Articles | Volume 13, issue 6
Geosci. Model Dev., 13, 2695–2721, 2020
https://doi.org/10.5194/gmd-13-2695-2020
Geosci. Model Dev., 13, 2695–2721, 2020
https://doi.org/10.5194/gmd-13-2695-2020

Development and technical paper 18 Jun 2020

Development and technical paper | 18 Jun 2020

Optimizing a dynamic fossil fuel CO2 emission model with CTDAS (CarbonTracker Data Assimilation Shell, v1.0) for an urban area using atmospheric observations of CO2, CO, NOx, and SO2

Ingrid Super et al.

Related authors

Global anthropogenic CO2 emissions and uncertainties as prior for Earth system modelling and data assimilation
Margarita Choulga, Greet Janssens-Maenhout, Ingrid Super, Anna Agusti-Panareda, Gianpaolo Balsamo, Nicolas Bousserez, Monica Crippa, Hugo Denier van der Gon, Richard Engelen, Diego Guizzardi, Jeroen Kuenen, Joe McNorton, Gabriel Oreggioni, Efisio Solazzo, and Antoon Visschedijk
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-68,https://doi.org/10.5194/essd-2020-68, 2020
Revised manuscript has not been submitted
Short summary
Uncertainty analysis of a European high-resolution emission inventory of CO2 and CO to support inverse modelling and network design
Ingrid Super, Stijn N. C. Dellaert, Antoon J. H. Visschedijk, and Hugo A. C. Denier van der Gon
Atmos. Chem. Phys., 20, 1795–1816, https://doi.org/10.5194/acp-20-1795-2020,https://doi.org/10.5194/acp-20-1795-2020, 2020
Short summary
A multi-model approach to monitor emissions of CO2 and CO from an urban–industrial complex
Ingrid Super, Hugo A. C. Denier van der Gon, Michiel K. van der Molen, Hendrika A. M. Sterk, Arjan Hensen, and Wouter Peters
Atmos. Chem. Phys., 17, 13297–13316, https://doi.org/10.5194/acp-17-13297-2017,https://doi.org/10.5194/acp-17-13297-2017, 2017
Short summary
A multi-model approach to monitor emissions of CO2 and CO in an urban-industrial complex
Ingrid Super, Hugo A. C. Denier van der Gon, Michiel K. van der Molen, Hendrika A. M. Sterk, Arjan Hensen, and Wouter Peters
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-807,https://doi.org/10.5194/acp-2016-807, 2016
Revised manuscript not accepted

Related subject area

Atmospheric sciences
OpenIFS@home version 1: a citizen science project for ensemble weather and climate forecasting
Sarah Sparrow, Andrew Bowery, Glenn D. Carver, Marcus O. Köhler, Pirkka Ollinaho, Florian Pappenberger, David Wallom, and Antje Weisheimer
Geosci. Model Dev., 14, 3473–3486, https://doi.org/10.5194/gmd-14-3473-2021,https://doi.org/10.5194/gmd-14-3473-2021, 2021
Short summary
Regional CO2 inversions with LUMIA, the Lund University Modular Inversion Algorithm, v1.0
Guillaume Monteil and Marko Scholze
Geosci. Model Dev., 14, 3383–3406, https://doi.org/10.5194/gmd-14-3383-2021,https://doi.org/10.5194/gmd-14-3383-2021, 2021
Short summary
The Detailed Emissions Scaling, Isolation, and Diagnostic (DESID) module in the Community Multiscale Air Quality (CMAQ) modeling system version 5.3.2
Benjamin N. Murphy, Christopher G. Nolte, Fahim Sidi, Jesse O. Bash, K. Wyat Appel, Carey Jang, Daiwen Kang, James Kelly, Rohit Mathur, Sergey Napelenok, George Pouliot, and Havala O. T. Pye
Geosci. Model Dev., 14, 3407–3420, https://doi.org/10.5194/gmd-14-3407-2021,https://doi.org/10.5194/gmd-14-3407-2021, 2021
Short summary
Evaluation of the dynamic core of the PALM model system 6.0 in a neutrally stratified urban environment: comparison between LES and wind-tunnel experiments
Tobias Gronemeier, Kerstin Surm, Frank Harms, Bernd Leitl, Björn Maronga, and Siegfried Raasch
Geosci. Model Dev., 14, 3317–3333, https://doi.org/10.5194/gmd-14-3317-2021,https://doi.org/10.5194/gmd-14-3317-2021, 2021
Short summary
Implementing a sectional scheme for early aerosol growth from new particle formation in the Norwegian Earth System Model v2: comparison to observations and climate impacts
Sara M. Blichner, Moa K. Sporre, Risto Makkonen, and Terje K. Berntsen
Geosci. Model Dev., 14, 3335–3359, https://doi.org/10.5194/gmd-14-3335-2021,https://doi.org/10.5194/gmd-14-3335-2021, 2021
Short summary

Cited articles

Akaike, H.: A new look at the statistical model identification, in: Selected papers of Hirotugu Akaike. Springer Series in Statistics (Perspectives in Statistics), edited by: Parzen, E., Tanabe, K., and Kitagawa, G., Springer, New York, NY, 215–222, https://doi.org/10.1007/978-1-4612-1694-0_16, 1974. 
Andres, R. J., Boden, T. A., and Higdon, D.: A new evaluation of the uncertainty associated with CDIAC estimates of fossil fuel carbon dioxide emission, Tellus B, 66, 23616, https://doi.org/10.3402/tellusb.v66.23616, 2014. 
Andres, R. J., Boden, T. A., and Higdon, D. M.: Gridded uncertainty in fossil fuel carbon dioxide emission maps, a CDIAC example, Atmos. Chem. Phys., 16, 14979–14995, https://doi.org/10.5194/acp-16-14979-2016, 2016. 
Angevine, W. M., Brioude, J., McKeen, S., and Holloway, J. S.: Uncertainty in Lagrangian pollutant transport simulations due to meteorological uncertainty from a mesoscale WRF ensemble, Geosci. Model Dev., 7, 2817–2829, https://doi.org/10.5194/gmd-7-2817-2014, 2014. 
Asefi-Najafabady, S., Rayner, P. J., Gurney, K. R., McRobert, A., Song, Y., Coltin, K., Huang, J., Elvidge, C., and Baugh, K.: A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of results, J. Geophys. Res.-Atmos., 119, 10213–210231, https://doi.org/10.1002/2013jd021296, 2014. 
Download
Short summary
Understanding urban CO2 fluxes is increasingly important to support emission reduction policies. In this work we extended an existing framework for emission verification to increase its suitability for urban areas and source-sector-based decision-making by using a dynamic emission model. We find that the dynamic emission model provides a better understanding of emissions at small scales and their uncertainties. By including co-emitted species, emission can be related to specific source sectors.