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Abstract. We present a modelling framework for fossil fuel
CO2 emissions in an urban environment, which allows con-
straints from emission inventories to be combined with atmo-
spheric observations of CO2 and its co-emitted species CO,
NOx , and SO2. Rather than a static assignment of average
emission rates to each unit area of the urban domain, the fos-
sil fuel emissions we use are dynamic: they vary in time and
space in relation to data that describe or approximate the ac-
tivity within a sector, such as traffic density, power demand,
2 m temperature (as proxy for heating demand), and sunlight
and wind speed (as proxies for renewable energy supply).
Through inverse modelling, we optimize the relationships
between these activity data and the resulting emissions of
all species within the dynamic fossil fuel emission model,
based on atmospheric mole fraction observations. The ad-
vantage of this novel approach is that the optimized param-
eters (emission factors and emission ratios, N = 44) in this
dynamic emission model (a) vary much less over space and
time, (b) allow for a physical interpretation of mean and un-
certainty, and (c) have better defined uncertainties and co-
variance structure. This makes them more suited to extrapo-
late, optimize, and interpret than the gridded emissions them-
selves. The merits of this approach are investigated using a
pseudo-observation-based ensemble Kalman filter inversion
set-up for the Dutch Rijnmond area at 1km×1km resolution.

We find that the fossil fuel emission model approximates
the gridded emissions well (annual mean differences < 2 %,

hourly temporal r2
= 0.21–0.95), while reported errors in the

underlying parameters allow a full covariance structure to be
created readily. Propagating this error structure into atmo-
spheric mole fractions shows a strong dominance of a few
large sectors and a few dominant uncertainties, most notably
the emission ratios of the various gases considered. If the
prior emission ratios are either sufficiently well-known or
well constrained from a dense observation network, we find
that including observations of co-emitted species improves
our ability to estimate emissions per sector relative to using
CO2 mole fractions only. Nevertheless, the total CO2 emis-
sions can be well constrained with CO2 as the only tracer
in the inversion. Because some sectors are sampled only
sparsely over a day, we find that propagating solutions from
day-to-day leads to largest uncertainty reduction and small-
est CO2 residuals over the 14 consecutive days considered.
Although we can technically estimate the temporal distribu-
tion of some emission categories like shipping separate from
their total magnitude, the controlling parameters are diffi-
cult to distinguish. Overall, we conclude that our new sys-
tem looks promising for application in verification studies,
provided that reliable urban atmospheric transport fields and
reasonable a priori emission ratios for CO2 and its co-emitted
species can be produced.
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1 Introduction

Within the 2015 Paris Agreement, 195 nations agreed with
a climate action plan in which each nation sets its own tar-
gets for carbon emission reductions and reports all efforts
regularly to the UNFCCC (UNFCCC, 2015). An important
role in reaching emission reduction targets is laid out for
cities, which emit a large portion of the global fossil fuel
CO2 emissions (about 70 % according to the International
Energy Agency; IEA, 2008). The Paris Agreement also states
that parties should strengthen their cooperation and also with
respect to the sharing of information and good practices.
Within this context it becomes increasingly important to map
fossil fuel emissions and to quantify emission trends both at
the country and city levels.

Most country-level greenhouse gas emission estimates re-
ported to the UNFCCC are currently based on annual fuel
consumption data (bottom-up method), and they are often
spatio-temporally disaggregated using activity data and prox-
ies to create spatially explicit emission inventories (Kue-
nen et al., 2014; Hutchins et al., 2017). Although the an-
nual national estimates are reasonably accurate (estimated
uncertainty for developed countries is less than 8 % for CO2;
Monni et al., 2004; Fauser et al., 2011; Andres et al., 2014),
their uncertainty increases rapidly when disaggregating them
towards finer spatio-temporal resolutions (Ciais et al., 2010;
Nassar et al., 2013; Andres et al., 2016). A method to im-
prove emission estimates is by using transport models in
combination with independent observations of atmospheric
mole fractions (Palmer et al., 2018), called data assimilation
(DA) or inverse modelling (a top-down method). Recently,
efforts have been made to apply DA techniques to the urban
environment (McKain et al., 2012; Brioude et al., 2013; Lau-
vaux et al., 2013, 2016; Bréon et al., 2015; Boon et al., 2016;
Staufer et al., 2016; Brophy et al., 2019), but several chal-
lenges and unexploited opportunities remain.

First, urban DA studies have tried to constrain the to-
tal fossil fuel flux to validate bottom-up CO2 inventories,
often without considering the underlying emission process
that caused the mismatch between observed and modelled
concentrations. As one of very few exceptions, Lauvaux et
al. (2013) used the CO : CO2 concentration ratio to conclude
that the emission reduction in Davos during the World Eco-
nomic Forum 2012 was likely related to reduced traffic emis-
sions but without a quantification. However, emission reduc-
tion policies usually target specific source sectors. Therefore,
an increase in fossil fuel emissions from one source sector
can cause the total CO2 emissions to appear stable, although
a policy targeting another source sector can be effective in it-
self. To monitor the effect of each measure independently, it
becomes essential to attribute changes in the total CO2 emis-
sions to these policies and thus to specific source sectors. It
is, therefore, not sufficient to constrain the total CO2 flux,
but we need to differentiate the total CO2 signal into signals
from the different source sectors. One way to accomplish this

is by using additional measurements of co-emitted species
and isotopes. Such measurements have previously been used
in modelling studies to differentiate between biogenic and
anthropogenic emissions or between fuel types (Djuricin et
al., 2010; LaFranchi et al., 2013; Lopez et al., 2013; Turnbull
et al., 2015; Fischer et al., 2017; Super et al., 2017b; Brophy
et al., 2019; Graven et al., 2018) but also to separate between
different fossil fuel sources (Lindenmaier et al., 2014; Super
et al., 2017a; Nathan et al., 2018).

Second, for urban DA, the fine scales (less than 1 km and
less than 1 h) need to be resolved, which is therefore putting
a higher demand on the atmospheric transport models. For
example, Boon et al. (2016) mentioned that sources with a
small spatial extent (point sources) are not correctly repre-
sented on a 2km× 2 km grid, while these sources have a
significant impact on the locally observed mole fractions.
Concurrently, we have previously shown that a plume model
improves the representation of sources with a limited spa-
tial extent. Moreover, we found that the description of short-
term variations in the wind direction by the Eulerian WRF
(Weather Research and Forecasting) model in the vicinity of
an urban area is poor (Super et al., 2017a).

Third, the prior emissions also need to have a higher reso-
lution for urban-scale studies to resolve the dominant spatio-
temporal variations. Previous studies have often used high-
resolution emission maps developed specifically for that re-
gion, using local data as much as possible (Zhou and Gur-
ney, 2011; Bréon et al., 2015; Boon et al., 2016; Lauvaux
et al., 2016; Rao et al., 2017; Gurney et al., 2019). Yet such
emission maps are only available for a few data-rich regions.
For other regions, continental or global emission maps (such
as MACC or EDGAR) can be used if downscaling is applied
to reach the high resolution required for urban-scale inver-
sions. For example, the temporal downscaling can be done
using typical daily, weekly and monthly profiles for each
source sector (Denier van der Gon et al., 2011), which are
based on activity data (e.g. traffic counts) averaged over sev-
eral years and/or a large region. Spatial downscaling often in-
volves proxies like population density. This spatio-temporal
downscaling introduces a large additional uncertainty due to
uncertainties in the proxies. For example, Hogue et al. (2016)
have found an uncertainty of 150 % in the 1◦× 1◦ fossil fuel
CO2 emissions for the US, whereas Ciais et al. (2010) es-
timated the uncertainty of regional European emissions at
100 km resolution to be about 50 %. Quantification of the
uncertainty at an even higher resolution for urban applica-
tions has so far been limited (Andres et al., 2016; Super et
al., 2020) and also for most local inventories, while a correct
definition of the prior error covariance matrix for an inversion
is important to get reliable output (Chevallier et al., 2006;
Boschetti et al., 2018). This currently complicates the appli-
cation of DA studies to urban areas.

Here, we describe the development of an urban-scale DA
framework (based on the CarbonTracker Data Assimilation
Shell, CTDAS; van der Laan-Luijkx et al., 2017), which uses
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a dynamic fossil fuel emission model as a starting point and
optimizes the parameters of this model. The fossil fuel emis-
sion model uses a wide range of (statistical) data to calcu-
late CO2 emissions per source sector at high spatio-temporal
resolution (1km× 1 km and hourly). The emission model
is more dynamic than a regular emission inventory in the
sense that its formulation allows emissions to change as a
function of rapidly varying conditions in the emission land-
scape, such as the outside temperature, the traffic density, or
availability of wind and solar radiation for sustainable power
generation. Using such information enables the calculation
of dynamic emissions without a 2-year lag, as opposed to
the construction of a static emission map based on statisti-
cal downscaling. Moreover, the emission model can supply
spatio-temporal emission uncertainties and error correlations
between source sectors, based on the estimated uncertainty
of its model parameters. Since many of these parameters are
also used in the bottom-up accounting of emissions, their
uncertainty is often better established than the uncertainty
in the total emissions themselves. Finally, we use the emis-
sion model to calculate emissions of other co-emitted species
(CO, NOx , and SO2) from the CO2 emissions using source-
sector-specific emission ratios. These co-emitted species are
included in the DA system to facilitate source attribution,
which is possible due to the distinct emission ratios of differ-
ent source sectors. The overall aim of this study is to explore
how our fossil fuel emission model and additional tracers can
be used to overcome the known limitations in anthropogenic
CO2 inverse modelling described above. The research ques-
tions are the following:

1. Can our dynamic fossil fuel emission model represent
the spatio-temporal structure of a high-resolution emis-
sion inventory, and what does it add to that on small
scales?

2. Is the addition of co-emitted species beneficial for the
attribution of CO2 signals to specific source sectors, and
which observations help most in that effort?

3. Does the prior error covariance structure that we build
with the dynamic emissions model help the optimiza-
tion, and what can we learn from the posterior error co-
variance estimate?

In the inverse modelling part of this study we use ob-
serving system simulation experiments (OSSEs, experiments
using pseudo-observations), applied to the urban industrial
complex of Rotterdam (the Netherlands). This choice al-
lows us to test our new approach, while with real observa-
tions the errors in non-fossil and background fluxes, model
structure, and model transport will likely dominate the re-
sults (Tolk et al., 2008; Super et al., 2017a; He et al., 2018)
and reduce the ability to evaluate the methodology. First, we
give an overview of the dynamic fossil fuel emission model
and demonstrate its applicability to the domain, which is

followed by an introduction to the DA system components
and the model settings. Then we discuss the different exper-
iments in which we start with the comparison of different
network configurations, one with only CO2 and one includ-
ing co-emitted species to examine the ability to attribute CO2
emissions to specific source sectors, and different state vec-
tors. Another experiment is used to examine the importance
of propagating posterior parameter values and covariances.
Finally, we address the effect of cross-correlations.

2 Methods

2.1 The dynamic emission model

Although generally applicable, the dynamic emission model
is initially developed for the Netherlands and focused on Rot-
terdam (Fig. 1). This is one of the major cities in the Nether-
lands (about 625 000 inhabitants) with the largest sea port
of Europe to its west. It is located in a larger urbanized area
(Randstad, about 7 million inhabitants) with The Hague, Am-
sterdam, and Utrecht being other major cities. A large area to
the southwest of The Hague is used for glasshouse horticul-
ture, producing vegetables and flowers. The Rotterdam area
is characterized by a complex mixture of residential and in-
dustrial activities; therefore, we distinguish five source sec-
tors and a total of 10 sub-sectors to construct its emissions
(see Table 1). Note that, for simplicity, only the largest source
sectors are included, which are responsible for> 95 % of the
CO2 emissions in the area. Moreover, a further subdivision
of industrial activities is neglected because of two reasons:
(1) the lack of data for each sub-sector and (2) the inability
to separate between those activities with atmospheric mea-
surements because of their spatial clustering. The main goal
is to get a reasonable first estimate of the emission landscape
using readily available data.

The ultimate goal is to develop an emission model that as-
similates high-resolution activity data, such as near-real-time
traffic data. A truly dynamic emission model is not depen-
dent on precalculated annual emissions and spatial or tem-
poral downscaling but directly uses activity data to calculate
emissions for that specific moment. However, the develop-
ment of a dynamic emission model still requires a lot of re-
search. Here, we make a first step by mainly illustrating the
potential of using high-resolution activity data to better rep-
resent temporal variations.

In this work, the emissions are calculated in four steps.
First, the annual national emission is calculated per sector us-
ing reported annual activity data and CO2 emission factors.
Second, we apply temporal disaggregation to hourly emis-
sions using time profiles based on a combination of default
temporal profiles and environmental conditions. Third, we
downscale the national totals to 1km× 1 km resolution us-
ing statistical data, such as population density. Finally, our
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Figure 1. Map of the domain covered (Randstad area, the Netherlands) within this study, including major cities Amsterdam, Rotterdam, The
Hague, and Utrecht (underlined). The squares show the locations of the measurement sites within the urban network configuration. The area
of this domain is approximately 77km× 88 km. Source: © Google Maps.

Table 1. Overview of source sectors and sub-sectors distinguished in the dynamic emission model, including their short name used in the
figures, their source type, and their approximate contribution to the total CO2 emission in Rotterdam (Netherlands PRTR, 2014). Crosses (X)
indicate which emission factors (EFs) and tracer ratios of CO, NOx , or SO2 (RCO, RNOx , RSO2 ) are part of the state vector, and circles (O)
indicate whether they are also part of the short state vector (see Sect. 2.3).

Source sector Sub-sector Short name Source type Contribution EF RCO RNOx RSO2

Power plants Gas-fired power plants 1A Point 37 % XO X X
Coal-fired power plants 1B XO X X X

Non-industrial Households 2A Area 15 % XO XO X X
combustion Glasshouses 2B XO X X

Industry 3 Point 39 % XO XO XO XO

Road traffic Cars 7A Area 6 % XO XO XO
Heavy-duty vehicles 7B XO XO XO

Shipping Ocean shipping 8A Area 3 % XO X XO XO
Inland shipping 8B XO X XO XO
Recreational shipping 8C
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Figure 2. Emission ratios of CO/CO2 (RCO), NOx/CO2 (RNOx ),
and SO2/CO2 (RSO2 ) for specific source sectors based on the
Dutch Pollution Release and Transfer Register (Netherlands PRTR,
2014). Units are in parts per billion per parts per million
(ppb ppm−1). A value of 10 on the y axis thus implies that for each
1000 mol of CO2 10 mol of the auxiliary tracer is emitted.

approach also allows uncertainties to be described in detail
based on parameters in Eq. (2).

2.1.1 Step 1: sectorial total emission calculations

Total annual emissions (FX in kg yr−1) per sector and species
(X = CO2, CO, NOx , SO2) are calculated as a function of
the economic activity and an emission factor (adapted from
Raupach et al., 2007):

FX = A

(
E

A

)(
FCO2

E

)
RX, (1)

where A is the amount of activity (which is often given in
EUR when GDP or industrial productivity is used as proxy)
and E is the primary energy consumption (petajoule, PJ).
RX is the emission ratio needed to calculate emissions of co-
emitted species X from the CO2 emissions (kg kg−1), which
is specific for each economic sector (RCO2 is always 1, others
are illustrated in Fig. 2). In this equation the term FCO2/E is
the CO2 emission factor (EF), i.e. the amount of CO2 emitted
per amount of energy consumed. The term E/A can be seen
as a measure of energy efficiency, in which technological de-
velopment plays an important role (Nakicenovic et al., 2000).

The information needed in Eq. (1) comes from various
inventories and national information sources. For example,
changes in annual activity can be approximated based on na-
tional statistics such as the GDP (gross domestic product),

which can be a proxy for industrial activity. Or A can be
based on environmental data such as the annual degree day
sum based on the outside temperature, as proxy for the need
for household heating in a particular year. These proxies for
A are known globally, which is why we use Eq. (1) instead of
directly using energy consumption data (E). For local stud-
ies, more specific activity data could be used, e.g. vehicle
kilometres driven as a predictor for road traffic emissions.
The second term in Eq. (1) (E/A, the energy efficiency)
can be estimated from activity data and energy consumption
statistics, such as those available from the International En-
ergy Agency or data from national statistics agencies. Even
if E is not directly available for a country, an estimate can
be made based on a country with a comparable level of de-
velopment and climatology. Note that this term can show a
large trend in the case of technological development. The last
terms in Eq. (1) (F/E and RX, the emission factors) are the
most uncertain ones, because the emission factor is depen-
dent on the fuel mix and the energy efficiency, which itself
can vary with environmental conditions (e.g. a cold engine
on a winter day burns less efficiently). It can therefore dif-
fer significantly between countries. Emission factor values
that are generally valid can be gathered from the Intergov-
ernmental Panel on Climate Change (IPCC) or the European
Environmental Agency (EEA), while country-specific values
are typically less easily accessible. For our study area, we
have access to both EEA data and to Netherlands-specific
numbers, as well as Rijnmond-specific values (Netherlands
PRTR, 2014). See Appendix A for a full overview of the data
used.

2.1.2 Step 2: temporal profiles and parameterizing
activity

The second step is to disaggregate the annual emissions
to hourly emissions by calculating time profiles, such that
Eq. (1) becomes “dynamic”:

FX, t = A

(
E

A

)(
FCO2

E

)
RXTt , (2)

where Tt is the hourly time factor and F is in kilograms per
year (kg yr−1). Averaged over a year the value of Tt is 1.0,
so that it only alters the temporal evolution and not the to-
tal emissions. Energy use is often specifically linked to an
activity (A in Eq. 1) and Eq. (2) on which temporal infor-
mation is more readily available than on the resulting emis-
sions. Therefore, Tt can be calculated in two ways: (1) by
directly using temporally explicit activity data or (2) by pa-
rameterizing temporal variations from environmental and/or
economic conditions. When activity data are available, the
first option is preferable. However, in data-sparse regions the
second option might be necessary to implement, which is still
an improvement compared to long-term average profiles as
commonly used as we will discuss next for several sectors
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represented in our emission model. Appendix B provides an
overview of the data that are used per sector.

Non-industrial combustion is dominated by household nat-
ural gas consumption to heat houses, for cooking, and for
warm water supply. A Dutch energy provider has a dataset
publicly available from about 80 smart meters for the year
2013 with hourly gas consumption (Liander, 2018). It clearly
shows a seasonal cycle but also more small-term variations
(daily data are shown in Fig. 3). We also see higher gas con-
sumption in the beginning of the year, when the first 3 months
of 2013 had some long, cold spells.

The use of energy for household heating is connected to
the outside temperature. Previous studies have therefore used
the concept of heating degree days to describe the temporal
variability in emissions from households (Mues et al., 2014;
Terrenoire et al., 2015). This method weighs all daily mean
temperatures below a certain temperature threshold (here
18 ◦C, as suggested by Mues et al., 2014) and assigns emis-
sions to these days accordingly. Besides heating, gas con-
sumption is related to warm water supply and cooking, which
is largely independent of the outside temperature. Therefore,
a constant offset is assumed of 20 %, similar to Mues et
al. (2014). More details can be found in Appendix B.

We compared the heating degree day method using ob-
served temperature data from the Royal Netherlands Mete-
orological Institute (KNMI) with gas consumption data on
a daily basis (Fig. 3). The degree day function follows the
gas consumption data very well, including the higher con-
sumption at the start of the year, reaching an R2 of 0.90
(N = 365). The gas consumption of consumers also has a
diurnal pattern with peaks in the early morning and late af-
ternoon. Therefore, a diurnal profile can be estimated based
on typical working hours, for which we used profiles from
Denier van der Gon et al. (2011). For hourly data, R2 is 0.80
(N = 8760, not shown).

For the energy consumption of glasshouses, there is no
true activity data available. Instead, we use modelled daily
energy consumption for a typical Dutch glasshouse cultivat-
ing tomatoes (courtesy of Bas Knoll, TNO) as the “truth” (ac-
tivity data). This time profile is calculated for typical meteo-
rological conditions, such that the order of magnitude and the
peaks are representative for an average year. There is almost
no energy consumption during the summer, which indicates
that there is no constant offset. So, we use the heating degree
day function with no constant offset to determine the time
factors. Moreover, we use a lower temperature threshold of
15 ◦C to get a better fit with the observed energy consump-
tion. During summer several days show a peak in the rel-
ative gas consumption, suggesting that the average tempera-
ture has dropped below the threshold. The estimated function
compares well with the activity data (Fig. 3) with an R2 of
0.85 (N = 365). The diurnal cycle of glasshouse emissions is
likely to be different from that of household emissions. Yet
we lack data to establish a diurnal cycle. We therefore use the

same diurnal profile as for households, although this is likely
to be incorrect.

Power plants can use different fuels such as hard coal, nat-
ural gas, or biomass. In the Netherlands coal-fired and gas-
fired power plants account for 80 %–85 % of the total energy
production. The remainder comes mainly from wind energy
(5 %–6 %) and biomass burning (5 %–6 %). Power genera-
tion data are reported by the European Network of Trans-
mission System Operators for Electricity (ENTSO-E), which
has detailed data available for the whole of Europe (Hirth
et al., 2018). Coal-fired power plants are currently the main
source of energy, and their electricity generation is relatively
stable compared to other sources. This sector does, however,
show a seasonal cycle with less energy production during the
summer months. Gas-fired power plants have a larger tem-
poral variability as they are mainly used as back-up for peak
hours, depending also on the amount of renewable energy
that is available.

We use the degree day function to estimate the time pro-
files of both coal- and gas-fired power plants. Linear regres-
sion analysis shows that the coal-fired power generation is
correlated with degree days (R2

= 0.17). In this case we use
a large constant offset of 80 % and a threshold of 25 ◦C,
which were chosen to best match the actual power genera-
tion data. The offset is much larger than for households be-
cause there is always a basic energy demand from industry.
In contrast, the gas-fired power plants are (negatively) cor-
related with the wind speed (R2

= 0.13) and incoming so-
lar radiation (R2

= 0.10), which may indicate a higher need
for gas-fired power generation in the absence of renewable
sources. Therefore, we replace the temperature in the degree
day function with the multiplication of wind speed (thresh-
old of 10 m s−1) and incoming solar radiation (threshold of
150 J cm−2). A constant offset of 10 % is assumed.

The diurnal cycles for power plants can be based on socio-
economic factors. For example, the energy demand peaks
early in the morning when people get ready to go to work and
at the end of the afternoon when they get home. We find this
pattern in the actual power generation data, with coal-fired
power plants being less variable during the day than gas-fired
power plants. The fixed profile from the European MACC-III
emission inventory (Denier van der Gon et al., 2011; Kuenen
et al., 2014) matches reasonably well with gas-fired power
plant profiles, but it is less applicable for coal-fired power
plants (Fig. 4). Overall, the estimated profiles for gas-fired
power plants (daily or hourly data) have an R2 of 0.31 or
0.32 (N = 366 or 8784) when compared to the activity data.
For coal-fired power plants, this R2 is 0.17 or 0.21 (N = 366
or 8784).

The constant offset of 80 % for coal-fired power plants is
mainly caused by the energy demand of the industry and
other semi-continuous processes. Taking into account sea-
sonal variations in these processes could improve the timing
of coal-fired power plant activities, probably increasing the
power generation in winter relative to the summer holiday
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Figure 3. Daily time profiles for households (a) and glasshouses (b). Solid red lines are based on true activity data, whereas dashed black
lines are parameterizations based on the degree day function.

Figure 4. Daily time profiles for gas-fired (a) and coal-fired (b) power plants. Solid red lines are based on true activity data, whereas dashed
black lines are parameterizations based on observed temperature (coal) and wind speed and radiation (gas). Average diurnal cycle for gas-
fired (c) and coal-fired (d) power plants. Solid red lines are based on true activity data, whereas dashed black lines are fixed profiles from
the MACC inventory (Denier van der Gon et al., 2011; Kuenen et al., 2014). Shading gives the 1σ variability of the diurnal cycle based on
activity data.

period. Moreover, the renewable energy supply is probably
better modelled when taking into account a larger domain,
since the energy supply is not just local. With a better pre-
diction of the amount of renewables, we could improve the
timing of the gas-fired power plant emissions, which mostly
function as a back-up for renewable energy.

The industrial sector consists of a wide range of activi-
ties of which some are semi-continuous and only interrupted
by maintenance stops, while others follow working hours.
This makes it very difficult to predict the temporal variabil-
ity, especially for the overall sector. Since the largest CO2
emissions are related to refineries and heavy industry, we
will focus on these activities. We find a seasonal cycle in the
reported industrial activity, with a small decline during the

summer and Christmas holidays. However, the variations are
very small (max 1 %). Therefore, we assume constant emis-
sions.

Road transport emissions can vary between different road
and vehicle types (Mues et al., 2014), but they are also
strongly dependent on environmental, socio-economic, and
driving conditions (such as the amount of stops, free-flow
versus stagnant conditions, and engine temperature). Traf-
fic count data are often used to create average time profiles
for road traffic emissions; although, with traffic counts we
are unable to account for environmental and driving condi-
tions. Traffic counts for the Netherlands are made available
by the Nationale Databank Wegverkeersgegevens (NDW),
and similar data are available in many developed coun-
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tries. We differentiate between two vehicle types (passenger
cars+motorcycles (hereafter referred to as cars) and light-
duty+ heavy-duty vehicles (hereafter referred to as HDVs))
and three road types (highway, main road, urban road). We
selected all available locations for 2014 within or close to
Rotterdam that distinguish three to five vehicle lengths and
filtered for a minimum data coverage of 75 %. This leaves
us with 25 highway, 6 main road, and 13 urban road loca-
tions. From these data, we make average time profiles (daily,
weekly, and monthly) per road and vehicle type, as is of-
ten done to disaggregate road traffic emissions. Note that this
method excludes any spatial variations (e.g. highways lead-
ing towards the city vs. the beach), except for differentiating
between road types.

Generally, HDVs show a larger spread due to the low
counts during the weekend (Fig. 5). Car counts on weekdays
show morning and evening rush hours, and they go down
in between. In contrast, HDV counts peak throughout the
day and only go down after the evening rush hour. More-
over, the diurnal cycles are different during the weekend than
on weekdays. These patterns can be explained from socio-
economic factors. Current time profiles are often based on
cars and are unable to correctly represent the temporal vari-
ability of HDVs. This also affects the spatial distribution of
emissions; therefore, we create average diurnal, weekly, and
seasonal profiles separately for cars and HDVs for different
road types and considering the day of the week. The compar-
ison of true traffic counts and averaged traffic counts results
in R2 values between 0.83 and 0.95 for hourly data for the
whole year (N between 2665 and 6471 because of gaps in
the traffic count data).

Shipping emissions are dependent on the type of fuel used
and whether ships apply slow steaming. Additionally, dur-
ing loading and unloading, ships still emit CO2 and other
pollutants, even though they are not moving. Such informa-
tion is currently not available, so instead we use information
about the arrival and departure of ships in the port of Rot-
terdam to make a time series of ship movements. Note that
this only applies to large vessels that transport goods and
passengers and that the time profile will look different for
recreational shipping. However, large ships account for ap-
proximately 80 % of the total shipping emissions in the area
of interest. Since we lack information about other types of
shipping movements, we will only account for large ships in
the time profiles.

We collected ship movements for 1 month (daily data) and
an average diurnal profile. The diurnal cycle shows a peak
throughout the day, which corresponds well with the HDV
road transport emission patterns on highways. The reason for
this is that HDV road transport is related to shipping move-
ments, as HDVs take care of part of the goods transported
further inland after the goods have arrived by ship. We also
find a clear weekly pattern with less ship movements during
the weekend, although the decrease is less than for HDV road
transport. This is likely because large ships, such as entering

the port of Rotterdam, continue travelling during the week-
end. Therefore, the weekly pattern resembles more that of
car road transport on highways. Thus, we can estimate ship
movements by using the temporal profiles of HDVs and cars
on highways. This method is specifically tested for Rotter-
dam and different patterns might be visible elsewhere. We
also use HDV patterns for the seasonal variability, and fi-
nal parameterized and reported activity in this method reach
an R2 value of 0.89 for a period of 18 d with hourly data
(N = 432) as shown in Fig. 6.

2.1.3 Step 3: spatial disaggregation

National total sectorial emissions need to be distributed into
spatially explicit emissions for our study domain. The spatial
disaggregation of emissions has already received attention
from inventory builders. Existing emission inventories can
be used to describe the spatial disaggregation, if available for
the region at high resolution. Therefore, no extra effort is put
into the spatial disaggregation, and the spatial patterns from
the Dutch Emission Registration have been adopted (Nether-
lands PRTR, 2014).

In absence of a high-resolution inventory, simple default
proxies for the spatial distribution can be used, such as
population density (e.g. Gridded Population of the World,
GPW) and the presence of roads or waterways (e.g. Open-
StreetMap). Generally, these proxies are also used by inven-
tory builders but are often updated to take into account local
circumstances. For example, main roads and urban roads are
busiest in densely populated areas, and we can assume emis-
sions on main and urban roads are correlated with popula-
tion density. Highways are used for transport between cities;
therefore, emissions take place outside densely populated ar-
eas as well. Nevertheless, highway transport is usually to and
from densely populated areas, such that most emissions will
take place close to cities. We can therefore relate these emis-
sions with the population density in the area of interest (in
this case Rijnmond) relative to the rest of the country, which
places the same amount of the country-level emissions in our
case study domain as the gridded inventory. Additionally, the
location of large power plants or industrial plants is often
known (for example from E-PRTR, Pollutant Release and
Transfer Register), which can be used directly.

Although such information allows us to possibly construct
a detailed fossil fuel model in data-sparse regions in the fu-
ture, in this study we focus first on the more easily imple-
mentable and less-developed parameterization of temporal
activity in different sectors (step 2) to assess whether this
approach is promising enough for future extension.

2.1.4 Step 4: uncertainty analysis

The emission model we have constructed in steps 1–3 con-
tains several parameters per source sector: activity, emission
factor, spatial proxy, and time profile. For the analysis, we
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Figure 5. Time profiles of passenger cars (a) and heavy-duty vehicles (b) road transport on highways for 10 randomly chosen days in
March. Solid red lines are based on true activity data, whereas dashed black lines are parameterizations based on averaged traffic counts for
Rotterdam.

Figure 6. Daily time profiles for shipping. Solid red line is based on
true activity data, whereas dashed black line is a parameterization
based on traffic counts of heavy-duty vehicles (diurnal cycle) and
cars (day-to-day variations) on highways.

only consider the emission factors and time profiles, as we
assume activity data and the spatial distribution to be (a) well
known for our study area and (b) be mostly unobservable
from the network of only seven sites which is used here to
evaluate our approach (see Sect. 2.2.3). Although the spatial
distribution is actually a large source of uncertainty, we aim
at optimizing parameter values that are valid for the entire
case study area, and for simplicity we ignore the spatially
variable uncertainties. Nevertheless, it is possible to incor-
porate spatial uncertainties in this methodology as well, as
illustrated by Super et al. (2020).

As input for step 1 in the dynamic emission model, we use
generalized parameters which we take from the IPCC, EEA,
and other organizations. These databases also provide an un-
certainty range, which we use in a final step to create a co-
variance matrix. The covariance matrix describes the Gaus-
sian uncertainty of these parameters (diagonal values) and
error correlations between parameters (off-diagonal values).
From the covariance matrix we create an ensemble of pa-
rameters (N = 500) that represents their joint distributions,
and we use them to calculate an ensemble of emissions. In

this Monte Carlo simulation, we transform some Gaussian
parameters into log-normal distributions to account for non-
negativity or to account for distributions with a very long tail
(mainly emission ratios, which can become high in specific
cases where no emission reduction measures are taken). Ap-
pendix A summarizes the used parameter values and uncer-
tainties (including the shape of the distributions) and shows
an example of the covariance matrix. This method is a first
step towards a better quantification of parameter uncertain-
ties and error correlations, and additional effort has already
been made to improve this method (Super et al., 2020).

In a final step, we select the most important parameters,
which are either very uncertain or have a large impact on the
total emissions. This leaves us with the 44 parameters that we
optimize in a set of data assimilation experiments, described
next. In Sect. 3.1 we report uncertainties in per cent (1σ ) for
normal distributions (CO2) or as a 90 % confidence interval
(CI) for log-normal distribution (co-emitted species).

2.2 Data assimilation to estimate fossil fuel sources

The goal of data assimilation is to find a state at which the
system is in optimal agreement with observations. In this
work, the observations we want to explore are the mole frac-
tions of CO2 and its co-emitted species, while the state of
the system is the underlying spatio-temporal distribution of
fossil fuel emissions. Such configurations are sometimes re-
ferred to as “FFDAS” (fossil fuel data assimilation system)
applications, with a number of examples in recent literature
(Rayner et al., 2010; Asefi-Najafabady et al., 2014; Basu
et al., 2016; Graven et al., 2018). Given the sparsity of ap-
proaches explored so far, the dynamic emission model with
its parameter-driven emissions we present here could lend it-
self well for application in an FFDAS, and this is what we
explore through a set of experiments with our own data as-
similation methodology.

In this study we use the CarbonTracker Data Assimilation
Shell (CTDAS) (v1.0) described in detail in van der Laan-
Luijkx et al. (2017). Briefly, the CTDAS system is a flex-

https://doi.org/10.5194/gmd-13-2695-2020 Geosci. Model Dev., 13, 2695–2721, 2020



2704 I. Super et al.: Optimizing a dynamic fossil fuel CO2 emission model

ible implementation of a square-root ensemble Kalman fil-
ter (Whitaker and Hamill, 2002), which also allows lagged
windows (i.e. smoothing instead of filtering). The ensemble
Kalman filter optimizes the cost function for unknown vari-
ables in the state vector x using information from observa-
tions (y0 with covariance R) and a prior estimate of the state
vector (xb with covariance P).

J (x) =
(
y0
−H (x)

)T
R−1

(
y0
−H (x)

)
+

(
x− xb

)T
P−1

(
x− xb

)
(3)

In this function, H is the observation operator that returns
simulated mole fractions given the state vector. R and P de-
termine how much weight is given to the observations and
prior estimate, respectively.

The optimized state vector (indicated with superscript a,
whereas b refers to the prior estimates) which minimizes the
cost function is

xa = xbt +K
(
y0
t −H

(
xbt

))
(4)

and its covariance is

Pat = (I−KH)Pbt . (5)

Here, H is the linearized observation operator, and K is the
Kalman gain matrix:

K=
(

Pbt H
T
)(

HPbt H
T
+R

)−1
. (6)

The solutions of Eqs. (4) and (5) are calculated as in Peters
et al. (2005) using an ensemble of 80 members. The choice
for the ensemble size was based on the typical dimensions of
our inverse problem, which has N = 1960 observations and
M = 44 unknowns for the base run.

We have adapted CTDAS for smaller-scale studies by re-
placing the typical observation operator H , which is the
global TM5 transport model (Huijnen et al., 2010), with a
combination of WRF-STILT footprints and the OPS (Op-
erational Priority Substances) plume model, building on
the methods described in Super et al. (2017a) and He et
al. (2018). Moreover, we have added our emission model to
the observation operator so that we can sample its parameter
distribution in atmospheric mole fraction space. More details
about the individual parts of this system are provided below
and are summarized in Fig. 7.

2.2.1 Observation operator

The observation operator translates the 44 parameters in the
emission model first into emissions (through Eqs. 1 and 2)
and then into atmospheric mole fractions. The transport mod-
elling consists of two parts. The first part, the Weather Re-
search and Forecasting-Stochastic Time-Inverted Lagrangian

Transport model (WRF-STILT; Nehrkorn et al., 2010) is used
for surface emissions that are representative of large areas
(i.e. not a point source). STILT is a Lagrangian particle dis-
persion model that describes the footprint of a single mea-
surement by dispersing particles back in time (Gerbig et
al., 2003; Lin et al., 2003). With this footprint the surface
influence of emissions on a single observation can be de-
scribed. An advantage of this method is that it allows for the
precalculation of linear atmospheric transport, which makes
this part of the observation operator less computationally de-
manding than running an ensemble of a full atmospheric
transport model (like WRF with chemistry). The total do-
main covered with WRF-STILT is 77km× 88 km (Fig. 1)
and includes most of the Randstad.

The second part of the transport modelling is a plume
model. In a previous study we have shown that point source
(stack) emissions should be modelled with a plume model to
better represent the limited dimensions of the stack plume
(Super et al., 2017a). Similarly, Vogel et al. (2013) have
shown that the surface influence calculated by STILT can
lead to large model errors for stack emissions. Therefore, we
include the OPS (Operational Priority Substances, short-term
version) plume model in our framework to model the trans-
port and dispersion of stack emissions (Van Jaarsveld, 2004;
Sauter et al., 2016). OPS provides hourly concentrations at
predefined receptor points, which represent our measurement
sites. We apply the OPS model only to point source emis-
sions within the Rijnmond area, as we found in a previous
study that a plume model only has an added value less than
10–15 km downwind from the stack (Super et al., 2017a).
Point sources at more than 10–15 km from the observation
site can be sufficiently represented with a Eulerian model.
The OPS model input includes detailed information about the
exact stack height and heat content of the plume. For more
details on WRF-STILT and OPS, see Appendix C.

In addition to the fossil fuel contribution we also include
background mole fractions for CO2 and CO. NOx and SO2
are short-lived species; therefore, the variations in the back-
ground are relatively small compared to the fossil fuel sig-
nals. The CO2 background is taken from the 3-D mole frac-
tions of CarbonTracker Europe (Peters et al., 2010) and also
accounts for biogenic fluxes. The resolution of these CO2
fields is 1◦× 1◦, and we select the grid box that is situated
over Rotterdam. The 3-hourly data are linearly interpolated
to get hourly background mole fractions that are added to the
fossil fuel signals calculated by the transport models. We use
the strong wintertime correlation between CO2 and CO mole
fractions (r = 0.73) to calculate CO background conditions
from the CO2 background. This is not very accurate, but for
the purpose of this OSSE it provides us with a decent esti-
mate of the variability in background mole fractions.
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Figure 7. Time series of pseudo-observations and prior CO2 mole fractions and a summary of how these time series were created.

2.2.2 State vector

We populated the state vector with a selection of the most im-
portant parameters of the emission model, based on their im-
pact on the total emission uncertainty described in the results
(Sect. 3.1). However, we hypothesize that emission model
parameters that are not part of the state vector are neverthe-
less uncertain and may affect the results. Therefore, we in-
clude a total of 44 scaling factors in our state vector (xb), and
each scaling factor is linearly related to a parameter from the
emission model. The uncertainty in these parameters (covari-
ance matrix P) is derived from the Monte Carlo simulations
described in Sect. 2.1, with the spread in the emission model
parameter values provided by the same databases of the IPCC
and EEA. These uncertainty values can also be found in Ap-
pendix A.

For this study, we selected an arbitrary 2-week period in
January 2014 (6–20 January). Note that during the summer
the importance of source sectors might be different, e.g. there
will be less heating from households. Nevertheless, this pe-
riod is sufficient to test the applicability of our DA system.
We loop over the 14 d in our study period, resulting in one
posterior state vector for each day. We initialize our state vec-
tor for every new day using the posterior values and posterior
uncertainties from the previous day. Because the footprints
we generated extend backwards for 6 h, the state vector for
each day is effectively only constrained by the observations
from that same day, and hence we did not use a Kalman-

smoother approach in this work in contrast to other CTDAS
applications.

Although this is a data-rich region, we use generic val-
ues for the prior emission model parameters which we take
from the IPCC, EEA, and other organizations (Appendix A).
These values are typically valid for a large region (e.g. Eu-
rope) and not necessarily the best estimate for our regional
case study. The reason that we use these values is that they
can provide a first estimate of the emissions in data-scarce re-
gions where inverse modelling might add most to our knowl-
edge. With this set-up we can examine how well we can
constrain the true emissions starting with this generic, and
widely available, information.

One major challenge in this study is to attribute the mis-
match between the observed and modelled mole fractions
to a specific sector, as a CO2 observation alone provides
no details on the origin of the CO2. Therefore, we include
three tracers (CO, NOx , and SO2) that are co-emitted with
CO2 during fossil fuel combustion in a ratio (referred to as
RCO, RNOx , and RSO2 ) that is specific for each source sec-
tor (Fig. 2). Their (pseudo-)observations can inform us about
the source of the mismatch, but through their emission ratio
to CO2 they also constrain the magnitude of CO2 emissions
in the emission model. The ratios RCO, RNOx , and RSO2 used
for this conversion to CO2 emissions is not fixed: for each of
the co-emitted species we included them in the state vector.
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This recognizes that emission ratios are highly variable and
uncertain but play an important role in source attribution.

2.2.3 Pseudo-observations

In this work we create observing system simulation ex-
periments (OSSEs), which use pseudo-observations instead
of true observations. The advantage of using pseudo-
observations is that we can accurately examine the abilities
of our new approach without having to account yet for (often
dominant) atmospheric transport errors. This approach rep-
resents an ideal situation with relatively few sources of error
compared to a study using real observations, which makes it
useful to study the potential of this new system to optimize
emission model parameters.

The pseudo-observations used to optimize the emission
model parameters are created using the same observation op-
erator as described above. The emission model is used to cre-
ate realistic emissions with a high spatio-temporal resolution.
Yet in contrast to the prior state vector, we use specific lo-
cal (Dutch) values for the emission model parameters. These
parameters are considered to be the truth and are therefore
not scaled (scaling factors are 1.0). We found that these local
parameter values are always within the uncertainty range of
the general (prior) values, so that the true solution is part of
the distribution explored within the prior state vector. This
is confirmed in an experiment with a small model–data mis-
match and no noise in the background, which reproduces the
true parameters very well (not shown).

The resulting emissions are used in combination with the
background mole fractions and transport calculated by WRF-
STILT and the OPS model to create pseudo-observations at
the locations shown in Fig. 1. For the pseudo-observations,
the original background time series are used, whereas in the
inversion random noise is added to the background mole
fractions with a standard deviation of 2 ppm for CO2. We as-
sume no contribution from biogenic CO2 to the excess CO2
over the background, which means that any biogenic contri-
bution to CO2 within our footprint is the same as in the inflow
from outside our domain, which is thus cancelling in the sub-
traction of the background CO2. An error in biogenic fluxes
is therefore attributed to the fossil fuel emissions, which rep-
resents a typical case where biogenic and fossil fuel signals
are hard to distinguish from each other and from the back-
ground. Biogenic fluxes can be significant, even in urban ar-
eas, and therefore add significant uncertainty to the fossil fuel
flux estimates (Fischer et al., 2017; Sargent et al., 2018).

One simulated time series is illustrated in Fig. 7. The mon-
itoring network consists of seven sites that are scattered over
the city of Rotterdam and the port. All sites exist in the na-
tional CO2 or air quality measurement networks, although
not all species used in the inversion are observed at all loca-
tions. We only use the daytime (12:00–16:00 LT, local time)
observations to constrain our emissions, resulting in a total
of 1960 observations. This is normally done to favour well-

mixed conditions when simulated transport is more reliable,
and we want to mimic this limitation. We assume all instru-
ments have an inlet at 10m above ground level. In reality
this is lower for several sites, but during the well-mixed day-
time conditions the difference is minimal. Representing at-
mospheric transport around in-city sites can be very chal-
lenging; therefore, the use of elevated sites or a transport
model that can represent transport in complex terrain in more
detail is recommended when true observations are used.

The covariance matrix R describes the observation error.
It accounts for errors related to instrumentation but also rep-
resentativeness errors due to model transport, interpolation,
and parameterization used in the emission model. Although
in principle such errors can be excluded in an OSSE, we pre-
fer to use realistic estimates of these errors to allow for the
random errors that we applied to the prescribed boundary in-
flow, as well as to account for parameters in the emission
model that are not optimized even though they contained un-
certainty in the pseudo-data creation. We base the R matrix
on the calculated errors in the background and atmospheric
transport and variability caused by parameters that are not
part of the state vector from the uncertainty analysis, and we
end up with variances of 2.5 ppm (CO2), 8 ppb (CO), 3 ppb
(NOx), and 1 ppb (SO2).

2.3 Data assimilation experiments

We perform various experiments to examine the sensitivity
of the system to different set-ups and sources of error. The
experiments are discussed here, and the detailed set-up of the
inversions is summarized in Table 2. The base run is labelled
“Base”.

1. State vector definition. We start with a comparison of
two different state vectors. For this purpose, we com-
pare the base run with an inversion (Short_state), which
only includes the 21 most important parameters as iden-
tified in the sensitivity analysis. This test allows us to
examine the impact of erroneous non-optimized emis-
sion model parameters on the emission estimates. The
results are discussed in Sect. 3.2.

2. Source attribution. Next we compare two monitoring
network configurations which differ in the number of
tracers used. We perform an inversion with CO2 as the
only tracer (CO2_only) and one with the full range of
tracers (Base) to assess the added value of including co-
emitted species for source attribution. These tests ad-
dress the question of whether co-emitted species can be
used for source attribution. The results are discussed in
Sect. 3.2.

3. Propagation. The third experiment is used to examine
the effect of propagation of posterior values and un-
certainties on the final emission estimates. We com-
pare the base run to a run that has no propagation
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Table 2. Overview of the inversions: which tracers are included, the
length of the state vector, and whether posterior values and uncer-
tainties are propagated.

Inversion name Tracers State vector Propagation
length to the next

(per day) day

Base All 44 Yes
Short_state All 21 Yes
No_propagation All 44 No
CO2_only CO2 44 Yes
CO2_only_no_propagation CO2 44 No

(No_propagation and CO2_only_no_propagation) but
instead starts from the same prior mean and uncertainty
on each of our 14 d considered. The runs without would
allow the parameter values to change over time. The re-
sults are discussed in Sect. 3.3.

3 Results

Before demonstrating the use of our dynamic emission model
in an inverse framework, we demonstrate its application as a
simple but versatile method to generate hourly gridded emis-
sions for multiple species with full covariances.

3.1 Dynamic emissions and their uncertainty

The total annual emission of CO2 for the Netherlands calcu-
lated with the dynamic emission model is 180 Tg CO2 with
an uncertainty of 15 % (1σ Gaussian based on 500 mem-
bers of a Monte Carlo simulation). This matches the total
of the Dutch national emission inventory for 2014 by de-
sign (step 1), but the uncertainty on the latter was estimated
with a similar Monte Carlo simulation to be only 1 % for
CO2 in 2004 (Ramírez et al., 2006). This smaller uncertainty
is fully due to the use of country-specific emission factors
with a much smaller range than we derived from the IEA
and IPCC inventories. Spatial disaggregation (step 2) does
not affect the uncertainty of the domain-aggregated annual
fluxes, and the time profiles (step 3) have no impact on the
annual total emissions. For CO, NOx , and SO2, the uncer-
tainties in the emission model are much larger, with medians
(CIs) of 6.5×108 (1.3×108–6.8×109) kg CO yr−1, 5.0×108

(1.2×108–5.1×109) kg NOx yr−1, and 1.3×108 (5.1×106–
2.2×1010) kg SO2 yr−1. These ranges result from uncertain-
ties in the assumed ratios of their release per unit of CO2
emitted.

At the sub-annual timescale, time profiles have an im-
pact on the uncertainties as well. The daily emissions of the
Netherlands depend on the day and the season (Fig. 8) and
range from 0.36 to 0.76 Tg CO2 d−1. The time series shows
a seasonal cycle with lower emissions during the summer.
There is a clear weekly cycle with reduced emissions dur-

ing the weekend. The uncertainty in the total daily emission
varies between 8 % and 15 %, which is similar to or lower
than the uncertainty in the annual total emissions. The ex-
planation for these relatively low uncertainties is that many
uncertainties are temporally uncorrelated, and their impacts
on individual days partially cancel out. Moreover, the largest
sectors (coal-fired power plants and industry) already have
a large uncertainty and adding more uncertainty through the
time profiles has little impact. Nevertheless, the uncertainties
introduced through the time profiles cause an uncertainty in
daily CO2 emissions of about 7 % if the other uncertainties
are excluded from the analyses.

Differences in the relative contribution of different sec-
tors are evident when looking at the map of uncertainties
across the Netherlands (Fig. 8), reflecting both the most un-
certain parameters but also the dominant source sectors. Win-
ter emissions, for example, are dominated by household gas
usage, while industrial and traffic emissions give rise to un-
certainty all-year round at a 10 %–30 % level. We further
identified the most important parameters per source sector
with a Monte Carlo simulation per source sector (Fig. 9). Re-
sults show that the road traffic and shipping sectors contain
the smallest relative uncertainties, although the time profile
for shipping causes an uncertainty of about 7 % in the total
shipping emissions. The industrial emissions are most uncer-
tain, and this is almost exclusively due to the emission fac-
tor, which causes an uncertainty of 41 % in the total indus-
trial emissions. Similarly, the power plant emissions have a
large relative uncertainty due to the uncertain emission factor
of coal-fired power plants (19 %). Also, for households and
glasshouses, the emission factor is uncertain (14 % and 26 %,
respectively), but here the time profiles also have a large im-
pact (10 % and 16 %, respectively).

3.2 Optimizing dynamic emissions

In the base inverse modelling set-up, our system is able to
improve the mean estimate and reduce the uncertainty on
total CO2, CO, NOx , and SO2 emissions. Figure 10 shows
the probability density function of these estimated total emis-
sions, compared to the prior (using parameters derived from
IPCC/EEA) and the truth (created with country-specific pa-
rameter values). Interestingly, the posterior result deterio-
rates slightly when using a shortened state vector in which
11 parameters of “minor” influence (such as the SO2/CO2
ratio of household emissions) are not optimized from their
incorrect prior. This is caused by sporadic atmospheric sig-
nals that are dominated by household emissions, even if these
emissions only contribute a small fraction to the total emis-
sions. These signals are then used to update the emission fac-
tor, while the emission ratios are also incorrect.

With CO2 as the only tracer in the inversion we find that
we can still estimate total CO2 emissions (truth minus op-
timized equals 0.03 Tg CO2 yr−1), but we lose the capacity
to attribute emissions to specific sectors. Instead, mainly the
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Figure 8. (a) Time series of daily CO2 emissions (in Tg CO2 d−1) and their uncertainty. Given is the interquartile range (shaded area)
and the median (line) from the ensemble. (b, c) Map of annual mean relative uncertainty of emissions for the top 25 % of pixels with the
largest emissions, during a winter month (dominated by household gas and electricity use) and a summer month (electricity and road traffic
dominated).

Figure 9. Box plots showing the uncertainty in the CO2 emissions from power plants (1A+ 1B), households (2A), glasshouses (2B), industry
(3), road traffic (7A+ 7B), and shipping (8A+ 8B+ 8C) caused by individual parameters affecting that sector. Uncertainty is represented
as the spread in daily (normalized) emissions from each ensemble member (N = 500) for a randomly chosen day. EF refers to an emission
factor (green bars) and T to a time profile (orange bars). (Sub)sectors are indicated with their short names as summarized in Table 1. Note
that the time profiles of road traffic emissions are specified per road type (1 = highway, 2 = main road, 3 = urban road). Minor parameters
that have very small impacts on CO2 emissions are not shown here (23 out of 44).

emission factor of the largest single source, being industry
(EF3), is optimized. We illustrate this in Fig. 11 using the
No_propagation run. The large spread across the 14 indi-
vidual days indicates that the emission factor jumps around
within a large prior uncertainty distribution and is not well

constrained on each day. Some of the other emission factors
show almost no deviation from the prior and little variabil-
ity. Given the constraints posed by CO2 observations alone,
and the limited number of parameters that change the simu-
lated CO2, optimizing EF3 improves the results at the lowest
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Figure 10. Probability density functions of emissions per species or per source category (for CO2) in units of teragrams (Tg) (CO2) or
gigagrams (Gg) (CO, NOx , SO2). The truth is shown as a vertical dotted line, typically well matched by the mean of the posterior in blue.
Using a shortened state vector (green dashed line) deteriorates the total non-CO2 emissions substantially and leads to misattribution of CO2
emissions in minor categories such as 2A (households).

costs. Introducing the co-emitted species allows the system
to identify the source of a residual and attribute it to the right
parameters if sufficient sensitivity is present. This is espe-
cially true for those sectors that have relatively small emis-
sions and/or uncertainties (like 2B and 1A). This is corrobo-
rated by the posterior covariance matrices (see Appendix D)
which show a reduction in parameter correlations for those
parameters (i.e. a better mathematical separation of the esti-
mates) when all tracers are included in the estimate. For other
parameters, the median values are further from the truth than
the prior (e.g. for RSO2 8), which indicates that there is too
little sensitivity to these parameters.

3.3 Localization and propagation of information

Propagating information on parameter values from one day
to the next is often better than using the median of an individ-
ual day’s estimates as illustrated by the red lines in Fig. 11.
Nevertheless, the sporadic detection of plumes with specific
signatures suggests that a form of selection or localization of
the strongest signals could reduce noise and improve the es-
timate for the No_propagation run. We therefore ranked the
14 daily independent parameter estimates based on their rel-
ative posterior uncertainty and the residuals in an attempt to
find the most trustworthy parameter values. This ranking is
done per parameter, so the best estimate of different parame-
ters can be related to different days. The increase in residual
(same for all parameters) and posterior uncertainty (of the in-
dustrial emission factor) is shown in Fig. 12, where the three
to five highest-ranked days have similar characteristics after

which the reliability decreases. On the lower-ranked days, at-
mospheric signals from that particular source sector are too
small (or even absent) to update the parameters related to that
source sector. A similar pattern is found for the other param-
eters (not shown), with 2–5 d of high sensitivity out of 14.

When we use the top-three averaged parameter values to
calculate emissions, we find for most sectors that the emis-
sion estimate is similar to the base run, albeit with a larger un-
certainty, while for a few specific sectors results deteriorate.
This suggests that selecting for strong signals can dampen
spurious noise but still does not improve on the base run that
includes full propagation of the covariances and hence car-
rying information on parameter correlations that is partially
lost in the No_propagation run.

From the posterior covariance matrices we can confirm our
selection of “good” days, as these typically show relatively
weak correlations between parameters. For the industrial sec-
tor (emission factor, RNOx , RSO2 ), these are typically weak
on most days, and indeed the mean over the entire period
already gives a robust estimate of the true parameter value
(Fig. 13). The parameters with the strongest correlations are
RCO of households and road traffic, and their mean values
tend to be dominated by a few outliers. Selecting days on
which the posterior parameter correlations are weak (i.e. the
atmospheric signal clearly contains information about this
specific parameter) results in a large improvement compared
to the prior or a 14 d average. Moreover, these results show a
similar or better performance as the top-three selection based
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Figure 11. Spread (Q1–Q3) and median values of the parameter scaling factors for the 14 individual days included in the
CO2_only_no_propagation (a) and No_propagation (b) inversions and final value of the CO2_only (a) and base (b) inversion (red lines).
The prior values are indicated by the black lines and the truth is indicated with the green dotted lines (value of 1.0). The left y axis is for the
emission factors and the right y axis for the tracer ratios. The inversion with all tracers shows more variability in the emission factors and
larger deviations from the prior values.

Figure 12. Increase in posterior uncertainty (1σ of unitless scaling
factor) in the industrial emission factor (EF 3) and absolute mean
residual of CO2 (in ppm) from highest- to lowest-ranked days.

on Fig. 12 (0.08 for EF3 and 0.18 for RCO 7A, not shown),
and are closer to the base run.

4 Discussion

4.1 Optimizing the dynamic emission model

The dynamic emission model has the advantage over static
emission fields that its parameters are optimized, giving more
detailed physical meaning to the results. To reduce the size of
the problem, the state vector can be populated with those pa-
rameters that are most important and/or uncertain. However,

we find that other uncertain parameters that are not part of
the state vector can still significantly affect the optimization.
Therefore, the size of the state vector should be considered
carefully when applying this method. How to best determine
the size of the state vector requires further work, possibly us-
ing some objective criterion to select for a dynamic model
with an optimal information content (Akaike, 1974). More-
over, we performed an experiment to establish the possibil-
ity to optimize the time profiles as part of the state vector.
Although we found small improvements for some sectors,
it appears to be difficult to differentiate between the differ-
ent variables in Eq. (2) that have a linear relationship based
purely on the observations. Therefore, the results are not
shown and optimizing the temporal dynamics of the emission
model requires further work. In a future study the uncertainty
caused by spatial disaggregation should also be included, as
well as the possibility to reduce this uncertainty using higher-
resolution satellite observations (Kuhlmann et al., 2019).

Additionally, we identified the base run as the simplest
method to get good estimates, but we do note that our cur-
rent propagation scheme does not yet include error growth.
That means that eventually the ensemble will converge on
a parameter value and discard incoming observational evi-
dence unless the covariance is inflated to allow new updates.
Examples of such a covariance inflation scheme are ample in
literature and in principle not difficult to include but were not
yet considered in this work as the time periods covered were
still short. An example related to this work is to use weather
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Figure 13. Scatter plot of the absolute error in the scaling factor of the industrial emission factor (EF 3) and RCO of road traffic (7A) against
the sum of the parameter correlations of the same parameters. The correlation coefficients are −0.17 and 0.37, respectively. The horizontal
lines give the average absolute error in the scaling factor for the prior (full black line), if all 14 d are averaged (dotted line), and based on the
3 d with the smallest parameter correlations (dashed line) and the result for the base run (full red line). The values are also given.

system characteristics to determine a correlation length for
household emissions.

Finally, we have demonstrated that tracers are suitable for
source attribution. Several previous studies have used co-
emitted species as tracer for fossil fuel CO2 by taking ad-
vantage of the specific emission ratio characteristics of each
source sector (Lauvaux et al., 2013; Lindenmaier et al., 2014;
Turnbull et al., 2015) and came to similar conclusions. Nev-
ertheless, the uncertainty in emission ratios remains a source
of error; therefore, the optimization of emission ratios with
our system is a promising step forward. Using co-emitted
species to identify the total fossil fuel contribution to the ob-
served CO2 signal is more difficult (Turnbull et al., 2006).
The reason for this is that there is a large variability in emis-
sion ratios between sectors. This makes it difficult to estab-
lish an average emission ratio for an urban area, because it
depends strongly on the relative contribution of each source
sector and may vary over time.

4.2 Radiocarbon and background definition

Therefore, a nice addition to this inversion system would be
the inclusion of radiocarbon measurements. The radiocar-
bon isotope (14CO2) can be used to simulate fossil fuel CO2
records and has been applied successfully in several inverse
modelling studies (Turnbull et al., 2006, 2015; Levin and
Karstens, 2007; Miller et al., 2012; Basu et al., 2016; Wang et
al., 2018). The radiocarbon measurements could be used di-
rectly in the inversion (as we did with the co-emitted species)
or be used to define a fossil fuel CO2 record in advance (Fis-
cher et al., 2017; Graven et al., 2018). Our urban network
detects average fossil fuel CO2 signals of about 5 ppm with
peaks up to 50 ppm. This would result in 114C signals (the

ratio of 14CO2 to 12CO2) of around 13 ‰ up to 130 ‰, which
are certainly detectable with current techniques. However,
observations of carbon isotopes are expensive and currently
not widely available, so their applicability is still limited. Be-
sides114C, other isotope signatures and tracers can also pro-
vide additional information. For example, 13CO2 and O2/N2
can give insight into the dominant sources and sinks or fuel
types (Lopez et al., 2013; Van der Laan et al., 2014) and as
such be an indicator for the transition from fossil fuels to
biofuels. They might also help to separate between the stack
emissions of industry and coal- and gas-fired power plants.

An additional advantage of including the radiocarbon iso-
tope is that the uncertainty in the background CO2 can be
excluded, i.e. only the fossil fuel record is considered. Here,
we choose to ignore the uncertainty in the background, ex-
cept in the definition of the covariance matrix R, and attribute
all tracer residuals to the fossil fuel emissions. Yet an incor-
rect definition of the background causes a large bias in the
optimized emissions (Göckede et al., 2010). There are also
several other methods to deal with the non-fossil fuel related
CO2 signals. First, the uncertain background can be added
to the state vector and be optimized in the inversion. For ex-
ample, He et al. (2018) have shown that high-altitude air-
craft observations are suitable to improve regional biosphere
flux estimates by correcting the bias in boundary conditions.
Second, a mole fraction gradient over the area of interest
can be calculated using an upwind and downwind site such
that the boundary inflow plays no role anymore (Turnbull et
al., 2015). This method was shown to reduce the impact of
boundary inflow but only when the wind direction is more or
less perpendicular to the gradient (Bréon et al., 2015; Staufer
et al., 2016). Therefore, this method limits the amount of use-
ful measurements.
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4.3 Error correlations

The emission model also allows us to study the correlations
between model parameters and therefore giving more in-
sight into how information can be used in the system and
which parameters are more challenging to separate. Previ-
ously, Boschetti et al. (2018) have used the presence of er-
ror correlations between emissions of different species and
found that this reduces the posterior uncertainties for all
species. They even show that the uncertainty reduction in-
creases with the correlation and that an incorrect definition of
the error correlations may cause a systematic bias in the pos-
terior emission estimate. However, error correlations are only
beneficial if the atmospheric observations can distinguish be-
tween the correlated parameters. If this is not the case, the
presence of parameter correlations can result in poorly con-
strained parameters and/or large posterior uncertainties. This
is especially true when parameters are sensitive to parameter
correlations, as we show for RCO of road traffic.

An important question is then why some emission model
parameters are more sensitive to the presence of parameter
correlations than others. One hypothesis is that parameters
with a lower prior uncertainty are more sensitive to the pres-
ence of parameter correlations. The idea behind this is that
if we reduce the diagonal value (uncertainty) by a factor of
4, the off-diagonal value (parameter correlation) reduces by
a factor of 2. This means that the parameter correlation is
relatively stronger if the uncertainty is lower (Boschetti et
al., 2018). This hypothesis cannot be confirmed by our re-
sults, as we only find a correlation of −0.27 between the
prior uncertainty and the sensitivity to parameter correlations
(defined as the correlation between the posterior uncertainty
and the sum of the parameter correlations). The main diffi-
culty here is that not all parameters can be discerned with
the observed atmospheric signals. Although we included the
additional co-emitted tracers for source attribution, the emis-
sion ratios have a large uncertainty and the system can have
difficulties assigning residuals to either the emission ratio or
the emission factor. Yet if we calculate an average sensitivity
and total posterior uncertainty per sector (by combining the
emission factor and emission ratios per sector), we find a cor-
relation coefficient of −0.82. This suggests that this hypoth-
esis might indeed be correct and source sectors with larger
parameter uncertainties are less sensitive to the presence of
parameter correlations.

4.4 Atmospheric transport model errors

In addition to the experiments described in Sect. 2.3 we
conducted an experiment that focused on the role of trans-
port model errors by using observed meteorology to drive
the OPS model in the inversion. Like many authors before
us (McKain et al., 2012; Brioude et al., 2013; Lauvaux et
al., 2013; Bréon et al., 2015; Boon et al., 2016) we found
a large impact on the performance of our system and once

again confirmed the need for accurate transport models. This
experiment is not further shown in this work because of its
redundancy with previous conclusions. Nevertheless, we per-
formed this experiment to examine whether transport errors
are important when the state vector consists of parameters
that are valid for the entire domain. Random errors, such as
errors in the wind direction, are unlikely to affect the opti-
mized emissions much when averaged over a longer time pe-
riod and domain. This was shown by Deng et al. (2017), who
found little variation in the average CO2 emission for Indi-
anapolis using different configurations of WRF to calculate
the transport. However, they did find an impact on the spatial
distribution of the emissions. This becomes important when
optimizing a specific source sector that is clustered in one
place, such as the glasshouses. We found that the glasshouse
sector is only correctly optimized with a specific wind di-
rection. If the modelled wind direction is wrong the residu-
als would thus not be attributed to the glasshouse sector as
it is not in the modelled footprint of the measurement site.
As such, we conclude that the footprint definition has an im-
pact on the optimized parameters, despite that the parameters
have no spatial distribution. Similarly, Broquet et al. (2018)
mention that the location and structure of a simulated urban
plume might differ significantly from the true plume charac-
teristics due to errors in the simulated wind speed and wind
direction.

Systematic errors, whether in the modelled transport or in
the observations, are more difficult to solve as they do not
cancel out when simulating a longer period, and this can
lead to biased emission estimates (Meirink et al., 2008; Su
et al., 2011). Several methods have been suggested to over-
come problems with an incorrect description of atmospheric
transport, such as using an ensemble of atmospheric transport
model simulations (Angevine et al., 2014) or the assimilation
of meteorological observations (Lauvaux et al., 2013). The
latter showed lower biases in buoyancy and mean horizontal
wind speed. Another method that is often used is the selec-
tion of well-mixed afternoon hours to exclude stable condi-
tions under which pollutant dispersion is often poorly rep-
resented (Lauvaux et al., 2013; Bréon et al., 2015; Boon et
al., 2016). Such data selection, however, leads to a bias in the
estimated emissions when the diurnal cycle is not correctly
accounted for (Super et al., 2020).

Here, we also applied a daytime selection criterion to
mimic this situation. However, we found that night-time
hours could be very useful to constrain our emissions. In our
DA system we use residual fossil fuel enhancements over a
background (prior minus true mole fraction enhancement) to
constrain the fossil fuel fluxes. The larger the residual, the
more information can be gained from it since the impact of
the observation error (R matrix) is relatively small. If, for
example, the industrial emission factor is underestimated by
10 %, the residual industrial enhancement (given a linear re-
lationship between the emission factor and the total emis-
sion from this sector) will be 10 % of the pseudo-observed
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mole fraction. This means that a large signal from the in-
dustry is needed to reach a residual that is larger than the
observation error (σ is 1.6 ppm for CO2). Looking at the
time series of pseudo-observations we find that such large
signals mostly occur during night-time or in the early morn-
ing. Therefore, the inversion could benefit strongly from an
improved description of night-time boundary layers and sta-
ble conditions, so that the large night-time enhancements can
be used to constrain the fossil fuel fluxes.

5 Conclusions

The aim of this study was to examine how well our DA sys-
tem can quantify urban CO2 emissions per source sector.
Since the prior consists of a dynamic fossil fuel emission
model, the model parameters are optimized rather than the
emissions themselves. The parameters are related to specific
source sectors, and to attribute residuals to these sectors mea-
surements of additional tracers (CO, NOx , and SO2) are in-
cluded in the inversions. We tested this system to examine its
ability to overcome some major limitations in current urban-
scale inversions: source attribution, definition of the prior and
its uncertainties, and the sensitivity to errors in atmospheric
transport.

We find that inverse modelling at the urban scale is feasible
when the observations contain a lot of information about the
different source sectors. Based on this work we can conclude
the following:

1. A dynamic fossil fuel emission model can be useful to
create a prior in data-sparse regions or to make use of lo-
cal data to increase the spatio-temporal representation,
while allowing us to constrain physically relevant pa-
rameters in more detail.

2. When only CO2 mole fractions are used in the inversion,
the total CO2 emissions are well constrained, but addi-
tional tracers are an important addition to the inversion
framework in order to discern the information belong-
ing to specific source sectors and emission model pa-
rameters. However, even more tracers might be needed
to fully capture the heterogeneity of the emission land-
scape.

3. The prior error covariance structure based on the emis-
sion model provides useful insight into how parameters
interact and what is needed to separate them.

Nevertheless, several challenges remain. Transport mod-
elling at this small scale needs to be improved to be able to
use real urban observations, as under current conditions the
transport error strongly dominates the results. Especially im-
proving the description of night-time boundary layers could
be beneficial, because large atmospheric signals mostly occur
during this period. For the future, additional advances need to

be made to include satellite observations in the inverse mod-
elling framework. The advantage of satellite data is that they
cover data-sparse regions and with a larger view they can dif-
ferentiate between the urban dome with high pollution levels
and the cleaner rural areas, which is a nice addition to in situ
measurements.
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Appendix A: Emission model input data and
uncertainties

Table A1. Overview of all parameters in the dynamic emission model, their unit, function type, expected value, and uncertainty (range).

Parameter (Sub-)sector Unit Function type Expected value Uncertainty

Emission factora Coal-fired power plantsc kg PJ−1 normal 1.01× 108 23 %
Gas-fired power plantsc kg PJ−1 normal 5.61× 107 10 %
Householdsc kg PJ−1 normal 5.89× 107 14 %
Glasshousesc kg PJ−1 normal 5.61× 107 25 %
Industryd kg PJ−1 normal 7.66× 107 40 %
Road traffic carse kg PJ−1 normal 7.24× 107 10 %
Road traffic HDVse kg PJ−1 normal 7.33× 107 5 %
Ocean shippingf kg PJ−1 normal 7.76× 107 5 %
Inland shippingf kg PJ−1 normal 7.30× 107 5 %
Recreational shippingf kg PJ−1 normal 7.10× 107 5 %

Emission ratio CO/CO2 Coal-fired power plantse kg kg−1 log-normal 1.29× 10−4 8.7× 10−7 to 2.9× 10−4

Gas-fired power plantse kg kg−1 log-normal 8.47× 10−4 3.4× 10−4 to 2.5× 10−3

Householdse kg kg−1 log-normal 3.88× 10−3 8.3× 10−4 to 9.6× 10−3

Glasshousese kg kg−1 log-normal 5.40× 10−4 3.1× 10−5 to 7.7× 10−4

Industryd kg kg−1 normal 2.06× 10−3 40 %
Road traffic carse kg kg−1 log-normal 1.32× 10−2 8.0× 10−5 to 6.5× 10−2

Road traffic HDVse kg kg−1 log-normal 2.22× 10−3 9.3× 10−5 to 1.3× 10−2

Ocean shippingf kg kg−1 normal 2.32× 10−3 30 %
Inland shippingf kg kg−1 normal 3.42× 10−3 30 %
Recreational shippingf kg kg−1 normal 2.96× 10−1 30 %

Emission ratio NOx/CO2 Coal-fired power plantse kg kg−1 log-normal 5.94× 10−4 3.0× 10−4 to 9.4× 10−4

Gas-fired power plantse kg kg−1 log-normal 2.00× 10−3 2.6× 10−4 to 3.7× 10−3

Householdse kg kg−1 log-normal 1.50× 10−3 4.8× 10−4 to 3.3× 10−3

Glasshousese kg kg−1 log-normal 1.63× 10−3 5.0× 10−4 to 3.5× 10−3

Industryd kg kg−1 normal 6.56× 10−4 40 %
Road traffic carse kg kg−1 log-normal 1.76× 10−3 9.0× 10−5 to 7.5× 10−3

Road traffic HDVse kg kg−1 log-normal 1.11× 10−2 3.3× 10−4 to 3.7× 10−2

Ocean shippingf kg kg−1 normal 2.32× 10−2 30 %
Inland shippingf kg kg−1 normal 1.37× 10−2 30 %
Recreational shippingf kg kg−1 normal 1.97× 10−3 30 %

Emission ratio SO2/CO2 Coal-fired power plantse kg kg−1 log-normal 1.66× 10−4 2.9× 10−5 to 4.4× 10−4

Gas-fired power plantse kg kg−1 log-normal 5.01× 10−6 2.9× 10−6 to 7.2× 10−6

Householdse kg kg−1 log-normal 2.21× 10−5 1.4× 10−5 to 6.7× 10−5

Glasshousese kg kg−1 log-normal 8.91× 10−6 5.2× 10−6 to 1.3× 10−5

Industryd kg kg−1 normal 4.28× 10−4 40 %
Road traffic carsg kg kg−1 normal 1.01× 10−6 100 %
Road traffic HDVsg kg kg−1 normal 8.16× 10−7 100 %
Ocean shippingf kg kg−1 log-normal 6.18× 10−3 3.3× 10−4 to 2.0× 10−2

Inland shippingf kg kg−1 log-normal 6.57× 10−3 3.5× 10−4 to 3.0× 10−2

Recreational shippingf kg kg−1 log-normal 3.14× 10−4 1.1× 10−4 to 7.0× 10−4

Hourly time factorh Coal-fired power plants – normal 1 28 %
Gas-fired power plants – normal 1 43 %
Industry – normal 1 5 %
Households – normal 1 43 %
Glasshouses – normal 1 74 %
Road traffic cars: highway – normal 1 18 %
Road traffic cars: main road – normal 1 18 %
Road traffic cars: urban road – normal 1 18 %
Road traffic HDVs: highway – normal 1 41 %
Road traffic HDVs: main road – normal 1 18 %
Road traffic HDVs: urban road – normal 1 48 %
Total shipping – normal 1 31 %
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Table A1. Continued.

Parameter (Sub-)sector Unit Function type Expected value Uncertainty

Energy consumption per activity datai Total power plants PJ per million EUR – 8.22× 10−4 –
Households PJ per degree-dayb – 0.199 –
Glasshouses PJ per degree-dayb – 0.061 –
Industry PJ per million EUR – 7.05× 10−4 –
Road traffic cars PJ per million EUR – 3.98× 10−4 –
Road traffic HDVs PJ per million EUR – 2.01× 10−4 –
Total shipping PJ per million EUR – 1.51× 10−4 –

Fraction of total energy consumption Total power plants: coal – – 0.62 –
per sub-sectorj Total power plants: gas – – 0.38 –

Road traffic cars: highway – – 0.47 –
Road traffic cars: main road – – 0.28 –
Road traffic cars: urban road – – 0.25 –
Road traffic HDVs: highway – – 0.56 –
Road traffic HDVs: main road – – 0.24 –
Road traffic HDVs: urban road – – 0.20 –
Total shipping: ocean – – 0.79 –
Total shipping: inland – – 0.20 –
Total shipping: recreational – – 0.01 –

a Emission factor for coal-fired and gas-fired power plants include uncertainty due to variations in fuel type, including burning of biomass (5 % uncertainty). For households, assume 8 % wood
combustion based on CO2 emission values (Vernieuwd emissiemodel houtkachels by Jansen (2016); the remainder is natural gas (with 10 % uncertainty). For glasshouses, assume only natural
gas combustion, including 20 % additional uncertainty due to use of cogeneration plants. For road traffic cars, assume 69 % gasoline, 29 % diesel, and 2 % LPG (liquefied petroleum gas) (with
5 % uncertainty); for road traffic HDVs, assume 100 % diesel. b using degree day method. c Expected value and uncertainty based on IPCC Emission Factor Database (EFDB) using 2006 IPCC
guidelines. d Expected value based on Netherlands PRTR (emission) and Statistics Netherlands (energy consumption); uncertainty based on expert judgement. e Expected value and uncertainty
based on the EMEP/EEA air pollutant emission inventory guidebook 2016. f Expected value and uncertainty based on CO2, CH4, and N2O emissions from transportation-water-borne
navigation by Jun et al. (2000). g Expected value based on Air Pollutant Emission Factor Library (Finish Environment Institute); uncertainty based on expert judgement. h Uncertainties based
on comparison activity-data-based time profiles and estimated time profiles from environmental and/or socio-economic factors (Denier van der Gon et al., 2011). i Expected value based on data
from Statistics Netherlands (energy consumption, GDP (EUR 663 008 million in 2014)) and Royal Netherlands Meteorological Institute (degree day sum (2313.95 for households, 1443.63 for
glasshouses)). j Expected value based on Netherlands PRTR.

Figure A1. Covariance matrix for all parameters in the emission model. For all covariances, we assume a correlation coefficient of 0.5.
(Sub-)sectors are indicated with their short names as summarized in Table 1. Note that the time profiles of road traffic emissions are specified
per road type (1 = highway, 2 = main road, 3 = urban road).
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Appendix B: Temporal profiles

The daily time factor of gas combustion for households may
be described in terms of two components. First, gas is used
for warm water supply and cooking, which is relatively fixed.
Second, gas is used for heating, which is strongly tempera-
ture dependent. The second component has previously been
described using the degree day concept, from which the daily
time factor can be defined as

Tt =H
/
D , (B1)

where H is the heating degree day factor (H =
max(Tthreshold− T2 m, 0)) based on the daily mean out-
side temperature at 2 m and a threshold temperature below
which heating takes place. D is the annual average heating
degree day (D = 1

N

∑N
j=1H ). However, gas consumption

related to warm water supply and cooking is largely inde-
pendent of the outside temperature; therefore, a constant
offset is included in the heating degree day factor:

Hf =H + f ·D, (B2)

where f is the constant offset, which is assigned equally to
all days. The time factor can now be defined as

Tt =Hf
/
Df , (B3)

where the average heating degree day accounted for the con-
stant offset Df = (1+ f )D.

Table B1. Overview of the data used to create the temporal profiles presented in Sect. 2.1.2. The activity data represents the actual and the
parameterizations are based on environmental variables or other proxies.

Source sector Sub-sector Parameterization Activity data

Power plants Gas-fired power plants Wind speed, solar radiation Power generation
Threshold: 10 m s−1, 150 J cm−2

f : 0.1

Coal-fired power plants Temperature Power generation
Threshold: 25 ◦C
f : 0.8

Non-industrial Households Temperature Gas consumption
combustion Threshold: 18 ◦C from smart

f : 0.2 meters

Glasshouses Temperature Modelled energy
Threshold: 15 ◦C consumption
f : 0

Industry None (fixed profile)

Road traffic Cars Average traffic counts Traffic counts
Heavy-duty vehicles Average traffic counts Traffic counts

Shipping Ocean shipping None (fixed profile)
Inland shipping Traffic counts Shipping movements
Recreational shipping None (fixed profile)

Equation (B3) is used for households and coal-fired power
plants, whereas for glasshouses no constant offset is as-
sumed and so Eq. (B1) is applied. For gas-fired power plants
Eq. (B3) is used, but the temperature is replaced with aver-
age wind speed and solar radiation to match its function as
backup for renewable energy supply:

H =max(10− u, 0) ·max
(
150−R, 0

)
, (B4)

where u is the wind speed (m s−1) and R the incoming solar
radiation (J cm−2 h−1).
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Appendix C: Observation operator

To generate a footprint with the WRF-STILT model, 75 par-
ticles are released at the observation site at the start of the
back-trajectory and followed back in time. Given that the
variability in hourly observations at an urban location is dom-
inated by local signals, we construct back-trajectories span-
ning 6 h. This is based on the domain size, which could
be covered within 6 h for typical wind speeds of 4 m s−1.
Within this time frame, emissions can become well mixed
throughout the boundary layer under normal daytime mix-
ing conditions, such that emissions outside this range can
be represented by a boundary inflow. Footprints are gener-
ated for each hour within the back-trajectory to account for
hourly variations in the emissions. We drive STILT with me-
teorology from the WRF model (v3.5.1). The WRF model
was set up with two nested domains (15km× 15km and
3km×3 km horizontal resolutions) and the STILT footprints
have a 1km× 1 km resolution over the entire domain.

The OPS plume model keeps track of a plume trajec-
tory, considering time-varying transport over longer dis-
tances (e.g. changes in wind direction and dispersion). If for
a time step a specific plume affects the receptor, a Gaus-
sian plume formulation is used to calculate the mole frac-
tion caused by that source based on the true travel distance
along the trajectory. We drive the model with the same WRF
meteorology as STILT. Only primary meteorological vari-
ables (temperature, relative humidity, wind direction, wind
speed, precipitation, global radiation) are prescribed; sec-
ondary variables (e.g. boundary layer height, friction veloc-
ity) are calculated by OPS itself and can differ from WRF.
Similar to the WRF-STILT model, we assume an influence
time of 6 h for our observations. However, in this case we
run the OPS model forward from −6 h to the time of obser-
vation.

Appendix D

Figure D1. Matrix showing the difference in correlation coeffi-
cient (r) between the CO2_only_no_propagation and No_ prop-
agation run averaged for all 14 d, where positive differences in-
dicate reduced parameter correlations when all tracers are in-
cluded (No_propagation). (Sub-)sectors are indicated with their
short names as summarized in Table 1. For some parameters, a
strong reduction in parameter correlations is shown, indicating that
with all tracers that parameter can be more easily separated from
others, e.g. the emission factors of industry and coal-fired power
plants (EF3 and EF1B).
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Code and data availability. CTDAS (v1.0) (van der Laan-Luijkx et
al., 2017) is released under a GNU-GPL3.0 licence and forms the
basis of the system described in this paper. Minor changes have
been made to include the dynamic emission model. Revised code
and the additional module used to describe the dynamic emission
model and the creation of pseudo-observations is included in the
Supplement, as is a script used for the emission uncertainty analy-
sis (Monte Carlo simulation). Input data for the dynamic emission
model are taken from open, online databases and are summarized
in Appendix A, including their data sources. Example input files for
CTDAS and the OPS model are also included in the Supplement.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-13-2695-2020-supplement.
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