaking, such large χ2

values with the G20 suggest that optimizing observation er-
ror and forecast spread is required. However, considering the
current immature stage of the forecast model performance in
the upper mesosphere and above, we permitted the large χ2

values with the G20, as it allows us to use a large number of
observations, which are sparse in the upper stratosphere and
mesosphere. In fact, the correlation between our analysis and
observation is greatly improved for the G20 compared with
the G5 (shown later in Fig. 15). It will be shown later that the

χ2 values are improved by taking a larger number of ensem-
ble members.

3.3.2 Localization length

In the LETKF, the observation error is weighted with the in-
verse shape of the Gaussian function (observational localiza-
tion) of the distance (d) between the location of the observa-
tion and the grid point:

R′ = R · exp
[
d2

2L2

]
, (23)

where R and R′ are the original and modified observation
error covariances, respectively, and L is a horizontal length
scale that describes the distance to which the observation is
effective in the assimilation. The parameter L is called the
“localization length”, which is one of the key parameters
that determine the LETKF performance. For a forecast model
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Figure 9. The vertical profiles of the global mean (a) OmF and OmA, as well as (b) χ2. The gray (black) curves denote the OmF (OmA)
in (a). Dashed and solid curves denote results from the G5 and G20 (Ctrl), respectively. Plotted is an average for the time period of 12 January
to 20 February 2017.

Figure 10. The vertical profiles of the global mean (a) OmF and OmA, as well as (b) χ2. The gray (black) curves denote the OmF (OmA)
in (a). Dashed, solid, and dotted curves denote results from L300, L600 (Ctrl), and L1000, respectively. Plotted is an average for the time
period of 12 January to 20 February 2017.
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Table 2. The localization length dependence of the root mean
square (RMS) difference (K) between the analysis temperature and
the MLS temperature observation. The averaged data for the time
period of 12 January to 20 February 2017 are shown.

Height (hPa) L300 L600 (Ctrl) L1000

0.005 10.1 8.6 8.3
0.01 11.6 9.2 9.0
0.1 6.8 5.5 6.4
1 3.8 4.1 5.9
10 2.1 2.6 3.6

with a high degree of freedom, as in the present study, a small
number of ensemble members may cause sampling errors in
the forecast error covariance at a long distance (e.g., Miyoshi
et al., 2014). The localization is introduced to reduce such
spurious correlations at long distances.

A sensitivity test is performed by taking L= 300 km
(L300), L= 600 km (L600, Ctrl), and L= 1000 km (L1000)
without changing the other parameters (see Table 1). For
the vertical localization length, we used the same setting for
all experiments. It is defined by the inverse of the Gaus-
sian function (Eq. 23), with L= 0.6 and d = ln(pobs/p0)−

ln(pgrid/p0), where pobs, pgrid, and p0 are the pressures of
the observation, grid point, and surface, respectively. Fig-
ure 10 shows the vertical profiles of the mean OmF, OmA,
and χ2 for the L300, L600 (Ctrl), and L1000. The magni-
tude of the mean OmF is largest for the L1000 below 0.3 hPa
and for the L300 above between the three experiments. The
OmA values are distributed around zero for L600, whereas
they tend to be negative for the L1000, particularly at lower
levels, and tend to be positive for the L300, particularly at
upper levels. The χ2 values are smallest for the L300 and
largest for the L1000.

This result suggests that the best localization length de-
pends on the height. To see the height dependence in a differ-
ent way, the root mean square (RMS) of the temperature dif-
ference from the (bias-corrected) MLS observations was cal-
culated for each experiment at each height. Results are shown
in Table 2 for typical levels of 10, 1, 0.1, 0.01, and 0.005 hPa
in the stratosphere and mesosphere. A smaller RMS means
that observations are better assimilated. The RMS is small-
est for the L300 at lower levels of 10 and 1 hPa, for the
L600 at 0.1 hPa, and for the L1000 at upper levels of 0.01
and 0.005 hPa, suggesting that optimal localization length
depends on the height.

Based on the results, we employed the L600 as the best L
to obtain a better analysis for all levels from the stratosphere
to the upper mesosphere. Our assimilation does not necessar-
ily provide the best analysis data for a limited height region,
but it does ensure that the analysis has a sufficient, nearly
uniform quality for the whole middle atmosphere.

3.3.3 Inflation coefficient

To avoid possible underestimations in the forecast error co-
variances due to the small number of ensembles used in
the assimilation, a covariance inflation technique is em-
ployed (see Eq. 9). The inflation coefficient is generally set
to ∼ 10 % for the tropospheric system (e.g., Miyoshi et al.,
2007; Miyoshi and Yamane, 2007; Hunt et al., 2007). We
tested three different inflation coefficients, namely 7 % (I7),
15 % (I15, Ctrl), and 25 % (I25). Note again that the sensitiv-
ity test was conducted by changing the inflation coefficient
only (see Table 1).

Figure 11 shows meridional cross sections of the zonal
mean ensemble spread of temperature for each assimilation
run. The ensemble spread for the I7 is about 1 K at most in the
mesosphere and lower thermosphere, which is smaller than
the observation accuracy (1–3 K). In contrast, the ensemble
spreads for the I15 and I25 are distributed in the range of
the observation accuracy. The necessity of a larger inflation
coefficient is likely due to the large diffusion coefficient in
the upper mesosphere and lower thermosphere used in the
forecast model (Fig. 1). However, a larger inflation coeffi-
cient leads to an unrealistically thin vertical structure of en-
semble spreads in the lower mesosphere, which is conspicu-
ous for the I25 (Fig. 11). Figure 12 shows the time series of
the global mean temperature spreads for respective settings
at 0.01 and 10 hPa. The temperature spreads vary slightly in
time and seem stable after 13 January for both pressure lev-
els.

The vertical profiles of the mean OmF, OmA, and χ2 for
the I7, I15, and I25 are shown in Fig. 13. The absolute value
of the OmF and OmA is the smallest for the I15 at most al-
titudes. The χ2 values are also small for the I15 at most al-
titudes. Thus, we employed the best inflation coefficient of
15 % (i.e., I15).

Interestingly, the range of the best inflation coefficient also
depends on the height from a viewpoint of χ2: the χ2 values
for the I15 are similar to those for the I25 but smaller than the
I5 above 0.2 hPa, whereas they are similar to those for the I7
but smaller than the I25 below 0.2 hPa.

3.3.4 Assimilation window length

The length of the assimilation window, which is a time du-
ration of forecast and observation to be assimilated during
one assimilation cycle, is also examined. When the assimila-
tion window is set to 6 h, the forecast is first performed for
t = 0–9 h, and next the analysis at t = 6 h is obtained by the
assimilation using the forecasts and observations for the time
period of t = 3–9 h in the assimilation. Note that this assim-
ilation scheme uses future information to obtain the analysis
at a certain time. The obtained analysis is used as an ini-
tial condition for the next forecast for 9 h (i.e., t = 6–15 h).
By repeating these processes of forecast and assimilation, an
analysis is obtained every 6 h. Thus, the length of the assim-
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Figure 11. The meridional cross section of the zonal mean ensemble spread of temperature (K) for (a) I7, (b) I15 (Ctrl), and (c) I25 averaged
for the time period of 12 January to 20 February 2017.

Figure 12. The time series of the global mean temperature spread for (a) 0.01 hPa and (b) 10 hPa. Dashed, solid, and dotted curves denote
results from I7, I15 (Ctrl), and I25, respectively.

ilation window determines the length of the forecast run as
well as the analysis interval.

A longer window has the advantage that more observations
are assimilated at once, while taking the predicted physically
balanced time evolution of dynamical fields into account.
However, the longer forecast length may increase model er-
rors. Moreover, the 4D-EnKF assumes a linear time evolution
of the dynamical field during the assimilation window length.
Thus, variations with strong nonlinearity or with timescales
shorter than the assimilation window length are not taken into
account. We tested assimilation windows of 3 h (W3), 6 h
(W6, Ctrl), and 12 h (W12) (see Table 1). The W12 (W3) as-
similation was performed using the forecasts for t = 6–18 h
(t = 2–4 h) out of the forecast run over 18 h (4 h) and the cor-
responding observations.

Figure 14 shows the vertical profiles of the mean OmF,
OmA, and χ2 for the three assimilations. The OmF for the
W3 (W12) is calculated using the forecast for 3 h (12 h),

while for the other experiments, whose assimilation window
is 6 h, the forecast for 6 h is used. The mean OmF and OmA
values for the W6 and W12 are larger than for the W3, sug-
gesting larger forecast errors in longer windows. There are
two possible reasons: first, forecast error is generally larger
for a longer forecast time at a certain parameter setting. Sec-
ond, relatively short-period disturbances such as quasi-2 d
waves are dominant, particularly in the mesosphere (e.g.,
Pancheva et al., 2016), which requires a short assimilation
window for their expression. However, χ2 is significantly
larger for the W3 than for the W6 and W12, particularly be-
low 0.2 hPa, suggesting that the 3 h window may have been
too short to develop forecast error spreads sufficiently, espe-
cially for the lower atmosphere. Based on these results, the
length of 6 h is regarded as the best assimilation window.

Geosci. Model Dev., 13, 3145–3177, 2020 https://doi.org/10.5194/gmd-13-3145-2020



D. Koshin et al.: Kalman filter data assimilation system 3163

Figure 13. The vertical profiles of the global mean (a) OmF and OmA, as well as (b) χ2. The gray (black) curves denote the OmF (OmA)
in (a). Dashed, solid, and dotted curves denote results from I7, I15 (Ctrl), and I25, respectively. Plotted is an average for the time period of
12 January to 20 February 2017.

Figure 14. The vertical profiles of the global mean (a) OmF and OmA, as well as (b) χ2. The gray (black) curves denote the OmF (OmA)
in (a). Dashed, solid, and dotted curves denote results from W3, W6 (Ctrl), and W12, respectively. Plotted is an average for the time period
of 12 January to 20 February 2017.
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Table 3. The bias of the time series of zonal mean temperature at 70◦ N for the time period from 15 January to 20 February 2017 from each
assimilation experiment and from MERRA-2 (see Fig. 15). The RMS of the differences between the time series of each experiment and
MERRA-2, as well as the correlation (Corr) between the time series from each experiment and from MERRA-2, is also shown. Results for
(a) 500 hPa, (b) 10 hPa, (c) 1 hPa, and (d) 0.1 hPa are shown. The numerals showing a better performance than Ctrl are boldfaced.

(a) 500 hPa (b) 10 hPa (c) 1.0 hPa (d) 0.1 hPa

RMS Corr RMS Corr RMS Corr RMS Corr

Ctrl 0.808 0.928 1.635 0.994 3.358 0.954 4.069 0.959
DC 0.787 0.914 1.602 0.995 3.888 0.944 4.566 0.944
P0.5 1.009 0.912 1.729 0.989 3.630 0.951 4.599 0.943
P1 1.062 0.926 1.813 0.993 4.579 0.926 5.051 0.957
G5 0.826 0.929 2.295 0.990 5.140 0.923 8.870 0.848
L300 0.987 0.951 1.535 0.995 3.030 0.956 8.014 0.949
L1000 1.700 0.397 2.385 0.980 5.941 0.915 3.812 0.951
I7 1.023 0.810 1.694 0.995 3.548 0.965 7.028 0.970
I25 0.835 0.956 2.022 0.986 4.593 0.922 4.239 0.900
W3 1.005 0.915 1.809 0.988 3.506 0.950 3.385 0.946
W12 1.321 0.720 2.110 0.992 3.759 0.946 6.853 0.956
M90 0.794 0.976 1.570 0.996 2.381 0.970 2.408 0.973
M200 0.879 0.961 1.500 0.997 1.932 0.977 2.333 0.975

3.3.5 Comparison of a series of sensitivity tests for data
assimilation with 30 ensemble members

In Sect. 3.3.1 to 3.3.4, a series of sensitivity tests for each
parameter in the data assimilation system with 30 ensem-
ble members was performed as shown in Table 1. Figure 15
shows the time series of the zonal mean temperatures at
70◦ N for 500, 10, 1, and 0.1 hPa for the time period of
15 January to 20 February 2017 from the respective assim-
ilation tests shown in Table 1 (black curves). Gray curves
represent the time series from MERRA-2. Using the time se-
ries shown in Fig. 16, the RMSs of the differences and cor-
relations between the time series of each run and MERRA-2
are calculated and summarized in Table 3. The criteria of the
major SSW were satisfied on 1 February.

The Ctrl time series is also quite similar to that of
MERRA-2 in spite of the small number of ensemble mem-
bers, including drastic temperature change during the major
SSW event, although a warm bias of ∼ 4 K is observed at
0.1 hPa before and after the cooling time period associated
with the warming at 10 hPa. It is worth noting that the G5
has a significant warm bias:∼ 4 K at 10 hPa from 31 January
to 5 February during the warming event, ∼ 10 K at 1 hPa on
23 January when a sudden temperature drop was observed,
and ∼ 10 K at 0.1 hPa before and after the cooling time pe-
riod (i.e., before 27 January and after 6 February). Such sig-
nificantly large biases are probably due to the model bias be-
cause they are not observed for the Ctrl run, in which a much
larger number of observations was assimilated.

3.4 The effect of ensemble size and an estimate of the
optimal ensemble size for the data assimilation in
the middle atmosphere

The EnKF statistically estimates the forecast error covariance
using ensembles. A large ensemble size (i.e., a large number
of ensemble members) is favorable because it reduces the
sampling error of the covariance and improves the quality
of the analysis. However, the ensemble size has a practical
limit related to the allowable computational resources. An
ensemble size of ∼ 30 is usually used in operational weather
forecasting. Here, the minimum optimal ensemble size is es-
timated by performing additional experiments with 90 (M90)
and 200 (M200) members and comparing them with the Ctrl
experiment of 30 members (M30, Ctrl). No assimilation pa-
rameters, except for the ensemble size, are changed in the
M90 and M200 experiments (see Table 1). Note that the best
values of the assimilation parameters for the larger ensem-
ble sizes may be different from those for Ctrl. For example,
a larger ensemble size may allow for a larger localization
length. However, further investigation was not made because
a high computational cost is required.

Figure 16 shows the vertical profiles of the mean OmF,
OmA, and χ2 for the M30 (Ctrl), M90, and M200. The
OmFs for the M90 and M200 are significantly smaller than
for the M30, particularly below 0.1 hPa (by ∼ 50 %), while
the OmAs are comparable for the three runs. The difference
between the OmFs of the M90 and M200 runs is small. Al-
though the χ2 values are ∼ 6–17 for M30, they are ∼ 3–4
for M90 and ∼ 1–2 for M200, which are close to the opti-
mal values of χ2. The reduced values of χ2 by increasing the
ensemble size are remarkable compared with those by opti-
mizing the other parameters (Sect. 3.3). However, the M90
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Figure 15. The time series of the zonal mean temperature at 70◦ N for (a) 500 hPa, (b) 10 hPa, (c) 1 hPa, and (d) 0.1 hPa. The black curves
show the results from each parameter setting (see Table 1). The right axis is given for the result of Ctrl, and the other curves are vertically
shifted by (a) 5 K, (b) 15 K, (c) 10 K, and (d) 15 K. The gray curves show the time series calculated using MERRA-2 as a reference.

and M200 both require such large computational costs, as
already stated, that they are not available for long-term re-
analysis calculations. The time series obtained from the M90
and M200 are also shown in Fig. 15. Both time series agree
well with the MERRA-2 time series and do not have even a
slight warm bias like that observed at 0.1 hPa in the Ctrl time
series.

In the following, an attempt is made to estimate the min-
imum number of ensemble members as a function of height
using forecasts of ensemble members from the M200 exper-

iment because 90 is a sufficient number for high-quality as-
similation, judged from the similarity of the performances of
the M90 and M200 runs. Figure 17 shows the correlation co-
efficient of forecasts at each longitude for a reference point
of 180◦ E for 40◦ N at 10 and 0.01 hPa that are computed us-
ing 12, 25, 50, and 100 members randomly chosen from the
M200 forecasts at 06:00 UTC, 21 January 2017. The longitu-
dinal profile of the correlation coefficient for 200 members is
also shown. The correlation is generally reduced as the dis-
tance from the reference point increases, with large ripples
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Figure 16. The vertical profiles of the global mean (a) OmF and OmA, as well as (b) χ2. The gray (black) curves denote the OmF (OmA)
in (a). Dashed, solid, and dotted curves denote results from M30 (Ctrl), M90, and M200, respectively. Plotted is an average for the time
period of 12 January to 20 February 2017.

for the results of ensemble sizes smaller than 50, although the
correlation profile near the reference point is expressed for
all the members. Large ripples reaching ±0.6 observed for
12 members are considered spurious correlations caused by
the under-sampling. In contrast, the correlation coefficients
for 100 and 200 ensemble members are generally smaller
than 0.2 except for a meaningfully high correlation region
around the reference point. We performed the same analysis
for other latitudes and heights and obtained similar results
(not shown).

The RMS of the spurious correlation in the region outside
the meaningful correlation region is used to estimate the min-
imum optimal number of ensemble members. The RMS is
examined as a function of the number of ensemble members.
Each edge longitude of the meaningful correlation region is
determined where the correlation falls below 0.1 nearest the
reference point, which are 171.6◦ E and 171.6◦W for 10 hPa
and 149.1◦ E and 146.2◦W for 0.01 hPa for the case shown
in Fig. 17. Note that the threshold value 0.1 to determine the
edge longitude is arbitrary and is used as one of several possi-
ble appropriate values. The RMS of the spurious correlation
is calculated by taking each longitude and latitude as a refer-
ence point. Figure 18 shows the results at 40◦ N and 0.01 hPa
as a function of the number of ensemble members as an ex-
ample. Different curves denoted by the same thin line show
the results for different longitudes. The thick curve shows
mean RMS for all longitudes. Similar results were obtained
at other latitudes (not shown). The mean RMS decreases as
the number of ensemble members increases and falls to 0.1

Figure 17. An example of ensemble correlation of temperature. Re-
sults for 40◦ N at 10 hPa (a) and 0.01 hPa (b). Each curve shows
the results of the 200 (a thick solid curve), 100 (thick dashed), 50
(thin solid), 25 (thin dashed), and 12 (thick gray) ensembles. We
performed the same analysis for other latitudes and heights and ob-
tained similar results.
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Figure 18. An example of the RMS of spurious correlation. Results
for 40◦ N at 0.01 hPa (06:00 UTC on 21 January 2017) as a function
of the number of ensembles. The gray curves show the results of
respective longitude, and a black curve shows the average. A dashed
line shows the number of members for which the mean RMS is 0.1
(i.e., 91).

Figure 19. The vertical profiles of the minimum number of required
ensemble members that were estimated from the RMS of spurious
correlation. The black, dark gray, and light gray curves show the
results for the Equator, 40◦ N, and 40◦ S, respectively.

for 91 ensemble members. Again, the choice of 0.1 is ar-
bitrary, but from this result, we can estimate the minimum
optimal ensemble size at 91. In a similar way, the minimum
number of optimal ensemble members is estimated as a func-
tion of the latitude and height.

Figure 19 shows the minimum optimal number of ensem-
ble members as a function of the height for 40◦ S, the Equa-
tor, and 40◦ N. Roughly speaking, 100 members are suffi-
cient below 80 km for all displayed latitudes except for 50 km
at the Equator. The minimum optimal number of ensemble
members above 80 km is larger than 100 and close to 150.

Figure 20. The zonal mean of the spatial correlation of the geopo-
tential height anomaly from the zonal mean between the analysis
(M200) and MERRA-2. Contours of 0.5, 0.6, 0.7, 0.8, 0.9, 0.95,
0.97, and 0.99 are shown.

From this result, more than 150 ensemble members likely
give an optimal estimation of the forecast error covariance
for the middle atmosphere. However, it is important to note
that even if the number of ensemble members is smaller than
150, using the localization as examined in Sect. 3.3.2 will
minimize the effect of the spurious error covariance due to
under-sampling, as understood from the good performance
of the Ctrl assimilation using 30 ensemble members.

4 Validation of the assimilation

4.1 Comparison with other reanalysis data

This paper gives the first results of the 4D-LETKF applied
to the GCM that include the MLT region. Thus, to examine
the performance of our assimilation system, the best result
obtained from the M200 run among the assimilation exper-
iments is compared with MERRA-2 as one of the standard
reanalysis datasets. First, we calculated the spatial correla-
tion of the geopotential height anomaly from the zonal mean
as a function of the pressure level and time (Fig. 20). The cor-
relation is higher than 0.9 between ∼ 900 and ∼ 1 hPa. The
top height with the high correlation varies with time. This
time variation may be related to the model predictability, al-
though such a detailed analysis is beyond the scope of the
present paper. The reduction of correlation near the ground
is likely due to the difference in the resolution of topography.

Next, the zonal mean zonal wind and temperature in the
latitude–height section from our analysis and MERRA-2 are
shown for the time periods before the major warming onset
(i.e., 21–25 January) and after (i.e., 1–5 February) (Fig. 21).
A thick horizontal bar shows the 0.1 hPa level up to which
MERRA-2 pressure level data are provided. The overall
structures of the two datasets are similar: the stratopause in
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Figure 21. The meridional cross section of the zonal mean temperature (a, b, e, f, i, and j) and zonal wind (c, d, g, and h). Panels (a), (c),
(e), (g), and (i) are averaged for the time period of 21–25 January 2017, and panels (b), (d), (f), (h), and (j) are for 1–5 February 2017.
Panels (a–d) are the results of the data assimilation (M200), panels (e–h) are the results of the MERRA-2 data, and panels (i) and (j) are the
results of the Aura MLS data. The contour intervals are 10 K for (a), (b), (e), (f), (i), and (j) and 10 m s−1 for (c), (d), (g), and (h).
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Table 4. Location, radar type, and vertical resolution used for the comparison with the analysis. “MST radar” stands for the mesosphere–
stratosphere–troposphere radar.

Vertical Time
Station Radar type resolution interval Organization

Longyearbyen
(78.2◦ N, 16.0◦ E)

Meteor radar 2 km 30 min NIPR

Kototabang
(0.2◦ S, 100.3◦ E)

Meteor radar 2 km 1 h Kyoto University

Syowa Station
(69.0◦ S, 39.6◦ E)

MST radar
(the PANSY radar)

300 m 30 min The University of Tokyo/NIPR

the northern polar region is located at a height of ∼ 50 km
(∼ 40 km) in the early (later) period. In the Northern Hemi-
sphere, an eastward jet is observed at ∼ 63◦ N in the wide
height range of 20–53 km in the early period. A characteristic
westward jet associated with the SSW is observed in the later
period in both datasets. The spatial structure and magnitude
of the westward jet are both quite similar. In the Southern
Hemisphere, a summer westward jet is clearly observed in
both sets of data. The poleward tilt with height and a maxi-
mum of∼−70 m s−1 of the jet also accord well. A relatively
large difference is observed around 55 km in the equatorial
region. The eastward shear with height seems much stronger
in MERRA-2 than in our analysis. As the geostrophic bal-
ance does not hold in the equatorial region, it may be difficult
to reproduce wind by assimilation of only temperature data.
This may be the reason for the large discrepancy observed in
the equatorial upper stratosphere between the two datasets.

4.2 Comparison with MST and meteor radar
observations

The winds obtained from the M200 assimilation experi-
ment are also compared with wind observations by meteor
radars at Longyearbyen (78.2◦ N, 16.0◦ E; Hall et al., 2002)
at 91 km and Kototabang (0.2◦ S, 100.3◦ E; Batubara et al.,
2011) at 92 km, as well as by the PANSY radar at Syowa
Station (69.0◦ S, 39.6◦ E) at 85 km. Note that these radar ob-
servations were not assimilated and can thus be used for val-
idation as independent reference data. Table 4 gives a brief
description of these data. Figure 22 shows the time series of
zonal wind and meridional wind observed at each site (black)
and corresponding 6-hourly data from our data assimilation
analysis (red). A 6 h running mean was made for the time se-
ries of the radar data, although the time intervals of original
data are much shorter.

Strong fluctuations with time-varying amplitudes are ob-
served for both zonal and meridional radar winds for each
station. The dominant time period is longer at Kototabang
in the equatorial region than that of ∼ 12 h at Longyearbyen
in the Arctic. The amplitudes of the meridional wind fluc-

tuations there are larger than those of zonal wind fluctua-
tions at Kototabang. These characteristics are consistent with
the wind fluctuations estimated by our assimilation system.
However, there are significant differences: the time variation
of the amplitudes do not accord well with observations. Dif-
ferences in the phases of the oscillations between observa-
tions and estimations are sometimes small and sometimes
large.

In contrast, some consistency is observed for relatively
long-period variations (periods longer than several days). At
Longyearbyen, the slowly varying zonal wind component is
slightly positive before 31 January and significantly positive
from 1 to 6 February, while the slowly varying meridional
wind tends to be significantly negative in the time period
of 28–31 January. At Kototabang, the slowly varying zonal
wind tends to be slightly negative before 29 January and
almost zero afterward, while the slowly varying meridional
wind is almost zero throughout the displayed time period. At
Syowa Station, the slowly varying zonal wind tended to be
negative from 23 to 30 January and after 2–5 February, while
the slowly varying meridional wind tends to be positive from
24 to 31 January.

There are several plausible causes for the discrepancy in
short-period variations. First, there may be room to improve
the model performance to reproduce such short-period vari-
ations. Second, the Aura MLS provides data along a sun-
synchronous orbits, and hence fluctuations associated with
migrating tides may be hard for it to capture. Third, a large
local increment added by the assimilation of the MLS data
may cause spurious waves in the model. Fourth, there may
be inertia–gravity waves with large amplitudes in the upper
mesosphere (e.g., Sato et al., 2017; Shibuya et al., 2017),
which cannot be captured with the relatively low-resolution
GCM.

5 Summary and concluding remarks

A new advanced data assimilation system employing a 4D-
LETKF method for the height region from the surface to the
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Figure 22. The time series of the zonal (a, c, e) and meridional (b, d, f) wind from 6-hourly analysis (red curves) and from observations
(black curves) (a–b) by a meteor radar at Longyearbyen in the Arctic at a height of 91 km, (c–d) by a meteor radar at Kototabang near
the Equator at 92 km, and (e–f) by the PANSY radar at Syowa Station in the Antarctic at 85 km. Although the time intervals of the radar
observation data are 1 h for meteor radars and 30 min for the PANSY radar, the 6 h running mean time series are plotted.

lower thermosphere has been developed using a GCM with
a very high top that we called JAGUAR. Observation data
from NCEP PREPBUFR and Aura MLS that covered the
whole neutral atmosphere up to the lower thermosphere were
used for the assimilation. The time period focused on by the
present study was 10 January to 28 February 2017. This pe-
riod includes a major SSW event that occurred on 1 February
in the Arctic, for which an international observation cam-
paign for the troposphere, stratosphere, and mesosphere was
performed using a radar network.

Before optimizing the parameters of the data assimila-
tion system, the vertical profile of the horizontal dissipation
and source intensity of the non-orographic gravity wave pa-
rameterization used in JAGUAR were tuned by comparing
them to the vertical profiles of gradient winds estimated from
the MLS temperature and horizontal winds observed by the
PANSY radar. The observation bias in the MLS temperature
data was estimated using the SABER temperature data and
subsequently corrected.

By performing a series of sensitivity experiments, the best
values of the other parameters were obtained for the data as-
similation system using 30 ensemble members as a practi-

cal assimilation system for the middle atmosphere. The best
parameter set is called the Ctrl experiment in Table 1. The
optimized value for each parameter in the assimilation of
the atmospheric data up to the lower thermosphere was dif-
ferent from those used for the standard model covering the
troposphere and stratosphere. There are several possible rea-
sons for these differences: first, the model performance is
not very mature for the MLT region. Second, the number
of observation data and observable quantities are limited for
the MLT region. Third, the dominant disturbances (and dy-
namics as well) are different from those in the lower atmo-
sphere. Because of the first and second reasons, it is better to
take a larger gross error check coefficient in order to include
a larger percentage of the observation data. It was shown
that the optimal localization length depends on the height: a
smaller localization length is better for lower heights. Thus,
the best length for the middle of the model altitude range
(i.e., 0.1 hPa) was employed in the best parameter set. It was
also shown that the inflation factor should be larger than
for the standard model, although overly large factors do not
give stable ensemble spreads. A shorter assimilation window
seemed better for the MLT region, which is probably due to
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the dominance of short-period disturbances, such as quasi-
2 d waves and tides. However, shorter assimilation windows
have a problem. The number of available observation data be-
comes small and the analysis thus tends to be more reflected
by the model forecasts that are not as mature as those for the
lower atmosphere.

In addition, a minimum optimal number of ensemble
members was examined using the results with an assimilation
system of 200 ensemble members based on the erroneous rip-
ple of correlation function. The minimum optimal number of
ensemble members slightly depends on the height: about 100
members below 80 km and 150 members above. It should be
noted, however, that the introduction of the finite localiza-
tion length to the assimilation may work to avoid spurious
correlation at distant locations even with a lower number of
ensemble members than the optimal number.

The validity of the data obtained from our assimilation sys-
tem was examined by comparing the MERRA-2 reanalysis
dataset that has the highest top among the currently available
reanalysis datasets. The correlation was greater than ∼ 0.95
up to 1 hPa, depending on time. A comparison with radar ob-
servations in the upper mesosphere was also performed. The
time variation of horizontal winds with periods longer than
several days obtained from our assimilation system was con-
sistent with the radar observations. However, the accordance
of fluctuations with short wave periods, particularly shorter
than 1 d, was not adequate with their slight dependence on
the latitude.

Nevertheless, the analysis data from our assimilation sys-
tem will be useful for the study of the detailed dynamical
processes in the middle atmosphere, some of which are mea-
sured by a limited number of observation instruments. An in-
ternational observation campaign by an MST radar network
has been performed to capture the modulation of the strato-
sphere and mesosphere, including gravity waves initiated by
the major SSW in the Arctic, which encompasses the event
that the present study focused on. The low-resolution anal-
ysis product from the assimilation system developed in the
present study will be used as an initial condition for a high-
resolution JAGUAR model to simulate the real atmosphere,
including gravity waves.

In future work, we plan to use more observation data in the
middle atmosphere for the assimilation. These include satel-
lite data, such as temperature observation data from SABER,
radiance data from the SSMIS, and Global Navigation Satel-
lite System (GNSS) radio occultation data, as well as wind
data from radars in the mesosphere. We also plan to examine
the impact of assimilating these data with observation system
simulation experiments using simulation data from a high-
resolution GCM. The predictability of the GCM will also be
studied in the near future.
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Appendix A

Here we show the equivalence of the two methods, namely
the calculation of time development after the data assimila-
tion and the 4D data assimilation with the calculation of time
development. The case of j2= j1+ 1, that is, xj2 =Mxj1,
is considered. In the first method, the analysis xa

j1 and the
analysis error covariance matrix Pa

j1 at the time step j1 are
written using Eqs. (7) and (8):

xa
j1 = xf

j1+Pa
j1HTR−1

(
y−Hxf

j1

)
, (A1)

Pa
j1 =

(
I−Pf

j1HT
(

HPf
j1HT

+R
)−1

H
)

Pf
j1. (A2)

Using the model forecast matrix M, xa
j2 and Pa

j2 at the next
time step j2 are obtained:

xa
j2 =Mxa

j1 =Mxf
j1+MPa

j1HTR−1
(
y−Hxf

j1

)
, (A3)

Pa
j2 =MPa

j1MT

=M
(

I−Pf
j1HT

(
HPf

j1HT
+R

)−1
H
)

Pf
j1MT. (A4)

In the second method, the analysis xa
j2 is written as

xa
j2 = xf

j2+Pa
j2H

′TR−1
(
y−H′xf

j2

)
, (A5)

where H′ is the observation operator at the time step j2 and
is related to H:

H′ =HM−1. (A6)

By substituting this formula into Eq. (A5), the analysis xa
j2

is written as

xa
j2 =Mxf

j1+Pa
j2

(
HM−1

)T
R−1

(
y−HM−1xf

j2

)
=Mxf

j1+Pa
j2

(
M−1

)T
HTR−1

(
y−HM−1xf

j2

)
=Mxf

j1+MPf
j1HTR−1

(
y−Hxf

j1

)
=Mxa

j1,

which is identical to Eq. (A3).
Similarly, the analysis error covariance Pa

j2 is written as

Pa
j2 =

(
I−Pf

j2H
′T
(

H′Pf
j2H

′T
+R

)−1
H′
)

Pf
j2, (A7)

which is transformed using Eq. (A6) to

Pa
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(
I−Pf

j2

(
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)T
(
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(
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)T
+R

)−1
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)
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(
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(
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)

MPf
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(
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(
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+R

)−1
H
)

Pf
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=MPa
j1MT.

This is identical to Eq. (A4). These relations can be derived
for any j2 other than j2= j1+ 1.
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Code and data availability. The source codes for the data assimila-
tion are available for the editor and reviewers. The copyright of the
code for LETKF belongs to Takemasa Miyoshi, and the related code
can be accessed from https://github.com/takemasa-miyoshi/letkf
(last access: 26 June 2020, Miyoshi, 2016).

Meteor radar data from Kototabang are available at the Inter-
university Upper atmosphere Global Observation NETwork (IU-
GONET) site (http://search.iugonet.org/metadata/001/00000158,
last access: 26 June 2020, IUGONET, 2016). Meteor radar data
from Longyearbyen are available by request from the National
Institute of Polar Research by contacting Masaki Tsutsumi (tu-
tumi@nipr.ac.jp). The PANSY radar observational data are avail-
able at the project website: http://pansy.eps.s.u-tokyo.ac.jp, last ac-
cess: 26 June 2020, PANSY Research Group, 2012). NCEP PREP-
BUFR data are available from https://doi.org/10.5065/Z83F-N512
(National Centers for Environmental Prediction/National Weather
Service/NOAA/U.S. Department of Commerce, 2008). Aura MLS
data, which are compiled and archived by NASA, were also used for
the data assimilation (available from https://acdisc.gesdisc.eosdis.
nasa.gov/data/Aura_MLS_Level2/, last access: 26 June 2020, GES
DISC, 2016).
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