Articles | Volume 13, issue 6
https://doi.org/10.5194/gmd-13-2671-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-2671-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Superparameterised cloud effects in the EMAC general circulation model (v2.50) – influences of model configuration
Institute for Atmospheric Physics, Johannes Gutenberg University, Mainz, Germany
German Weather Service, Offenbach am Main, Germany
Institute for Atmospheric Physics, Johannes Gutenberg University, Mainz, Germany
Related authors
Harald Rybka, Ulrike Burkhardt, Martin Köhler, Ioanna Arka, Luca Bugliaro, Ulrich Görsdorf, Ákos Horváth, Catrin I. Meyer, Jens Reichardt, Axel Seifert, and Johan Strandgren
Atmos. Chem. Phys., 21, 4285–4318, https://doi.org/10.5194/acp-21-4285-2021, https://doi.org/10.5194/acp-21-4285-2021, 2021
Short summary
Short summary
Estimating the impact of convection on the upper-tropospheric water budget remains a problem for models employing resolutions of several kilometers or more. A sub-kilometer high-resolution model is used to study summertime convection. The results suggest mostly close agreement with ground- and satellite-based observational data while slightly overestimating total frozen water path and anvil lifetime. The simulations are well suited to supplying information for parameterization development.
H. Rybka and H. Tost
Atmos. Chem. Phys., 14, 5561–5576, https://doi.org/10.5194/acp-14-5561-2014, https://doi.org/10.5194/acp-14-5561-2014, 2014
Ryan Vella, Sergey Gromov, Clara M. Nussbaumer, Laura Stecher, Matthias Kohl, Samuel Ruhl, Holger Tost, Jos Lelieveld, and Andrea Pozzer
EGUsphere, https://doi.org/10.5194/egusphere-2025-1800, https://doi.org/10.5194/egusphere-2025-1800, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We evaluated how replacing forests with farmland and grazing areas affects atmospheric composition. Using a global climate-chemistry model, we found that deforestation reduces BVOCs, increases farming pollutants, and shifts ozone chemistry. These changes lead to a small cooling effect on the climate. Restoring natural vegetation could reverse some of these effects.
Sina Jost, Ralf Weigel, Konrad Kandler, Luis Valero, Jessica Girdwood, Chris Stopford, Warren Stanley, Luca Katharina Eichhorn, Christian von Glahn, and Holger Tost
EGUsphere, https://doi.org/10.5194/egusphere-2025-451, https://doi.org/10.5194/egusphere-2025-451, 2025
Short summary
Short summary
For the balloon-borne detection of particles (diameter 0.4 < Dp < 40 µm), a Universal Cloud and Aerosol Sounding System (UCASS) was used, whose sample flow is determined by GPS-measured ascent rates. In flights, actual UCASS sample flows rarely match the ascent rates. Errors are minimized by real-time detection of the UCASS flows, e.g. by implementing a thermal flow sensor (TFS) within the UCASS. The TFSs were tested in flight, and calibrated at up to 10 m s-1 and at variable angles of attack.
Adrienne Jeske and Holger Tost
EGUsphere, https://doi.org/10.5194/egusphere-2025-293, https://doi.org/10.5194/egusphere-2025-293, 2025
Short summary
Short summary
Thunderstorms lead to a vertical redistribution of tracers throughout the troposphere. We applied a new tool, the convective exchange matrix, in historical simulations with a chemistry-climate model to investigate the trends in convective transport. This reveals that convection reaches higher but deep convection occurs less often in the time period from 2011 to 2020 than in the 1980ies. Thus, convective transport towards the upper troposphere has declined as an adaptation to climate change.
Sarah Brüning and Holger Tost
EGUsphere, https://doi.org/10.5194/egusphere-2025-374, https://doi.org/10.5194/egusphere-2025-374, 2025
Short summary
Short summary
This study analyses the temporal variability and life-cycle of spatially organised convective clouds, frequently associated with severe weather. We derive the data from a machine learning-based 3D extrapolation of 2D satellite data. The results highlight the impact of convective organisation on horizontal and vertical cloud properties and a prolonged cloud life-cycle. Overall, our findings emphasise a more intense activity over land but enhanced seasonal changes over the ocean.
Sarah Brüning and Holger Tost
EGUsphere, https://doi.org/10.5194/egusphere-2025-376, https://doi.org/10.5194/egusphere-2025-376, 2025
Short summary
Short summary
The connection between convective cloud organisation and severe weather demands a robust characterisation of hazardous clouds. This study sets on to investigate spatio-temporal patterns and regional hotspots of convective organisation using machine learning-based 3D data and combining different organisation indices. While limitations arise due to overlapping effects of isolated and clustered convection, we emphasise the impact of a surface-specific seasonality that depends on the hemisphere.
Ryan Vella, Matthew Forrest, Andrea Pozzer, Alexandra P. Tsimpidi, Thomas Hickler, Jos Lelieveld, and Holger Tost
Atmos. Chem. Phys., 25, 243–262, https://doi.org/10.5194/acp-25-243-2025, https://doi.org/10.5194/acp-25-243-2025, 2025
Short summary
Short summary
This study examines how land cover changes influence biogenic volatile organic compound (BVOC) emissions and atmospheric states. Using a coupled chemistry–climate–vegetation model, we compare present-day land cover (deforested for crops and grazing) with natural vegetation and an extreme reforestation scenario. We find that vegetation changes significantly impact global BVOC emissions and organic aerosols but have a relatively small effect on total aerosols, clouds, and radiative effects.
Chun Hang Chau, Peter Hoor, and Holger Tost
EGUsphere, https://doi.org/10.5194/egusphere-2024-3805, https://doi.org/10.5194/egusphere-2024-3805, 2024
Short summary
Short summary
This study examines how the turbulence in the upper troposphere/lower stratosphere could modify the tracer distribution under different situations. Using a multi-scale chemistry model, we find that both the pre-existing tracer gradient and the dynamical and thermodynamically forcing play a role in modifying the tracer distribution. These results allow further research on the UTLS turbulent mixing and its implications for the climate system.
Matthias Kohl, Christoph Brühl, Jennifer Schallock, Holger Tost, Patrick Jöckel, Adrian Jost, Steffen Beirle, Michael Höpfner, and Andrea Pozzer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2200, https://doi.org/10.5194/egusphere-2024-2200, 2024
Short summary
Short summary
SO2 from explosive volcanic eruptions reaching the stratosphere can oxidize and form sulfate aerosols, potentially persisting for several years and influencing climate and the ozone layer. We developed a new submodel for Explosive Volcanic ERuptions (EVER) that seamlessly includes stratospheric volcanic SO2 emissions in global numerical simulations based on a novel standard historical model setup. Sensitivity studies on the Nabro eruption in 2011 evaluate different emission methods.
Anna Martin, Veronika Gayler, Benedikt Steil, Klaus Klingmüller, Patrick Jöckel, Holger Tost, Jos Lelieveld, and Andrea Pozzer
Geosci. Model Dev., 17, 5705–5732, https://doi.org/10.5194/gmd-17-5705-2024, https://doi.org/10.5194/gmd-17-5705-2024, 2024
Short summary
Short summary
The study evaluates the land surface and vegetation model JSBACHv4 as a replacement for the simplified submodel SURFACE in EMAC. JSBACH mitigates earlier problems of soil dryness, which are critical for vegetation modelling. When analysed using different datasets, the coupled model shows strong correlations of key variables, such as land surface temperature, surface albedo and radiation flux. The versatility of the model increases significantly, while the overall performance does not degrade.
Edward Groot, Patrick Kuntze, Annette Miltenberger, and Holger Tost
Weather Clim. Dynam., 5, 779–803, https://doi.org/10.5194/wcd-5-779-2024, https://doi.org/10.5194/wcd-5-779-2024, 2024
Short summary
Short summary
Deep convective clouds (thunderstorms), which may cause severe weather, tend to coherently organise into structured cloud systems. Accurate representation of these systems in models is difficult due to their complex dynamics and, in numerical simulations, the dependence of their dynamics on resolution. Here, the effect of convective organisation and geometry on their outflow winds (altitudes of 7–14 km) is investigated. Representation of their dynamics and outflows improves at higher resolution.
Simon Rosanka, Holger Tost, Rolf Sander, Patrick Jöckel, Astrid Kerkweg, and Domenico Taraborrelli
Geosci. Model Dev., 17, 2597–2615, https://doi.org/10.5194/gmd-17-2597-2024, https://doi.org/10.5194/gmd-17-2597-2024, 2024
Short summary
Short summary
The capabilities of the Modular Earth Submodel System (MESSy) are extended to account for non-equilibrium aqueous-phase chemistry in the representation of deliquescent aerosols. When applying the new development in a global simulation, we find that MESSy's bias in modelling routinely observed reduced inorganic aerosol mass concentrations, especially in the United States. Furthermore, the representation of fine-aerosol pH is particularly improved in the marine boundary layer.
Sarah Brüning, Stefan Niebler, and Holger Tost
Atmos. Meas. Tech., 17, 961–978, https://doi.org/10.5194/amt-17-961-2024, https://doi.org/10.5194/amt-17-961-2024, 2024
Short summary
Short summary
We apply the Res-UNet to derive a comprehensive 3D cloud tomography from 2D satellite data over heterogeneous landscapes. We combine observational data from passive and active remote sensing sensors by an automated matching algorithm. These data are fed into a neural network to predict cloud reflectivities on the whole satellite domain between 2.4 and 24 km height. With an average RMSE of 2.99 dBZ, we contribute to closing data gaps in the representation of clouds in observational data.
Ryan Vella, Andrea Pozzer, Matthew Forrest, Jos Lelieveld, Thomas Hickler, and Holger Tost
Biogeosciences, 20, 4391–4412, https://doi.org/10.5194/bg-20-4391-2023, https://doi.org/10.5194/bg-20-4391-2023, 2023
Short summary
Short summary
We investigated the effect of the El Niño–Southern Oscillation (ENSO) on biogenic volatile organic compound (BVOC) emissions from plants. ENSO events can cause a significant increase in these emissions, which have a long-term impact on the Earth's atmosphere. Persistent ENSO conditions can cause long-term changes in vegetation, resulting in even higher BVOC emissions. We link ENSO-induced emission anomalies with driving atmospheric and vegetational variables.
Edward Groot and Holger Tost
Atmos. Chem. Phys., 23, 6065–6081, https://doi.org/10.5194/acp-23-6065-2023, https://doi.org/10.5194/acp-23-6065-2023, 2023
Short summary
Short summary
It is shown that the outflow from cumulonimbus clouds or thunderstorms in the upper troposphere and lower stratosphere in idealized high-resolution simulations (LESs) depends linearly on the net amount of latent heat released by the cloud for fixed geometry of the clouds. However, it is shown that, in more realistic situations, convective organization and aggregation (collecting mechanisms of cumulonimbus clouds) affect the amount of outflow non-linearly through non-idealized geometry.
Ryan Vella, Matthew Forrest, Jos Lelieveld, and Holger Tost
Geosci. Model Dev., 16, 885–906, https://doi.org/10.5194/gmd-16-885-2023, https://doi.org/10.5194/gmd-16-885-2023, 2023
Short summary
Short summary
Biogenic volatile organic compounds (BVOCs) are released by vegetation and have a major impact on atmospheric chemistry and aerosol formation. Non-interacting vegetation constrains the majority of numerical models used to estimate global BVOC emissions, and thus, the effects of changing vegetation on emissions are not addressed. In this work, we replace the offline vegetation with dynamic vegetation states by linking a chemistry–climate model with a global dynamic vegetation model.
Edward Groot and Holger Tost
Atmos. Chem. Phys., 23, 565–585, https://doi.org/10.5194/acp-23-565-2023, https://doi.org/10.5194/acp-23-565-2023, 2023
Short summary
Short summary
Thunderstorm systems play an important role in the dynamics of the Earth’s atmosphere, and some of them form a well-organised line: squall lines. Simulations of such squall lines with very small initial perturbations are compared to a reference simulation. The evolution of perturbations and processes amplifying them are analysed. It is shown that the formation of new secondary thunderstorm cells (after the initial primary cells) directly ahead of the line affects the spread strongly.
Mohamed Abdelkader, Georgiy Stenchikov, Andrea Pozzer, Holger Tost, and Jos Lelieveld
Atmos. Chem. Phys., 23, 471–500, https://doi.org/10.5194/acp-23-471-2023, https://doi.org/10.5194/acp-23-471-2023, 2023
Short summary
Short summary
We study the effect of injected volcanic ash, water vapor, and SO2 on the development of the volcanic cloud and the stratospheric aerosol optical depth (AOD). Both are sensitive to the initial injection height and to the aging of the volcanic ash shaped by heterogeneous chemistry coupled with the ozone cycle. The paper explains the large differences in AOD for different injection scenarios, which could improve the estimate of the radiative forcing of volcanic eruptions.
Andrea Pozzer, Simon F. Reifenberg, Vinod Kumar, Bruno Franco, Matthias Kohl, Domenico Taraborrelli, Sergey Gromov, Sebastian Ehrhart, Patrick Jöckel, Rolf Sander, Veronica Fall, Simon Rosanka, Vlassis Karydis, Dimitris Akritidis, Tamara Emmerichs, Monica Crippa, Diego Guizzardi, Johannes W. Kaiser, Lieven Clarisse, Astrid Kiendler-Scharr, Holger Tost, and Alexandra Tsimpidi
Geosci. Model Dev., 15, 2673–2710, https://doi.org/10.5194/gmd-15-2673-2022, https://doi.org/10.5194/gmd-15-2673-2022, 2022
Short summary
Short summary
A newly developed setup of the chemistry general circulation model EMAC (ECHAM5/MESSy for Atmospheric Chemistry) is evaluated here. A comprehensive organic degradation mechanism is used and coupled with a volatility base model.
The results show that the model reproduces most of the tracers and aerosols satisfactorily but shows discrepancies for oxygenated organic gases. It is also shown that this model configuration can be used for further research in atmospheric chemistry.
Ralf Weigel, Christoph Mahnke, Manuel Baumgartner, Martina Krämer, Peter Spichtinger, Nicole Spelten, Armin Afchine, Christian Rolf, Silvia Viciani, Francesco D'Amato, Holger Tost, and Stephan Borrmann
Atmos. Chem. Phys., 21, 13455–13481, https://doi.org/10.5194/acp-21-13455-2021, https://doi.org/10.5194/acp-21-13455-2021, 2021
Short summary
Short summary
In July and August 2017, the StratoClim mission took place in Nepal with eight flights of the M-55 Geophysica at up to 20 km in the Asian monsoon anticyclone. New particle formation (NPF) next to cloud ice was detected in situ by abundant nucleation-mode aerosols (> 6 nm) along with ice particles (> 3 µm). NPF was observed mainly below the tropopause, down to 15 % being non-volatile residues. Observed intra-cloud NPF indicates its importance for the composition in the tropical tropopause layer.
Vinod Kumar, Julia Remmers, Steffen Beirle, Joachim Fallmann, Astrid Kerkweg, Jos Lelieveld, Mariano Mertens, Andrea Pozzer, Benedikt Steil, Marc Barra, Holger Tost, and Thomas Wagner
Atmos. Meas. Tech., 14, 5241–5269, https://doi.org/10.5194/amt-14-5241-2021, https://doi.org/10.5194/amt-14-5241-2021, 2021
Short summary
Short summary
We present high-resolution regional atmospheric chemistry model simulations focused around Germany. We highlight the importance of spatial resolution of the model itself as well as the input emissions inventory and short-scale temporal variability of emissions for simulations. We propose a consistent approach for evaluating the simulated vertical distribution of NO2 using MAX-DOAS measurements while also considering its spatial sensitivity volume and change in sensitivity within this volume.
Harald Rybka, Ulrike Burkhardt, Martin Köhler, Ioanna Arka, Luca Bugliaro, Ulrich Görsdorf, Ákos Horváth, Catrin I. Meyer, Jens Reichardt, Axel Seifert, and Johan Strandgren
Atmos. Chem. Phys., 21, 4285–4318, https://doi.org/10.5194/acp-21-4285-2021, https://doi.org/10.5194/acp-21-4285-2021, 2021
Short summary
Short summary
Estimating the impact of convection on the upper-tropospheric water budget remains a problem for models employing resolutions of several kilometers or more. A sub-kilometer high-resolution model is used to study summertime convection. The results suggest mostly close agreement with ground- and satellite-based observational data while slightly overestimating total frozen water path and anvil lifetime. The simulations are well suited to supplying information for parameterization development.
Sara Bacer, Sylvia C. Sullivan, Odran Sourdeval, Holger Tost, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys., 21, 1485–1505, https://doi.org/10.5194/acp-21-1485-2021, https://doi.org/10.5194/acp-21-1485-2021, 2021
Short summary
Short summary
We investigate the relative importance of the rates of both microphysical processes and unphysical correction terms that act as sources or sinks of ice crystals in cold clouds. By means of numerical simulations performed with a global chemistry–climate model, we assess the relevance of these rates at global and regional scales. This estimation is of fundamental importance to assign priority to the development of microphysics parameterizations and compare model output with observations.
Edward Groot and Holger Tost
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1142, https://doi.org/10.5194/acp-2020-1142, 2020
Publication in ACP not foreseen
Short summary
Short summary
Sensitivities and variability of upper tropospheric flow (~10 km height) resulting immediately and as a direct consequence of (thunder)storm activity have been modeled in detail down to resolutions of 100–200 m and explored for different (organisation/) storm types. It is shown that the amount of water condensation explains much of emerging variability in upper atmospheric flow. Part of the effects on the nearby upper atmospheric flow is suggested to be explained by (organisation/) storm type.
Matthew Forrest, Holger Tost, Jos Lelieveld, and Thomas Hickler
Geosci. Model Dev., 13, 1285–1309, https://doi.org/10.5194/gmd-13-1285-2020, https://doi.org/10.5194/gmd-13-1285-2020, 2020
Short summary
Short summary
We have integrated the LPJ-GUESS dynamic global vegetation model into the EMAC atmospheric chemistry-enabled GCM (general circulation model). This combined framework will enable the investigation of many land–atmosphere interactions and feedbacks with state-of-the-art simulation models. Initial results show that using the climate produced by EMAC together with LPJ-GUESS produces an acceptable representation of the global vegetation.
Julie M. Nicely, Bryan N. Duncan, Thomas F. Hanisco, Glenn M. Wolfe, Ross J. Salawitch, Makoto Deushi, Amund S. Haslerud, Patrick Jöckel, Béatrice Josse, Douglas E. Kinnison, Andrew Klekociuk, Michael E. Manyin, Virginie Marécal, Olaf Morgenstern, Lee T. Murray, Gunnar Myhre, Luke D. Oman, Giovanni Pitari, Andrea Pozzer, Ilaria Quaglia, Laura E. Revell, Eugene Rozanov, Andrea Stenke, Kane Stone, Susan Strahan, Simone Tilmes, Holger Tost, Daniel M. Westervelt, and Guang Zeng
Atmos. Chem. Phys., 20, 1341–1361, https://doi.org/10.5194/acp-20-1341-2020, https://doi.org/10.5194/acp-20-1341-2020, 2020
Short summary
Short summary
Differences in methane lifetime among global models are large and poorly understood. We use a neural network method and simulations from the Chemistry Climate Model Initiative to quantify the factors influencing methane lifetime spread among models and variations over time. UV photolysis, tropospheric ozone, and nitrogen oxides drive large model differences, while the same factors plus specific humidity contribute to a decreasing trend in methane lifetime between 1980 and 2015.
Jianzhong Ma, Christoph Brühl, Qianshan He, Benedikt Steil, Vlassis A. Karydis, Klaus Klingmüller, Holger Tost, Bin Chen, Yufang Jin, Ningwei Liu, Xiangde Xu, Peng Yan, Xiuji Zhou, Kamal Abdelrahman, Andrea Pozzer, and Jos Lelieveld
Atmos. Chem. Phys., 19, 11587–11612, https://doi.org/10.5194/acp-19-11587-2019, https://doi.org/10.5194/acp-19-11587-2019, 2019
Short summary
Short summary
We find a pronounced maximum in aerosol extinction in the upper troposphere and lower stratosphere over the Tibetan Plateau during the Asian summer monsoon, caused mainly by mineral dust emitted from the northern Tibetan Plateau and slope area, lofted to and accumulating within the anticyclonic circulation. Mineral dust, water-soluble compounds, such as nitrate and sulfate, and associated liquid water dominate aerosol extinction around the tropopause within the Asian summer monsoon anticyclone.
Mega Octaviani, Holger Tost, and Gerhard Lammel
Geosci. Model Dev., 12, 3585–3607, https://doi.org/10.5194/gmd-12-3585-2019, https://doi.org/10.5194/gmd-12-3585-2019, 2019
Short summary
Short summary
This work presents a submodel description for the atmospheric cycling and air–surface exchange processes of semivolatile organic compounds. The submodel is meant to be applied within a global atmospheric chemistry–climate model. The simulation results for polycyclic aromatic hydrocarbons confirm progress in modelling semivolatile species, verified by comparison with surface monitoring data. The significance of new modelling features for tracer distributions was quantified in a sensitivity study.
J. Christopher Kaiser, Johannes Hendricks, Mattia Righi, Patrick Jöckel, Holger Tost, Konrad Kandler, Bernadett Weinzierl, Daniel Sauer, Katharina Heimerl, Joshua P. Schwarz, Anne E. Perring, and Thomas Popp
Geosci. Model Dev., 12, 541–579, https://doi.org/10.5194/gmd-12-541-2019, https://doi.org/10.5194/gmd-12-541-2019, 2019
Short summary
Short summary
The implementation of the aerosol microphysics submodel MADE3 into the global atmospheric chemistry model EMAC is described and evaluated against an extensive pool of observational data, focusing on aerosol mass and number concentrations, size distributions, composition, and optical properties. EMAC (MADE3) is able to reproduce main aerosol properties reasonably well, in line with the performance of other global aerosol models.
Sara Bacer, Sylvia C. Sullivan, Vlassis A. Karydis, Donifan Barahona, Martina Krämer, Athanasios Nenes, Holger Tost, Alexandra P. Tsimpidi, Jos Lelieveld, and Andrea Pozzer
Geosci. Model Dev., 11, 4021–4041, https://doi.org/10.5194/gmd-11-4021-2018, https://doi.org/10.5194/gmd-11-4021-2018, 2018
Short summary
Short summary
The complexity of ice nucleation mechanisms and aerosol--ice interactions makes their representation still challenging in atmospheric models. We have implemented a comprehensive ice crystal formation parameterization in the global chemistry-climate model EMAC to improve the representation of ice crystal number concentrations. The newly implemented parameterization takes into account processes which were previously neglected by the standard version of the model.
Mohamed Abdelkader, Swen Metzger, Benedikt Steil, Klaus Klingmüller, Holger Tost, Andrea Pozzer, Georgiy Stenchikov, Leonard Barrie, and Jos Lelieveld
Atmos. Chem. Phys., 17, 3799–3821, https://doi.org/10.5194/acp-17-3799-2017, https://doi.org/10.5194/acp-17-3799-2017, 2017
Short summary
Short summary
We present a modeling study on the impacts of the key processes (dust emission flux, convection and dust aging parameterizations) that control the transatlantic dust transport using an advanced version of the EMAC atmospheric chemistry general circulation model. We define the
direct effect of dust agingas an increase in the AOD as a result of hygroscopic growth. We define the
indirect effectas a reduction in the dust AOD due to the higher removal of the aged dust particles.
Holger Tost
Atmos. Chem. Phys., 17, 1125–1142, https://doi.org/10.5194/acp-17-1125-2017, https://doi.org/10.5194/acp-17-1125-2017, 2017
Short summary
Short summary
The paper describes the impact of lightning and the associated NOx emissions on upper-tropospheric aerosol nitrate. The consequences for both the chemical composition of the atmosphere as well as climatic impacts, which originate from lightning and modified aerosol particles, are analysed and discussed.
Mariano Mertens, Astrid Kerkweg, Patrick Jöckel, Holger Tost, and Christiane Hofmann
Geosci. Model Dev., 9, 3545–3567, https://doi.org/10.5194/gmd-9-3545-2016, https://doi.org/10.5194/gmd-9-3545-2016, 2016
Short summary
Short summary
This fourth part in a series of publications describing the newly developed regional chemistry–climate system MECO(n) is dedicated to the evaluation of MECO(n) with respect to tropospheric gas-phase chemistry. For this, a simulation incorporating two regional instances, one over Europe with 50 km resolution and one over Germany with 12 km resolution, is conducted. The model results are compared with satellite, ground-based and aircraft in situ observations.
Simone Dietmüller, Patrick Jöckel, Holger Tost, Markus Kunze, Catrin Gellhorn, Sabine Brinkop, Christine Frömming, Michael Ponater, Benedikt Steil, Axel Lauer, and Johannes Hendricks
Geosci. Model Dev., 9, 2209–2222, https://doi.org/10.5194/gmd-9-2209-2016, https://doi.org/10.5194/gmd-9-2209-2016, 2016
Short summary
Short summary
Four new radiation related submodels (RAD, AEROPT, CLOUDOPT, and ORBIT) are available within the MESSy framework now. They are largely based on the original radiation scheme of ECHAM5. RAD simulates radiative transfer, AEROPT calculates aerosol optical properties, CLOUDOPT calculates cloud optical properties, and ORBIT is responsible for Earth orbit calculations. Multiple diagnostic calls of the radiation routine are possible, so radiative forcing can be calculated during the model simulation.
Patrick Jöckel, Holger Tost, Andrea Pozzer, Markus Kunze, Oliver Kirner, Carl A. M. Brenninkmeijer, Sabine Brinkop, Duy S. Cai, Christoph Dyroff, Johannes Eckstein, Franziska Frank, Hella Garny, Klaus-Dirk Gottschaldt, Phoebe Graf, Volker Grewe, Astrid Kerkweg, Bastian Kern, Sigrun Matthes, Mariano Mertens, Stefanie Meul, Marco Neumaier, Matthias Nützel, Sophie Oberländer-Hayn, Roland Ruhnke, Theresa Runde, Rolf Sander, Dieter Scharffe, and Andreas Zahn
Geosci. Model Dev., 9, 1153–1200, https://doi.org/10.5194/gmd-9-1153-2016, https://doi.org/10.5194/gmd-9-1153-2016, 2016
Short summary
Short summary
With an advanced numerical global chemistry climate model (CCM) we performed several detailed
combined hind-cast and projection simulations of the period 1950 to 2100 to assess the
past, present, and potential future dynamical and chemical state of the Earth atmosphere.
The manuscript documents the model and the various applied model set-ups and provides
a first evaluation of the simulation results from a global perspective as a quality check of the data.
N. I. Kristiansen, A. Stohl, D. J. L. Olivié, B. Croft, O. A. Søvde, H. Klein, T. Christoudias, D. Kunkel, S. J. Leadbetter, Y. H. Lee, K. Zhang, K. Tsigaridis, T. Bergman, N. Evangeliou, H. Wang, P.-L. Ma, R. C. Easter, P. J. Rasch, X. Liu, G. Pitari, G. Di Genova, S. Y. Zhao, Y. Balkanski, S. E. Bauer, G. S. Faluvegi, H. Kokkola, R. V. Martin, J. R. Pierce, M. Schulz, D. Shindell, H. Tost, and H. Zhang
Atmos. Chem. Phys., 16, 3525–3561, https://doi.org/10.5194/acp-16-3525-2016, https://doi.org/10.5194/acp-16-3525-2016, 2016
Short summary
Short summary
Processes affecting aerosol removal from the atmosphere are not fully understood. In this study we investigate to what extent atmospheric transport models can reproduce observed loss of aerosols. We compare measurements of radioactive isotopes, that attached to ambient sulfate aerosols during the 2011 Fukushima nuclear accident, to 19 models using identical emissions. Results indicate aerosol removal that is too fast in most models, and apply to aerosols that have undergone long-range transport.
A. J. G. Baumgaertner, P. Jöckel, A. Kerkweg, R. Sander, and H. Tost
Geosci. Model Dev., 9, 125–135, https://doi.org/10.5194/gmd-9-125-2016, https://doi.org/10.5194/gmd-9-125-2016, 2016
Short summary
Short summary
The Community Earth System Model (CESM1) is connected to the the Modular Earth Submodel System (MESSy) as a new base model. This allows MESSy users the option to utilize either the state-of-the art spectral element atmosphere dynamical core or the finite volume core of CESM1. Additionally, this makes several other component models available to MESSy users.
H. G. Ouwersloot, A. Pozzer, B. Steil, H. Tost, and J. Lelieveld
Geosci. Model Dev., 8, 2435–2445, https://doi.org/10.5194/gmd-8-2435-2015, https://doi.org/10.5194/gmd-8-2435-2015, 2015
A. Pozzer, A. de Meij, J. Yoon, H. Tost, A. K. Georgoulias, and M. Astitha
Atmos. Chem. Phys., 15, 5521–5535, https://doi.org/10.5194/acp-15-5521-2015, https://doi.org/10.5194/acp-15-5521-2015, 2015
Short summary
Short summary
Thanks to numerical simulations and satellite observations, it is shown that aerosol optical depth (AOD) trends (2000--2010 period) over the US and Europe are due to emission decrease, while over the Sahara Desert and the Middle East they are due to meteorological changes. Over Southeast Asia, both meteorology and emission changes are important for the AOD trends.
It is shown that soluble components strongly influence AOD, as their contribution is enhanced by the aerosol water content.
K. Klingmüller, B. Steil, C. Brühl, H. Tost, and J. Lelieveld
Geosci. Model Dev., 7, 2503–2516, https://doi.org/10.5194/gmd-7-2503-2014, https://doi.org/10.5194/gmd-7-2503-2014, 2014
D. Y. Chang, H. Tost, B. Steil, and J. Lelieveld
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-21975-2014, https://doi.org/10.5194/acpd-14-21975-2014, 2014
Preprint withdrawn
H. Rybka and H. Tost
Atmos. Chem. Phys., 14, 5561–5576, https://doi.org/10.5194/acp-14-5561-2014, https://doi.org/10.5194/acp-14-5561-2014, 2014
G. W. Mann, K. S. Carslaw, C. L. Reddington, K. J. Pringle, M. Schulz, A. Asmi, D. V. Spracklen, D. A. Ridley, M. T. Woodhouse, L. A. Lee, K. Zhang, S. J. Ghan, R. C. Easter, X. Liu, P. Stier, Y. H. Lee, P. J. Adams, H. Tost, J. Lelieveld, S. E. Bauer, K. Tsigaridis, T. P. C. van Noije, A. Strunk, E. Vignati, N. Bellouin, M. Dalvi, C. E. Johnson, T. Bergman, H. Kokkola, K. von Salzen, F. Yu, G. Luo, A. Petzold, J. Heintzenberg, A. Clarke, J. A. Ogren, J. Gras, U. Baltensperger, U. Kaminski, S. G. Jennings, C. D. O'Dowd, R. M. Harrison, D. C. S. Beddows, M. Kulmala, Y. Viisanen, V. Ulevicius, N. Mihalopoulos, V. Zdimal, M. Fiebig, H.-C. Hansson, E. Swietlicki, and J. S. Henzing
Atmos. Chem. Phys., 14, 4679–4713, https://doi.org/10.5194/acp-14-4679-2014, https://doi.org/10.5194/acp-14-4679-2014, 2014
C. Liu, S. Beirle, T. Butler, P. Hoor, C. Frankenberg, P. Jöckel, M. Penning de Vries, U. Platt, A. Pozzer, M. G. Lawrence, J. Lelieveld, H. Tost, and T. Wagner
Atmos. Chem. Phys., 14, 1717–1732, https://doi.org/10.5194/acp-14-1717-2014, https://doi.org/10.5194/acp-14-1717-2014, 2014
Y. F. Elshorbany, P. J. Crutzen, B. Steil, A. Pozzer, H. Tost, and J. Lelieveld
Atmos. Chem. Phys., 14, 1167–1184, https://doi.org/10.5194/acp-14-1167-2014, https://doi.org/10.5194/acp-14-1167-2014, 2014
C. Brühl, J. Lelieveld, M. Höpfner, and H. Tost
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-13-11395-2013, https://doi.org/10.5194/acpd-13-11395-2013, 2013
Revised manuscript not accepted
D. Kunkel, H. Tost, and M. G. Lawrence
Atmos. Chem. Phys., 13, 4203–4222, https://doi.org/10.5194/acp-13-4203-2013, https://doi.org/10.5194/acp-13-4203-2013, 2013
Related subject area
Climate and Earth system modeling
SURFER v3.0: a fast model with ice sheet tipping points and carbon cycle feedbacks for short- and long-term climate scenarios
NMH-CS 3.0: a C# programming language and Windows-system-based ecohydrological model derived from Noah-MP
A method for quantifying uncertainty in spatially interpolated meteorological data with application to daily maximum air temperature
Baseline Climate Variables for Earth System Modelling
PaleoSTeHM v1.0: a modern, scalable spatiotemporal hierarchical modeling framework for paleo-environmental data
The Tropical Basin Interaction Model Intercomparison Project (TBIMIP)
ZEMBA v1.0: an energy and moisture balance climate model to investigate Quaternary climate
Development and evaluation of a new 4DEnVar-based weakly coupled ocean data assimilation system in E3SMv2
TemDeep: a self-supervised framework for temporal downscaling of atmospheric fields at arbitrary time resolutions
The ensemble consistency test: from CESM to MPAS and beyond
Presentation, calibration and testing of the DCESS II Earth system model of intermediate complexity (version 1.0)
Synthesizing global carbon–nitrogen coupling effects – the MAGICC coupled carbon–nitrogen cycle model v1.0
Historical trends and controlling factors of isoprene emissions in CMIP6 Earth system models
Investigating carbon and nitrogen conservation in reported CMIP6 Earth system model data
From weather data to river runoff: using spatiotemporal convolutional networks for discharge forecasting
A Fortran–Python interface for integrating machine learning parameterization into earth system models
A rapid-application emissions-to-impacts tool for scenario assessment: Probabilistic Regional Impacts from Model patterns and Emissions (PRIME)
The DOE E3SM version 2.1: overview and assessment of the impacts of parameterized ocean submesoscales
WRF-ELM v1.0: a regional climate model to study land–atmosphere interactions over heterogeneous land use regions
Modeling commercial-scale CO2 storage in the gas hydrate stability zone with PFLOTRAN v6.0
DiuSST: a conceptual model of diurnal warm layers for idealized atmospheric simulations with interactive sea surface temperature
High-Resolution Model Intercomparison Project phase 2 (HighResMIP2) towards CMIP7
T&C-CROP: representing mechanistic crop growth with a terrestrial biosphere model (T&C, v1.5) – model formulation and validation
An updated non-intrusive, multi-scale, and flexible coupling interface in WRF 4.6.0
Monitoring and benchmarking Earth system model simulations with ESMValTool v2.12.0
The Earth Science Box Modeling Toolkit (ESBMTK 0.14.0.11): a Python library for research and teaching
CropSuite v1.0 – a comprehensive open-source crop suitability model considering climate variability for climate impact assessment
ICON ComIn – the ICON Community Interface (ComIn version 0.1.0, with ICON version 2024.01-01)
Using feature importance as an exploratory data analysis tool on Earth system models
A new metrics framework for quantifying and intercomparing atmospheric rivers in observations, reanalyses, and climate models
The real challenges for climate and weather modelling on its way to sustained exascale performance: a case study using ICON (v2.6.6)
COSP-RTTOV-1.0: Flexible radiation diagnostics to enable new science applications in model evaluation, climate change detection, and satellite mission design
Improving the representation of major Indian crops in the Community Land Model version 5.0 (CLM5) using site-scale crop data
Evaluation of CORDEX ERA5-forced NARCliM2.0 regional climate models over Australia using the Weather Research and Forecasting (WRF) model version 4.1.2
Design, evaluation, and future projections of the NARCliM2.0 CORDEX-CMIP6 Australasia regional climate ensemble
The Detection and Attribution Model Intercomparison Project (DAMIP v2.0) contribution to CMIP7
Amending the algorithm of aerosol–radiation interactions in WRF-Chem (v4.4)
The very-high-resolution configuration of the EC-Earth global model for HighResMIP
GOSI9: UK Global Ocean and Sea Ice configurations
Decomposition of skill scores for conditional verification: impact of Atlantic Multidecadal Oscillation phases on the predictability of decadal temperature forecasts
Virtual Integration of Satellite and In-situ Observation Networks (VISION) v1.0: In-Situ Observations Simulator (ISO_simulator)
Climate model downscaling in central Asia: a dynamical and a neural network approach
Advanced climate model evaluation with ESMValTool v2.11.0 using parallel, out-of-core, and distributed computing
Multi-year simulations at kilometre scale with the Integrated Forecasting System coupled to FESOM2.5 and NEMOv3.4
Subsurface hydrological controls on the short-term effects of hurricanes on nitrate–nitrogen runoff loading: a case study of Hurricane Ida using the Energy Exascale Earth System Model (E3SM) Land Model (v2.1)
The Development and Application of an Arctic Sea Ice Emulator v.1
CARIB12: a regional Community Earth System Model/Modular Ocean Model 6 configuration of the Caribbean Sea
Process-based modeling framework for sustainable irrigation management at the regional scale: Integrating rice production, water use, and greenhouse gas emissions
A regional physical-biogeochemical ocean model for marine resource applications in the Northeast Pacific (MOM6-COBALT-NEP10k v1.0)
Architectural insights into and training methodology optimization of Pangu-Weather
Victor Couplet, Marina Martínez Montero, and Michel Crucifix
Geosci. Model Dev., 18, 3081–3129, https://doi.org/10.5194/gmd-18-3081-2025, https://doi.org/10.5194/gmd-18-3081-2025, 2025
Short summary
Short summary
We present SURFER v3.0, a simple climate model designed to estimate the impact of CO2 and CH4 emissions on global temperatures, sea levels, and ocean pH. We added new carbon cycle processes and calibrated the model to observations and results from more complex models, enabling use over timescales ranging from decades to millions of years. SURFER v3.0 is fast, transparent, and easy to use, making it an ideal tool for policy assessments and suitable for educational purposes.
Yong-He Liu and Zong-Liang Yang
Geosci. Model Dev., 18, 3157–3174, https://doi.org/10.5194/gmd-18-3157-2025, https://doi.org/10.5194/gmd-18-3157-2025, 2025
Short summary
Short summary
NMH-CS 3.0 is a C#-based ecohydrological model reconstructed from the WRF-Hydro/Noah-MP model by translating the Fortran code of WRF-Hydro 3.0 and integrating a parallel river routing module. It enables efficient execution on multi-core personal computers. Simulations in the Yellow River basin demonstrate its consistency with WRF-Hydro outputs, providing a reliable alternative to the original Noah-MP model.
Conor T. Doherty, Weile Wang, Hirofumi Hashimoto, and Ian G. Brosnan
Geosci. Model Dev., 18, 3003–3016, https://doi.org/10.5194/gmd-18-3003-2025, https://doi.org/10.5194/gmd-18-3003-2025, 2025
Short summary
Short summary
We present, analyze, and validate a methodology for quantifying uncertainty in gridded meteorological data products produced by spatial interpolation. In a validation case study using daily maximum near-surface air temperature (Tmax), the method works well and produces predictive distributions with closely matching theoretical versus actual coverage levels. Application of the method reveals that the magnitude of uncertainty in interpolated Tmax varies significantly in both space and time.
Martin Juckes, Karl E. Taylor, Fabrizio Antonio, David Brayshaw, Carlo Buontempo, Jian Cao, Paul J. Durack, Michio Kawamiya, Hyungjun Kim, Tomas Lovato, Chloe Mackallah, Matthew Mizielinski, Alessandra Nuzzo, Martina Stockhause, Daniele Visioni, Jeremy Walton, Briony Turner, Eleanor O'Rourke, and Beth Dingley
Geosci. Model Dev., 18, 2639–2663, https://doi.org/10.5194/gmd-18-2639-2025, https://doi.org/10.5194/gmd-18-2639-2025, 2025
Short summary
Short summary
The Baseline Climate Variables for Earth System Modelling (ESM-BCVs) are defined as a list of 135 variables which have high utility for the evaluation and exploitation of climate simulations. The list reflects the most frequently used variables from Earth system models based on an assessment of data publication and download records from the largest archive of global climate projects.
Yucheng Lin, Robert E. Kopp, Alexander Reedy, Matteo Turilli, Shantenu Jha, and Erica L. Ashe
Geosci. Model Dev., 18, 2609–2637, https://doi.org/10.5194/gmd-18-2609-2025, https://doi.org/10.5194/gmd-18-2609-2025, 2025
Short summary
Short summary
PaleoSTeHM v1.0 is a state-of-the-art framework designed to reconstruct past environmental conditions using geological data. Built on modern machine learning techniques, it efficiently handles the sparse and noisy nature of paleo-records, allowing scientists to make accurate and scalable inferences about past environmental change. By using flexible statistical models, PaleoSTeHM separates different sources of uncertainty, improving the precision of historical climate reconstructions.
Ingo Richter, Ping Chang, Ping-Gin Chiu, Gokhan Danabasoglu, Takeshi Doi, Dietmar Dommenget, Guillaume Gastineau, Zoe E. Gillett, Aixue Hu, Takahito Kataoka, Noel S. Keenlyside, Fred Kucharski, Yuko M. Okumura, Wonsun Park, Malte F. Stuecker, Andréa S. Taschetto, Chunzai Wang, Stephen G. Yeager, and Sang-Wook Yeh
Geosci. Model Dev., 18, 2587–2608, https://doi.org/10.5194/gmd-18-2587-2025, https://doi.org/10.5194/gmd-18-2587-2025, 2025
Short summary
Short summary
Tropical ocean basins influence each other through multiple pathways and mechanisms, referred to here as tropical basin interaction (TBI). Many researchers have examined TBI using comprehensive climate models but have obtained conflicting results. This may be partly due to differences in experiment protocols and partly due to systematic model errors. The Tropical Basin Interaction Model Intercomparison Project (TBIMIP) aims to address this problem by designing a set of TBI experiments that will be performed by multiple models.
Daniel F. J. Gunning, Kerim H. Nisancioglu, Emilie Capron, and Roderik S. W. van de Wal
Geosci. Model Dev., 18, 2479–2508, https://doi.org/10.5194/gmd-18-2479-2025, https://doi.org/10.5194/gmd-18-2479-2025, 2025
Short summary
Short summary
This work documents the first results from ZEMBA: an energy balance model of the climate system. The model is a computationally efficient tool designed to study the response of climate to changes in the Earth's orbit. We demonstrate that ZEMBA reproduces many features of the Earth's climate for both the pre-industrial period and the Earth's most recent cold extreme – the Last Glacial Maximum. We intend to develop ZEMBA further and investigate the glacial cycles of the last 2.5 million years.
Pengfei Shi, L. Ruby Leung, and Bin Wang
Geosci. Model Dev., 18, 2443–2460, https://doi.org/10.5194/gmd-18-2443-2025, https://doi.org/10.5194/gmd-18-2443-2025, 2025
Short summary
Short summary
Improving climate predictions has significant socio-economic impacts. In this study, we develop and apply a new weakly coupled ocean data assimilation (WCODA) system to a coupled climate model. The WCODA system improves simulations of ocean temperature and salinity across many global regions. This system is meant to advance our understanding of the ocean's role in climate predictability.
Liwen Wang, Qian Li, Qi Lv, Xuan Peng, and Wei You
Geosci. Model Dev., 18, 2427–2442, https://doi.org/10.5194/gmd-18-2427-2025, https://doi.org/10.5194/gmd-18-2427-2025, 2025
Short summary
Short summary
Our research presents a novel deep learning approach called "TemDeep" for downscaling atmospheric variables at arbitrary time resolutions based on temporal coherence. Results show that our method can accurately recover evolution details superior to other methods, reaching 53.7 % in the restoration rate. Our findings are important for advancing weather forecasting models and enabling more precise and reliable predictions to support disaster preparedness, agriculture, and sustainable development.
Teo Price-Broncucia, Allison Baker, Dorit Hammerling, Michael Duda, and Rebecca Morrison
Geosci. Model Dev., 18, 2349–2372, https://doi.org/10.5194/gmd-18-2349-2025, https://doi.org/10.5194/gmd-18-2349-2025, 2025
Short summary
Short summary
The ensemble consistency test (ECT) and its ultrafast variant (UF-ECT) have become powerful tools in the development community for the identification of unwanted changes in the Community Earth System Model (CESM). We develop a generalized setup framework to enable easy adoption of the ECT approach for other model developers and communities. This framework specifies test parameters to accurately characterize model variability and balance test sensitivity and computational cost.
Esteban Fernández Villanueva and Gary Shaffer
Geosci. Model Dev., 18, 2161–2192, https://doi.org/10.5194/gmd-18-2161-2025, https://doi.org/10.5194/gmd-18-2161-2025, 2025
Short summary
Short summary
We describe, calibrate and test the Danish Center for Earth System Science (DCESS) II model, a new, broad, adaptable and fast Earth system model. DCESS II is designed for global simulations over timescales of years to millions of years using limited computer resources like a personal computer. With its flexibility and comprehensive treatment of the global carbon cycle, DCESS II is a useful, computationally friendly tool for simulations of past climates as well as for future Earth system projections.
Gang Tang, Zebedee Nicholls, Alexander Norton, Sönke Zaehle, and Malte Meinshausen
Geosci. Model Dev., 18, 2193–2230, https://doi.org/10.5194/gmd-18-2193-2025, https://doi.org/10.5194/gmd-18-2193-2025, 2025
Short summary
Short summary
We studied carbon–nitrogen coupling in Earth system models by developing a global carbon–nitrogen cycle model (CNit v1.0) within the widely used emulator MAGICC. CNit effectively reproduced the global carbon–nitrogen cycle dynamics observed in complex models. Our results show persistent nitrogen limitations on plant growth (net primary production) from 1850 to 2100, suggesting that nitrogen deficiency may constrain future land carbon sequestration.
Ngoc Thi Nhu Do, Kengo Sudo, Akihiko Ito, Louisa K. Emmons, Vaishali Naik, Kostas Tsigaridis, Øyvind Seland, Gerd A. Folberth, and Douglas I. Kelley
Geosci. Model Dev., 18, 2079–2109, https://doi.org/10.5194/gmd-18-2079-2025, https://doi.org/10.5194/gmd-18-2079-2025, 2025
Short summary
Short summary
Understanding historical isoprene emission changes is important for predicting future climate, but trends and their controlling factors remain uncertain. This study shows that long-term isoprene trends vary among Earth system models mainly due to partially incorporating CO2 effects and land cover changes rather than to climate. Future models that refine these factors’ effects on isoprene emissions, along with long-term observations, are essential for better understanding plant–climate interactions.
Gang Tang, Zebedee Nicholls, Chris Jones, Thomas Gasser, Alexander Norton, Tilo Ziehn, Alejandro Romero-Prieto, and Malte Meinshausen
Geosci. Model Dev., 18, 2111–2136, https://doi.org/10.5194/gmd-18-2111-2025, https://doi.org/10.5194/gmd-18-2111-2025, 2025
Short summary
Short summary
We analyzed carbon and nitrogen mass conservation in data from various Earth system models. Our findings reveal significant discrepancies between flux and pool size data, where cumulative imbalances can reach hundreds of gigatons of carbon or nitrogen. These imbalances appear primarily due to missing or inconsistently reported fluxes – especially for land-use and fire emissions. To enhance data quality, we recommend that future climate data protocols address this issue at the reporting stage.
Florian Börgel, Sven Karsten, Karoline Rummel, and Ulf Gräwe
Geosci. Model Dev., 18, 2005–2019, https://doi.org/10.5194/gmd-18-2005-2025, https://doi.org/10.5194/gmd-18-2005-2025, 2025
Short summary
Short summary
Forecasting river runoff, which is crucial for managing water resources and understanding climate impacts, can be challenging. This study introduces a new method using convolutional long short-term memory (ConvLSTM) networks, a machine learning model that processes spatial and temporal data. Focusing on the Baltic Sea region, our model uses weather data as input to predict daily river runoff for 97 rivers.
Tao Zhang, Cyril Morcrette, Meng Zhang, Wuyin Lin, Shaocheng Xie, Ye Liu, Kwinten Van Weverberg, and Joana Rodrigues
Geosci. Model Dev., 18, 1917–1928, https://doi.org/10.5194/gmd-18-1917-2025, https://doi.org/10.5194/gmd-18-1917-2025, 2025
Short summary
Short summary
Earth system models (ESMs) struggle with the uncertainties associated with parameterizing subgrid physics. Machine learning (ML) algorithms offer a solution by learning the important relationships and features from high-resolution models. To incorporate ML parameterizations into ESMs, we develop a Fortran–Python interface that allows for calling Python functions within Fortran-based ESMs. Through two case studies, this interface demonstrates its feasibility, modularity, and effectiveness.
Camilla Mathison, Eleanor J. Burke, Gregory Munday, Chris D. Jones, Chris J. Smith, Norman J. Steinert, Andy J. Wiltshire, Chris Huntingford, Eszter Kovacs, Laila K. Gohar, Rebecca M. Varney, and Douglas McNeall
Geosci. Model Dev., 18, 1785–1808, https://doi.org/10.5194/gmd-18-1785-2025, https://doi.org/10.5194/gmd-18-1785-2025, 2025
Short summary
Short summary
We present PRIME (Probabilistic Regional Impacts from Model patterns and Emissions), which is designed to take new emissions scenarios and rapidly provide regional impact information. PRIME allows large ensembles to be run on multi-centennial timescales, including the analysis of many important variables for impact assessments. Our evaluation shows that PRIME reproduces the climate response for known scenarios, providing confidence in using PRIME for novel scenarios.
Katherine M. Smith, Alice M. Barthel, LeAnn M. Conlon, Luke P. Van Roekel, Anthony Bartoletti, Jean-Christophe Golaz, Chengzhu Zhang, Carolyn Branecky Begeman, James J. Benedict, Gautam Bisht, Yan Feng, Walter Hannah, Bryce E. Harrop, Nicole Jeffery, Wuyin Lin, Po-Lun Ma, Mathew E. Maltrud, Mark R. Petersen, Balwinder Singh, Qi Tang, Teklu Tesfa, Jonathan D. Wolfe, Shaocheng Xie, Xue Zheng, Karthik Balaguru, Oluwayemi Garuba, Peter Gleckler, Aixue Hu, Jiwoo Lee, Ben Moore-Maley, and Ana C. Ordoñez
Geosci. Model Dev., 18, 1613–1633, https://doi.org/10.5194/gmd-18-1613-2025, https://doi.org/10.5194/gmd-18-1613-2025, 2025
Short summary
Short summary
Version 2.1 of the U.S. Department of Energy's Energy Exascale Earth System Model (E3SM) adds the Fox-Kemper et al. (2011) mixed-layer eddy parameterization, which restratifies the ocean surface layer through an overturning streamfunction. Results include surface layer bias reduction in temperature, salinity, and sea ice extent in the North Atlantic; a small strengthening of the Atlantic meridional overturning circulation; and improvements to many atmospheric climatological variables.
Huilin Huang, Yun Qian, Gautam Bisht, Jiali Wang, Tirthankar Chakraborty, Dalei Hao, Jianfeng Li, Travis Thurber, Balwinder Singh, Zhao Yang, Ye Liu, Pengfei Xue, William J. Sacks, Ethan Coon, and Robert Hetland
Geosci. Model Dev., 18, 1427–1443, https://doi.org/10.5194/gmd-18-1427-2025, https://doi.org/10.5194/gmd-18-1427-2025, 2025
Short summary
Short summary
We integrate the E3SM Land Model (ELM) with the WRF model through the Lightweight Infrastructure for Land Atmosphere Coupling (LILAC) Earth System Modeling Framework (ESMF). This framework includes a top-level driver, LILAC, for variable communication between WRF and ELM and ESMF caps for ELM initialization, execution, and finalization. The LILAC–ESMF framework maintains the integrity of the ELM's source code structure and facilitates the transfer of future ELM model developments to WRF-ELM.
Michael Nole, Jonah Bartrand, Fawz Naim, and Glenn Hammond
Geosci. Model Dev., 18, 1413–1425, https://doi.org/10.5194/gmd-18-1413-2025, https://doi.org/10.5194/gmd-18-1413-2025, 2025
Short summary
Short summary
Safe carbon dioxide (CO2) storage is likely to be critical for mitigating some of the most severe effects of climate change. We present a simulation framework for modeling CO2 storage beneath the seafloor, where CO2 can form a solid. This can aid in permanent CO2 storage for long periods of time. Our models show what a commercial-scale CO2 injection would look like in a marine environment. We discuss what would need to be considered when designing a subsea CO2 injection.
Reyk Börner, Jan O. Haerter, and Romain Fiévet
Geosci. Model Dev., 18, 1333–1356, https://doi.org/10.5194/gmd-18-1333-2025, https://doi.org/10.5194/gmd-18-1333-2025, 2025
Short summary
Short summary
The daily cycle of sea surface temperature (SST) impacts clouds above the ocean and could influence the clustering of thunderstorms linked to extreme rainfall and hurricanes. However, daily SST variability is often poorly represented in modeling studies of how clouds cluster. We present a simple, wind-responsive model of upper-ocean temperature for use in atmospheric simulations. Evaluating the model against observations, we show that it performs significantly better than common slab models.
Malcolm J. Roberts, Kevin A. Reed, Qing Bao, Joseph J. Barsugli, Suzana J. Camargo, Louis-Philippe Caron, Ping Chang, Cheng-Ta Chen, Hannah M. Christensen, Gokhan Danabasoglu, Ivy Frenger, Neven S. Fučkar, Shabeh ul Hasson, Helene T. Hewitt, Huanping Huang, Daehyun Kim, Chihiro Kodama, Michael Lai, Lai-Yung Ruby Leung, Ryo Mizuta, Paulo Nobre, Pablo Ortega, Dominique Paquin, Christopher D. Roberts, Enrico Scoccimarro, Jon Seddon, Anne Marie Treguier, Chia-Ying Tu, Paul A. Ullrich, Pier Luigi Vidale, Michael F. Wehner, Colin M. Zarzycki, Bosong Zhang, Wei Zhang, and Ming Zhao
Geosci. Model Dev., 18, 1307–1332, https://doi.org/10.5194/gmd-18-1307-2025, https://doi.org/10.5194/gmd-18-1307-2025, 2025
Short summary
Short summary
HighResMIP2 is a model intercomparison project focusing on high-resolution global climate models, that is, those with grid spacings of 25 km or less in the atmosphere and ocean, using simulations of decades to a century in length. We are proposing an update of our simulation protocol to make the models more applicable to key questions for climate variability and hazard in present-day and future projections and to build links with other communities to provide more robust climate information.
Jordi Buckley Paules, Simone Fatichi, Bonnie Warring, and Athanasios Paschalis
Geosci. Model Dev., 18, 1287–1305, https://doi.org/10.5194/gmd-18-1287-2025, https://doi.org/10.5194/gmd-18-1287-2025, 2025
Short summary
Short summary
We present and validate enhancements to the process-based T&C model aimed at improving its representation of crop growth and management practices. The updated model, T&C-CROP, enables applications such as analysing the hydrological and carbon storage impacts of land use transitions (e.g. conversions between crops, forests, and pastures) and optimizing irrigation and fertilization strategies in response to climate change.
Sébastien Masson, Swen Jullien, Eric Maisonnave, David Gill, Guillaume Samson, Mathieu Le Corre, and Lionel Renault
Geosci. Model Dev., 18, 1241–1263, https://doi.org/10.5194/gmd-18-1241-2025, https://doi.org/10.5194/gmd-18-1241-2025, 2025
Short summary
Short summary
This article details a new feature we implemented in the popular regional atmospheric model WRF. This feature allows for data exchange between WRF and any other model (e.g. an ocean model) using the coupling library Ocean–Atmosphere–Sea–Ice–Soil Model Coupling Toolkit (OASIS3-MCT). This coupling interface is designed to be non-intrusive, flexible and modular. It also offers the possibility of taking into account the nested zooms used in WRF or in the models with which it is coupled.
Axel Lauer, Lisa Bock, Birgit Hassler, Patrick Jöckel, Lukas Ruhe, and Manuel Schlund
Geosci. Model Dev., 18, 1169–1188, https://doi.org/10.5194/gmd-18-1169-2025, https://doi.org/10.5194/gmd-18-1169-2025, 2025
Short summary
Short summary
Earth system models are important tools to improve our understanding of current climate and to project climate change. Thus, it is crucial to understand possible shortcomings in the models. New features of the ESMValTool software package allow one to compare and visualize a model's performance with respect to reproducing observations in the context of other climate models in an easy and user-friendly way. We aim to help model developers assess and monitor climate simulations more efficiently.
Ulrich G. Wortmann, Tina Tsan, Mahrukh Niazi, Irene A. Ma, Ruben Navasardyan, Magnus-Roland Marun, Bernardo S. Chede, Jingwen Zhong, and Morgan Wolfe
Geosci. Model Dev., 18, 1155–1167, https://doi.org/10.5194/gmd-18-1155-2025, https://doi.org/10.5194/gmd-18-1155-2025, 2025
Short summary
Short summary
The Earth Science Box Modeling Toolkit (ESBMTK) is a user-friendly Python library that simplifies the creation of models to study earth system processes, such as the carbon cycle and ocean chemistry. It enhances learning by emphasizing concepts over programming and is accessible to students and researchers alike. By automating complex calculations and promoting code clarity, ESBMTK accelerates model development while improving reproducibility and the usability of scientific research.
Florian Zabel, Matthias Knüttel, and Benjamin Poschlod
Geosci. Model Dev., 18, 1067–1087, https://doi.org/10.5194/gmd-18-1067-2025, https://doi.org/10.5194/gmd-18-1067-2025, 2025
Short summary
Short summary
CropSuite is a new open-source crop suitability model. It provides a GUI and a wide range of options, including a spatial downscaling of climate data. We apply CropSuite to 48 staple and opportunity crops at a 1 km spatial resolution in Africa. We find that climate variability significantly impacts suitable areas but also affects optimal sowing dates and multiple cropping potential. The results provide valuable information for climate impact assessments, adaptation, and land-use planning.
Kerstin Hartung, Bastian Kern, Nils-Arne Dreier, Jörn Geisbüsch, Mahnoosh Haghighatnasab, Patrick Jöckel, Astrid Kerkweg, Wilton Jaciel Loch, Florian Prill, and Daniel Rieger
Geosci. Model Dev., 18, 1001–1015, https://doi.org/10.5194/gmd-18-1001-2025, https://doi.org/10.5194/gmd-18-1001-2025, 2025
Short summary
Short summary
The ICOsahedral Non-hydrostatic (ICON) model system Community Interface (ComIn) library supports connecting third-party modules to the ICON model. Third-party modules can range from simple diagnostic Python scripts to full chemistry models. ComIn offers a low barrier for code extensions to ICON, provides multi-language support (Fortran, C/C++, and Python), and reduces the migration effort in response to new ICON releases. This paper presents the ComIn design principles and a range of use cases.
Daniel Ries, Katherine Goode, Kellie McClernon, and Benjamin Hillman
Geosci. Model Dev., 18, 1041–1065, https://doi.org/10.5194/gmd-18-1041-2025, https://doi.org/10.5194/gmd-18-1041-2025, 2025
Short summary
Short summary
Machine learning has advanced research in the climate science domain, but its models are difficult to understand. In order to understand the impacts and consequences of climate interventions such as stratospheric aerosol injection, complex models are often necessary. We use a case study to illustrate how we can understand the inner workings of a complex model. We present this technique as an exploratory tool that can be used to quickly discover and assess relationships in complex climate data.
Bo Dong, Paul Ullrich, Jiwoo Lee, Peter Gleckler, Kristin Chang, and Travis A. O'Brien
Geosci. Model Dev., 18, 961–976, https://doi.org/10.5194/gmd-18-961-2025, https://doi.org/10.5194/gmd-18-961-2025, 2025
Short summary
Short summary
A metrics package designed for easy analysis of atmospheric river (AR) characteristics and statistics is presented. The tool is efficient for diagnosing systematic AR bias in climate models and useful for evaluating new AR characteristics in model simulations. In climate models, landfalling AR precipitation shows dry biases globally, and AR tracks are farther poleward (equatorward) in the North and South Atlantic (South Pacific and Indian Ocean).
Panagiotis Adamidis, Erik Pfister, Hendryk Bockelmann, Dominik Zobel, Jens-Olaf Beismann, and Marek Jacob
Geosci. Model Dev., 18, 905–919, https://doi.org/10.5194/gmd-18-905-2025, https://doi.org/10.5194/gmd-18-905-2025, 2025
Short summary
Short summary
In this paper, we investigated performance indicators of the climate model ICON (ICOsahedral Nonhydrostatic) on different compute architectures to answer the question of how to generate high-resolution climate simulations. Evidently, it is not enough to use more computing units of the conventionally used architectures; higher memory throughput is the most promising approach. More potential can be gained from single-node optimization rather than simply increasing the number of compute nodes.
Jonah K. Shaw, Dustin J. Swales, Sergio DeSouza-Machado, David D. Turner, Jennifer E. Kay, and David P. Schneider
EGUsphere, https://doi.org/10.5194/egusphere-2025-169, https://doi.org/10.5194/egusphere-2025-169, 2025
Short summary
Short summary
Satellites have observed earth's emission of infrared radiation since the 1970s. Because infrared wavelengths interact with the atmosphere in distinct ways, these observations contain information about the earth and atmosphere. We present a tool that runs alongside global climate models and produces output that can be directly compared with satellite measurements of infrared radiation. We then use this tool for climate model evaluation, climate change detection, and satellite mission design.
Kangari Narender Reddy, Somnath Baidya Roy, Sam S. Rabin, Danica L. Lombardozzi, Gudimetla Venkateswara Varma, Ruchira Biswas, and Devavat Chiru Naik
Geosci. Model Dev., 18, 763–785, https://doi.org/10.5194/gmd-18-763-2025, https://doi.org/10.5194/gmd-18-763-2025, 2025
Short summary
Short summary
The study aimed to improve the representation of wheat and rice in a land model for the Indian region. The modified model performed significantly better than the default model in simulating crop phenology, yield, and carbon, water, and energy fluxes compared to observations. The study highlights the need for global land models to use region-specific crop parameters for accurately simulating vegetation processes and land surface processes.
Giovanni Di Virgilio, Fei Ji, Eugene Tam, Jason P. Evans, Jatin Kala, Julia Andrys, Christopher Thomas, Dipayan Choudhury, Carlos Rocha, Yue Li, and Matthew L. Riley
Geosci. Model Dev., 18, 703–724, https://doi.org/10.5194/gmd-18-703-2025, https://doi.org/10.5194/gmd-18-703-2025, 2025
Short summary
Short summary
We evaluate the skill in simulating the Australian climate of some of the latest generation of regional climate models. We show when and where the models simulate this climate with high skill versus model limitations. We show how new models perform relative to the previous-generation models, assessing how model design features may underlie key performance improvements. This work is of national and international relevance as it can help guide the use and interpretation of climate projections.
Giovanni Di Virgilio, Jason P. Evans, Fei Ji, Eugene Tam, Jatin Kala, Julia Andrys, Christopher Thomas, Dipayan Choudhury, Carlos Rocha, Stephen White, Yue Li, Moutassem El Rafei, Rishav Goyal, Matthew L. Riley, and Jyothi Lingala
Geosci. Model Dev., 18, 671–702, https://doi.org/10.5194/gmd-18-671-2025, https://doi.org/10.5194/gmd-18-671-2025, 2025
Short summary
Short summary
We introduce new climate models that simulate Australia’s future climate at regional scales, including at an unprecedented resolution of 4 km for 1950–2100. We describe the model design process used to create these new climate models. We show how the new models perform relative to previous-generation models and compare their climate projections. This work is of national and international relevance as it can help guide climate model design and the use and interpretation of climate projections.
Nathan P. Gillett, Isla R. Simpson, Gabi Hegerl, Reto Knutti, Dann Mitchell, Aurélien Ribes, Hideo Shiogama, Dáithí Stone, Claudia Tebaldi, Piotr Wolski, Wenxia Zhang, and Vivek K. Arora
EGUsphere, https://doi.org/10.5194/egusphere-2024-4086, https://doi.org/10.5194/egusphere-2024-4086, 2025
Short summary
Short summary
Climate model simulations of the response to human and natural influences together, natural climate influences alone, and greenhouse gases alone, among others, are key to quantifying human influence on the climate. The last set of such coordinated simulations underpinned key findings in the last Intergovernmental Panel on Climate Change (IPCC) report. Here we propose a new set of such simulations to be used in the next generation of attribution studies, and to underpin the next IPCC report.
Jiawang Feng, Chun Zhao, Qiuyan Du, Zining Yang, and Chen Jin
Geosci. Model Dev., 18, 585–603, https://doi.org/10.5194/gmd-18-585-2025, https://doi.org/10.5194/gmd-18-585-2025, 2025
Short summary
Short summary
In this study, we improved the calculation of how aerosols in the air interact with radiation in WRF-Chem. The original model used a simplified method, but we developed a more accurate approach. We found that this method significantly changes the properties of the estimated aerosols and their effects on radiation, especially for dust aerosols. It also impacts the simulated weather conditions. Our work highlights the importance of correctly representing aerosol–radiation interactions in models.
Eduardo Moreno-Chamarro, Thomas Arsouze, Mario Acosta, Pierre-Antoine Bretonnière, Miguel Castrillo, Eric Ferrer, Amanda Frigola, Daria Kuznetsova, Eneko Martin-Martinez, Pablo Ortega, and Sergi Palomas
Geosci. Model Dev., 18, 461–482, https://doi.org/10.5194/gmd-18-461-2025, https://doi.org/10.5194/gmd-18-461-2025, 2025
Short summary
Short summary
We present the high-resolution model version of the EC-Earth global climate model to contribute to HighResMIP. The combined model resolution is about 10–15 km in both the ocean and atmosphere, which makes it one of the finest ever used to complete historical and scenario simulations. This model is compared with two lower-resolution versions, with a 100 km and a 25 km grid. The three models are compared with observations to study the improvements thanks to the increased resolution.
Catherine Guiavarc'h, David Storkey, Adam T. Blaker, Ed Blockley, Alex Megann, Helene Hewitt, Michael J. Bell, Daley Calvert, Dan Copsey, Bablu Sinha, Sophia Moreton, Pierre Mathiot, and Bo An
Geosci. Model Dev., 18, 377–403, https://doi.org/10.5194/gmd-18-377-2025, https://doi.org/10.5194/gmd-18-377-2025, 2025
Short summary
Short summary
The Global Ocean and Sea Ice configuration version 9 (GOSI9) is the new UK hierarchy of model configurations based on the Nucleus for European Modelling of the Ocean (NEMO) and available at three resolutions. It will be used for various applications, e.g. weather forecasting and climate prediction. It improves upon the previous version by reducing global temperature and salinity biases and enhancing the representation of Arctic sea ice and the Antarctic Circumpolar Current.
Andy Richling, Jens Grieger, and Henning W. Rust
Geosci. Model Dev., 18, 361–375, https://doi.org/10.5194/gmd-18-361-2025, https://doi.org/10.5194/gmd-18-361-2025, 2025
Short summary
Short summary
The performance of weather and climate prediction systems is variable in time and space. It is of interest how this performance varies in different situations. We provide a decomposition of a skill score (a measure of forecast performance) as a tool for detailed assessment of performance variability to support model development or forecast improvement. The framework is exemplified with decadal forecasts to assess the impact of different ocean states in the North Atlantic on temperature forecast.
Maria R. Russo, Sadie L. Bartholomew, David Hassell, Alex M. Mason, Erica Neininger, A. James Perman, David A. J. Sproson, Duncan Watson-Parris, and Nathan Luke Abraham
Geosci. Model Dev., 18, 181–191, https://doi.org/10.5194/gmd-18-181-2025, https://doi.org/10.5194/gmd-18-181-2025, 2025
Short summary
Short summary
Observational data and modelling capabilities have expanded in recent years, but there are still barriers preventing these two data sources from being used in synergy. Proper comparison requires generating, storing, and handling a large amount of data. This work describes the first step in the development of a new set of software tools, the VISION toolkit, which can enable the easy and efficient integration of observational and model data required for model evaluation.
Bijan Fallah, Masoud Rostami, Emmanuele Russo, Paula Harder, Christoph Menz, Peter Hoffmann, Iulii Didovets, and Fred F. Hattermann
Geosci. Model Dev., 18, 161–180, https://doi.org/10.5194/gmd-18-161-2025, https://doi.org/10.5194/gmd-18-161-2025, 2025
Short summary
Short summary
We tried to contribute to a local climate change impact study in central Asia, a region that is water-scarce and vulnerable to global climate change. We use regional models and machine learning to produce reliable local data from global climate models. We find that regional models show more realistic and detailed changes in heavy precipitation than global climate models. Our work can help assess the future risks of extreme events and plan adaptation strategies in central Asia.
Manuel Schlund, Bouwe Andela, Jörg Benke, Ruth Comer, Birgit Hassler, Emma Hogan, Peter Kalverla, Axel Lauer, Bill Little, Saskia Loosveldt Tomas, Francesco Nattino, Patrick Peglar, Valeriu Predoi, Stef Smeets, Stephen Worsley, Martin Yeo, and Klaus Zimmermann
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-236, https://doi.org/10.5194/gmd-2024-236, 2025
Revised manuscript accepted for GMD
Short summary
Short summary
The Earth System Model Evaluation Tool (ESMValTool) is a community diagnostics and performance metrics tool for the evaluation of Earth system models. Here, we describe recent significant improvements of ESMValTool’s computational efficiency including parallel, out-of-core, and distributed computing. Evaluations with the enhanced version of ESMValTool are faster, use less computational resources, and can handle input data larger than the available memory.
Thomas Rackow, Xabier Pedruzo-Bagazgoitia, Tobias Becker, Sebastian Milinski, Irina Sandu, Razvan Aguridan, Peter Bechtold, Sebastian Beyer, Jean Bidlot, Souhail Boussetta, Willem Deconinck, Michail Diamantakis, Peter Dueben, Emanuel Dutra, Richard Forbes, Rohit Ghosh, Helge F. Goessling, Ioan Hadade, Jan Hegewald, Thomas Jung, Sarah Keeley, Lukas Kluft, Nikolay Koldunov, Aleksei Koldunov, Tobias Kölling, Josh Kousal, Christian Kühnlein, Pedro Maciel, Kristian Mogensen, Tiago Quintino, Inna Polichtchouk, Balthasar Reuter, Domokos Sármány, Patrick Scholz, Dmitry Sidorenko, Jan Streffing, Birgit Sützl, Daisuke Takasuka, Steffen Tietsche, Mirco Valentini, Benoît Vannière, Nils Wedi, Lorenzo Zampieri, and Florian Ziemen
Geosci. Model Dev., 18, 33–69, https://doi.org/10.5194/gmd-18-33-2025, https://doi.org/10.5194/gmd-18-33-2025, 2025
Short summary
Short summary
Detailed global climate model simulations have been created based on a numerical weather prediction model, offering more accurate spatial detail down to the scale of individual cities ("kilometre-scale") and a better understanding of climate phenomena such as atmospheric storms, whirls in the ocean, and cracks in sea ice. The new model aims to provide globally consistent information on local climate change with greater precision, benefiting environmental planning and local impact modelling.
Yilin Fang, Hoang Viet Tran, and L. Ruby Leung
Geosci. Model Dev., 18, 19–32, https://doi.org/10.5194/gmd-18-19-2025, https://doi.org/10.5194/gmd-18-19-2025, 2025
Short summary
Short summary
Hurricanes may worsen water quality in the lower Mississippi River basin (LMRB) by increasing nutrient runoff. We found that runoff parameterizations greatly affect nitrate–nitrogen runoff simulated using an Earth system land model. Our simulations predicted increased nitrogen runoff in the LMRB during Hurricane Ida in 2021, albeit less pronounced than the observations, indicating areas for model improvement to better understand and manage nutrient runoff loss during hurricanes in the region.
Sian Megan Chilcott and Malte Meinshausen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-203, https://doi.org/10.5194/gmd-2024-203, 2025
Revised manuscript accepted for GMD
Short summary
Short summary
Climate models are expensive to run and often underestimate how sensitive Arctic sea ice is to climate change. To address this, we developed a simple model that emulates the response of sea ice to global warming. We find the remaining carbon dioxide (CO2) emissions that will avoid a seasonally ice-free Arctic Ocean is lower than previous estimates of 821 Gigatonnes of CO2. Our model also provides insights into the future of winter sea ice, examining a larger ensemble than previously possible.
Giovanni Seijo-Ellis, Donata Giglio, Gustavo Marques, and Frank Bryan
Geosci. Model Dev., 17, 8989–9021, https://doi.org/10.5194/gmd-17-8989-2024, https://doi.org/10.5194/gmd-17-8989-2024, 2024
Short summary
Short summary
A CESM–MOM6 regional configuration of the Caribbean Sea was developed in response to the rising need for high-resolution models for climate impact studies. The configuration is validated for the period 2000–2020 and improves significant errors in a low-resolution model. Oceanic properties are well represented. Patterns of freshwater associated with the Amazon River are well captured, and the mean flows of ocean waters across multiple passages in the Caribbean Sea agree with observations.
Yan Bo, Hao Liang, Tao Li, and Feng Zhou
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-212, https://doi.org/10.5194/gmd-2024-212, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
This study proposed an advancing framework for modeling regional rice production, water use, and greenhouse gas emissions. The framework integrated a process-based soil-crop model with key physiological effects, a novel model upscaling method, and the NSGA-II multi-objective optimization algorithm at a parallel computing platform. The framework provides a valuable tool for irrigation optimization to deliver co-benefits of ensuring food production, reducing water use and greenhouse gas emissions.
Elizabeth J. Drenkard, Charles A. Stock, Andrew C. Ross, Yi-Cheng Teng, Theresa Morrison, Wei Cheng, Alistair Adcroft, Enrique Curchitser, Raphael Dussin, Robert Hallberg, Claudine Hauri, Katherine Hedstrom, Albert Hermann, Michael G. Jacox, Kelly A. Kearney, Remi Pages, Darren J. Pilcher, Mercedes Pozo Buil, Vivek Seelanki, and Niki Zadeh
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-195, https://doi.org/10.5194/gmd-2024-195, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
We made a new regional ocean model to assist fisheries and ecosystem managers make decisions in the Northeast Pacific Ocean (NEP). We found that the model did well simulating past ocean conditions like temperature, and nutrient and oxygen levels, and can even reproduce metrics used by and important to ecosystem managers.
Deifilia To, Julian Quinting, Gholam Ali Hoshyaripour, Markus Götz, Achim Streit, and Charlotte Debus
Geosci. Model Dev., 17, 8873–8884, https://doi.org/10.5194/gmd-17-8873-2024, https://doi.org/10.5194/gmd-17-8873-2024, 2024
Short summary
Short summary
Pangu-Weather is a breakthrough machine learning model in medium-range weather forecasting that considers 3D atmospheric information. We show that using a simpler 2D framework improves robustness, speeds up training, and reduces computational needs by 20 %–30 %. We introduce a training procedure that varies the importance of atmospheric variables over time to speed up training convergence. Decreasing computational demand increases the accessibility of training and working with the model.
Cited articles
Adler, R., Sapiano, M., Huffman, G., Wang, J., Gu, G., Bolvin, D., Chiu, L.,
Schneider, U., Becker, A., Nelkin, E., Xie, P., Ferraro, R., and Shin, D.:
The Global Precipitation Climatology Project (GPCP) monthly analysis (New
Version 2.3) and a review of 2017 global precipitation, Atmosphere, 9, 138,
https://doi.org/10.3390/atmos9040138, 2018. a
Arakawa, A., Jung, J.-H., and Wu, C.-M.: Toward unification of the multiscale modeling of the atmosphere, Atmos. Chem. Phys., 11, 3731–3742, https://doi.org/10.5194/acp-11-3731-2011, 2011. a, b
Baumgaertner, A. J. G., Jöckel, P., Kerkweg, A., Sander, R., and Tost, H.: Implementation of the Community Earth System Model (CESM) version 1.2.1 as a new base model into version 2.50 of the MESSy framework, Geosci. Model Dev., 9, 125–135, https://doi.org/10.5194/gmd-9-125-2016, 2016. a
Bechtold, P., Chaboureau, J. P., Beljaars, A., Betts, A. K., Kohler, M.,
Miller, M., and Redelsperger, J. L.: The simulation of the diurnal cycle of
convective precipitation over land in a global model, Q. J. Roy. Meteor. Soc., 130, 3119–3137, 2004. a
Beheng, K.: A parameterization of warm cloud microphysical conversion
processes, Atmos. Res., 33, 193–206,
https://doi.org/10.1016/0169-8095(94)90020-5, 11th International Conference on Clouds
and Precipitation, Part II, 1994. a
Blossey, P. N., Bretherton, C. S., and Wyant, M. C.: Subtropical Low Cloud
Response to a Warmer Climate in a Superparameterized Climate Model. Part II:
Column Modeling with a Cloud Resolving Model, J. Adv. Model.
Earth Syst., 1, 8, https://doi.org/10.3894/JAMES.2009.1.8, 2009. a
Bodas-Salcedo, A., Webb, M. J., Bony, S., Chepfer, H., Dufresne, J.-L., Klein,
S. A., Zhang, Y., Marchand, R., Haynes, J. M., Pincus, R., and John, V. O.:
COSP: Satellite simulation software for model assessment, B.
Am. Meteor. Soc., 92, 1023–1043,
https://doi.org/10.1175/2011BAMS2856.1, 2011. a
Bodas-Salcedo, A., Hill, P., Furtado, K., Williams, K., Field, P., Manners, J.,
Hyder, P., and Kato, S.: Large Contribution of Supercooled Liquid Clouds to
the Solar Radiation Budget of the Southern Ocean, J. Climate, 29, 4213–4228,
https://doi.org/10.1175/JCLI-D-15-0564.1, 2016. a
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster,
P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh,
S., Sherwood, S., Stevens, B., and Zhang, X.: Clouds and Aerosols, book
section 7, 571–658, Cambridge University Press, Cambridge, United
Kingdom and New York, NY, USA, https://doi.org/10.1017/CBO9781107415324.016, 2013. a
Calisto, M., Folini, D., Wild, M., and Bengtsson, L.: Cloud radiative forcing intercomparison between fully coupled CMIP5 models and CERES satellite data, Ann. Geophys., 32, 793–807, https://doi.org/10.5194/angeo-32-793-2014, 2014. a
Cheng, A. and Xu, K.-M.: An explicit representation of vertical momentum
transport in a multiscale modeling framework through its 2-D cloud-resolving
model component, J. Geophys. Res.-Atmos., 119,
2356–2374, https://doi.org/10.1002/2013JD021078, 2014. a
Cheng, A. N. and Xu, K. M.: Diurnal variability of low clouds in the Southeast
Pacific simulated by a multiscale modeling framework model, J.
Geophys. Res.-Atmos., 118, 9191–9208, https://doi.org/10.1002/jgrd.50683,
2013. a
Cole, J. N. S., Barker, H. W., Randall, D. A., Khairoutdinov, M. F., and
Clothiaux, E. E.: Global consequences of interactions between clouds and
radiation at scales unresolved by global climate models, Geophys. Res.
Lett., 32, L06703, https://doi.org/10.1029/2004GL020945, 2005. a, b, c
Collier, J. C. and Bowman, K. P.: Diurnal cycle of tropical precipitation in a
general circulation model, J. Geophys. Res.-Atmos., 109, d17105,
https://doi.org/10.1029/2004JD004818, 2004. a
Cui, X. and Li, X.: Diurnal responses of tropical convective and stratiform
rainfall to diurnally varying sea surface temperature, Meteorol.
Atmos. Phys., 104, 53–61, https://doi.org/10.1007/s00703-008-0016-1, 2009. a
Dai, A.: Precipitation Characteristics in Eighteen Coupled Climate Models,
J. Climate, 19, 4605–4630, https://doi.org/10.1175/JCLI3884.1, 2006. a
Demory, M.-E., Vidale, P. L., Roberts, M. J., Berrisford, P., Strachan, J.,
Schiemann, R., and Mizielinski, M. S.: The role of horizontal resolution in
simulating drivers of the global hydrological cycle, Clim. Dynam., 42,
2201–2225, https://doi.org/10.1007/s00382-013-1924-4, 2014. a
Dietmüller, S., Jöckel, P., Tost, H., Kunze, M., Gellhorn, C., Brinkop, S., Frömming, C., Ponater, M., Steil, B., Lauer, A., and Hendricks, J.: A new radiation infrastructure for the Modular Earth Submodel System (MESSy, based on version 2.51), Geosci. Model Dev., 9, 2209–2222, https://doi.org/10.5194/gmd-9-2209-2016, 2016. a, b
Elliott, E. J., Yu, S., Kooperman, G. J., Morrison, H., Wang, M., and
Pritchard, M. S.: Sensitivity of summer ensembles of fledgling
superparameterized U.S. mesoscale convective systems to cloud resolving model
microphysics and grid configuration, J. Adv. Model. Earth
Syst., 8, 634–649, https://doi.org/10.1002/2015MS000567, 2016. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S., Collins, W.,
Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P.,
Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., and Rummukainen, M.:
Evaluation of Climate Models, book section 9, 741–866, Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA,
https://doi.org/10.1017/CBO9781107415324.020, 2013. a
Grabowski, W. W.: Coupling cloud processes with the large-scale dynamics using
the Cloud-Resolving Convection Parameterization (CRCP), J.
Atmos. Sci., 58, 978–997,
https://doi.org/10.1175/1520-0469(2001)058<0978:CCPWTL>2.0.CO;2, 2001. a
Grabowski, W. W.: An improved framework for superparameterization, J.
Atmos. Sci., 61, 1940–1952,
https://doi.org/10.1175/1520-0469(2004)061<1940:AIFFS>2.0.CO;2, 2004a. a
Grabowski, W. W.: An Improved Framework for Superparameterization, J.
Atmos. Sci., 61, 1940–1952,
https://doi.org/10.1175/1520-0469(2004)061<1940:AIFFS>2.0.CO;2, 2004b. a
Grabowski, W. W.: Towards Global Large Eddy Simulation: Super-Parameterization
Revisited, J. Meteor. Soc. Japan. Ser. II, 94,
327–344, https://doi.org/10.2151/jmsj.2016-017, 2016. a
Grabowski, W. W. and Smolarkiewicz, P. K.: CRCP: a Cloud Resolving Convection
Parameterization for modeling the tropical convecting atmosphere, Physica D,
133, 171–178, https://doi.org/10.1016/S0167-2789(99)00104-9, 1999. a
Guichard, F., Petch, J. C., Redelsperger, J.-L., Bechtold, P., Chaboureau,
J.-P., Cheinet, S., Grabowski, W., Grenier, H., Jones, C. G., Köhler, M.,
Piriou, J.-M., Tailleux, R., and Tomasini, M.: Modelling the diurnal cycle of
deep precipitating convection over land with cloud-resolving models and
single-column models, Q. J. Roy. Meteor. Soc., 130, 3139–3172,
https://doi.org/10.1256/qj.03.145, 2004. a
Gustafson, W. I., Berg, L. K., Easter, R. C., and Ghan, S. J.: The
Explicit-Cloud Parameterized-Pollutant hybrid approach for aerosol-cloud
interactions in multiscale modeling framework models: tracer transport
results, Environ. Res. Lett., 3, 025005, https://doi.org/10.1088/1748-9326/3/2/025005, 2008. a
Haarsma, R. J., Roberts, M. J., Vidale, P. L., Senior, C. A., Bellucci, A., Bao, Q., Chang, P., Corti, S., Fučkar, N. S., Guemas, V., von Hardenberg, J., Hazeleger, W., Kodama, C., Koenigk, T., Leung, L. R., Lu, J., Luo, J.-J., Mao, J., Mizielinski, M. S., Mizuta, R., Nobre, P., Satoh, M., Scoccimarro, E., Semmler, T., Small, J., and von Storch, J.-S.: High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6, Geosci. Model Dev., 9, 4185–4208, https://doi.org/10.5194/gmd-9-4185-2016, 2016. a
Haynes, J. M., Jakob, C., Rossow, W. B., Tselioudis, G., and Brown, J.: Major
Characteristics of Southern Ocean Cloud Regimes and Their Effects on the
Energy Budget, J. Climate, 24, 5061–5080,
https://doi.org/10.1175/2011JCLI4052.1, 2011. a
Heinze, R., Dipankar, A., Henken, C. C., Moseley, C., Sourdeval, O., Trömel,
S., Xie, X., Adamidis, P., Ament, F., Baars, H., Barthlott, C., Behrendt, A.,
Blahak, U., Bley, S., Brdar, S., Brueck, M., Crewell, S., Deneke, H.,
Di Girolamo, P., Evaristo, R., Fischer, J., Frank, C., Friederichs, P.,
Göcke, T., Gorges, K., Hande, L., Hanke, M., Hansen, A., Hege, H.-C., Hoose,
C., Jahns, T., Kalthoff, N., Klocke, D., Kneifel, S., Knippertz, P., Kuhn,
A., van Laar, T., Macke, A., Maurer, V., Mayer, B., Meyer, C. I., Muppa,
S. K., Neggers, R. A. J., Orlandi, E., Pantillon, F., Pospichal, B., Röber,
N., Scheck, L., Seifert, A., Seifert, P., Senf, F., Siligam, P., Simmer, C.,
Steinke, S., Stevens, B., Wapler, K., Weniger, M., Wulfmeyer, V., Zängl, G.,
Zhang, D., and Quaas, J.: Large-eddy simulations over Germany using ICON: a
comprehensive evaluation, Q. J. Roy. Meteor.
Soc., 143, 69–100, https://doi.org/10.1002/qj.2947, 2017a. a
Heinze, R., Moseley, C., Böske, L. N., Muppa, S. K., Maurer, V., Raasch, S., and Stevens, B.: Evaluation of large-eddy simulations forced with mesoscale model output for a multi-week period during a measurement campaign, Atmos. Chem. Phys., 17, 7083–7109, https://doi.org/10.5194/acp-17-7083-2017, 2017b. a
Hourdin, F., Mauritsen, T., Gettelman, A., Golaz, J.-C., Balaji, V., Duan, Q.,
Folini, D., Ji, D., Klocke, D., Qian, Y., Rauser, F., Rio, C., Tomassini, L.,
Watanabe, M., and Williamson, D.: The Art and Science of Climate Model
Tuning, B. Am. Meteor. Soc., 98, 589–602,
https://doi.org/10.1175/BAMS-D-15-00135.1, 2017. a
Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu,
G., Hong, Y., Bowman, K. P., and Stocker, E. F.: The TRMM Multisatellite
Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor
Precipitation Estimates at Fine Scales, J. Hydrometeorol., 8,
38–55, https://doi.org/10.1175/JHM560.1, 2007. a
Jansson, F., van den Oord, G., Pelupessy, I., Grönqvist, J. H., Siebesma,
A. P., and Crommelin, D.: Regional Superparameterization in a Global
Circulation Model Using Large Eddy Simulations, J. Adv.
Model. Earth Syst., 11, 2958–2979, https://doi.org/10.1029/2018MS001600, 2019. a
Jiang, J. H., Su, H., Zhai, C. X., Perun, V. S., Del Genio, A., Nazarenko,
L. S., Donner, L. J., Horowitz, L., Seman, C., Cole, J., Gettelman, A.,
Ringer, M. A., Rotstayn, L., Jeffrey, S., Wu, T. W., Brient, F., Dufresne,
J. L., Kawai, H., Koshiro, T., Watanabe, M., LEcuyer, T. S., Volodin, E. M.,
Iversen, T., Drange, H., Mesquita, M. D. S., Read, W. G., Waters, J. W.,
Tian, B. J., Teixeira, J., and Stephens, G. L.: Evaluation of cloud and water
vapor simulations in CMIP5 climate models using NASA “A-Train” satellite
observations, J. Geophys. Res.-Atmos., 117, D14105,
https://doi.org/10.1029/2011JD017237, 2012. a
Jöckel, P., Sander, R., Kerkweg, A., Tost, H., and Lelieveld, J.: Technical Note: The Modular Earth Submodel System (MESSy) – a new approach towards Earth System Modeling, Atmos. Chem. Phys., 5, 433–444, https://doi.org/10.5194/acp-5-433-2005, 2005. a
Jöckel, P., Kerkweg, A., Pozzer, A., Sander, R., Tost, H., Riede, H., Baumgaertner, A., Gromov, S., and Kern, B.: Development cycle 2 of the Modular Earth Submodel System (MESSy2), Geosci. Model Dev., 3, 717–752, https://doi.org/10.5194/gmd-3-717-2010, 2010. a, b
Johnson, D.: Parametrization of the cloud topped boundary layer: aircraft
measurements, in: Workshop on Parametrization of the Cloud Topped Boundary
layer, 8–11 June 1993, 77–118, ECMWF, ECMWF, Shinfield Park, Reading,
1993. a
Jung, J. H. and Arakawa, A.: Development of a Quasi-3D Multiscale Modeling
Framework: Motivation, Basic Algorithm and Preliminary results, J.
Adv. Model. Earth Syst., 2, 11, https://doi.org/10.3894/JAMES.2010.2.11,
2010. a
Jung, J. H. and Arakawa, A.: Simulation of subgrid orographic precipitation
with an embedded 2-D cloud-resolving model, J. Adv. Model.
Earth Syst., 8, 31–40, https://doi.org/10.1002/2015MS000539, 2016. a
Kajikawa, Y., Yamaura, T., Tomita, H., and Satoh, M.: Impact of Tropical
Disturbance on the Indian Summer Monsoon Onset Simulated by a Global
Cloud-System-Resolving Model, SOLA, 11, 80–84,
https://doi.org/10.2151/sola.2015-020, 2015. a
Kajikawa, Y., Miyamoto, Y., Yoshida, R., Yamaura, T., Yashiro, H., and Tomita,
H.: Resolution dependence of deep convections in a global simulation from
over 10-kilometer to sub-kilometer grid spacing, Prog. Earth
Planet. Sci., 3, 16, https://doi.org/10.1186/s40645-016-0094-5, 2016. a
Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J. J., Fiorino,
M., and Potter, G. L.: NCEP–DOE AMIP-II Reanalysis (R-2), B.
Am. Meteorol. Soc., 83, 1631–1643,
https://doi.org/10.1175/BAMS-83-11-1631, 2002. a
Karlsson, K.-G., Anttila, K., Trentmann, J., Stengel, M., Fokke Meirink, J., Devasthale, A., Hanschmann, T., Kothe, S., Jääskeläinen, E., Sedlar, J., Benas, N., van Zadelhoff, G.-J., Schlundt, C., Stein, D., Finkensieper, S., Håkansson, N., and Hollmann, R.: CLARA-A2: the second edition of the CM SAF cloud and radiation data record from 34 years of global AVHRR data, Atmos. Chem. Phys., 17, 5809–5828, https://doi.org/10.5194/acp-17-5809-2017, 2017. a
Kerkweg, A. and Jöckel, P.: The 1-way on-line coupled atmospheric chemistry model system MECO(n) – Part 1: Description of the limited-area atmospheric chemistry model COSMO/MESSy, Geosci. Model Dev., 5, 87–110, https://doi.org/10.5194/gmd-5-87-2012, 2012. a
Khairoutdinov, M., Randall, D., and DeMott, C.: Simulations of the atmospheric
general circulation using a cloud-resolving model as a superparameterization
of physical processes, J. Atmos. Sci., 62, 2136–2154,
https://doi.org/10.1175/JAS3453.1, 2005. a, b, c
Khairoutdinov, M., DeMott, C., and Randall, D.: Evaluation of the simulated
interannual and subseasonal variability in an AMIP-Style simulation using the
CSU multiscale modeling framework, J. Climate, 21, 413–431,
https://doi.org/10.1175/2007JCLI1630.1, 2008. a, b, c, d
Khairoutdinov, M. F. and Randall, D. A.: A cloud resolving model as a cloud
parameterization in the NCAR Community Climate System Model: Preliminary
results, Geophys. Res. Lett., 28, 3617–3620,
https://doi.org/10.1029/2001GL013552, 2001. a, b
Khairoutdinov, M. F. and Randall, D. A.: Cloud resolving modeling of the ARM
summer 1997 IOP: Model formulation, results, uncertainties, and
sensitivities, J. Atmos. Sci., 60, 607–625,
https://doi.org/10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2, 2003. a, b, c
Khairoutdinov, M. F. and Randall, D.: High-Resolution Simulation of
Shallow-to-Deep Convection Transition over Land, J. Atmos.
Sci., 63, 3421–3436, https://doi.org/10.1175/JAS3810.1, 2006. a
Kikuchi, K. and Wang, B.: Diurnal Precipitation Regimes in the Global Tropics,
J. Climate, 21, 2680–2696, https://doi.org/10.1175/2007JCLI2051.1, 2008. a
Knutti, R., Stocker, T. F., Joos, F., and Plattner, G. K.: Constraints on
radiative forcing and future climate change from observations and climate
model ensembles, Nature, 416, 719–723, https://doi.org/10.1038/416719a, 2002. a
Kodama, C., Yamada, Y., Noda, A. T., Kikuchi, K., Kajikawa, Y., Nasuno, T.,
Tomita, T., Yamaura, T., Takahashi, H. G., Hara, M., Kawatani, Y., Satoh, M.,
and Sugi, M.: A 20-Year Climatology of a NICAM AMIP-Type Simulation, J. Meteor. Soc. Japan Ser. II, 93, 393–424,
https://doi.org/10.2151/jmsj.2015-024, 2015. a
Kooperman, G. J., Pritchard, M. S., and Somerville, R. C. J.: Robustness and
sensitivities of central U.S. summer convection in the super-parameterized
CAM: Multi-model intercomparison with a new regional EOF index, Geophys.
Res. Lett., 40, 3287–3291, https://doi.org/10.1002/grl.50597, 2013. a
Kooperman, G. J., Pritchard, M. S., and Somerville, R. C. J.: The response of
US summer rainfall to quadrupled CO2 climate change in conventional and
superparameterized versions of the NCAR community atmosphere model, J. Adv. Model. Earth Syst., 6, 859–882,
https://doi.org/10.1002/2014MS000306, 2014. a
Kooperman, G. J., Pritchard, M. S., Burt, M. A., Branson, M. D., and Randall,
D. A.: Robust effects of cloud superparameterization on simulated daily
rainfall intensity statistics across multiple versions of the Community Earth
System Model, J. Adv. Model. Earth Syst., 8, 140–165,
https://doi.org/10.1002/2015MS000574, 2016. a, b
Lauer, A. and Hamilton, K.: Simulating Clouds with Global Climate Models: A
Comparison of CMIP5 Results with CMIP3 and Satellite Data, J.
Climate, 26, 3823–3845, https://doi.org/10.1175/JCLI-D-12-00451.1, 2013. a
Loeb, N. G., Wielicki, B. A., Doelling, D. R., Smith, G. L., Keyes, D. F.,
Kato, S., Manalo-Smith, N., and Wong, T.: Toward optimal closure of the
Earth's top-of-atmosphere radiation budget, J. Climate, 22, 748–766,
2009. a
Lohmann, U. and Roeckner, E.: Design and performance of a new cloud
microphysics scheme developed for the ECHAM general circulation model,
Clim. Dynam., 12, 557–572, https://doi.org/10.1007/s003820050128, 1996. a
Luo, Z. and Stephens, G. L.: An enhanced convection-wind-evaporation feedback
in a superparameterization GCM (SP-GCM) depiction of the Asian summer
monsoon, Geophys. Res. Lett., 33, L06707, https://doi.org/10.1029/2005GL025060, 2006. a
Mace, G. G.: Cloud properties and radiative forcing over the maritime storm
tracks of the Southern Ocean and North Atlantic derived from A-Train, J. Geophys. Res.-Atmos., 115, D10201, https://doi.org/10.1029/2009JD012517, 2010. a
Maher, P., Vallis, G. K., Sherwood, S. C., Webb, M. J., and Sansom, P. G.: The
Impact of Parameterized Convection on Climatological Precipitation in
Atmospheric Global Climate Models, Geophys. Res. Lett., 45,
3728–3736, https://doi.org/10.1002/2017GL076826, 2018. a
Marchand, R. and Ackerman, T.: An analysis of cloud cover in multiscale
modeling framework global climate model simulations using 4 and 1 km
horizontal grids, J. Geophys. Res.-Atmos., 115, D16207,
https://doi.org/10.1029/2009JD013423, 2010. a, b, c, d
Marchand, R., Haynes, J., Mace, G. G., Ackerman, T., and Stephens, G.: A
comparison of simulated cloud radar output from the multiscale modeling
framework global climate model with CloudSat cloud radar observations,
J. Geophys. Res.-Atmos., 114, D00A20,
https://doi.org/10.1029/2008JD009790, 2009. a
Matsui, T., Chern, J.-D., Tao, W.-K., Lang, S., Satoh, M., Hashino, T., and
Kubota, T.: On the Land–Ocean Contrast of Tropical Convection and
Microphysics Statistics Derived from TRMM Satellite Signals and Global
Storm-Resolving Models, J. Hydrometeorol., 17, 1425–1445,
https://doi.org/10.1175/JHM-D-15-0111.1, 2016. a
Mauritsen, T., Stevens, B., Roeckner, E., Crueger, T., Esch, M., Giorgetta, M.,
Haak, H., Jungclaus, J., Klocke, D., Matei, D., Mikolajewicz, U., Notz, D.,
Pincus, R., Schmidt, H., and Tomassini, L.: Tuning the climate of a global
model, J. Adv. Model. Earth Syst., 4, M00A01,
https://doi.org/10.1029/2012MS000154, 2012. a, b
Minghuai, W., E., L. V., Steven, G., Mikhail, O., P., S. D., Heng, X.,
Xiaohong, L., Philip, R., and Zhun, G.: A multiscale modeling framework model
(superparameterized CAM5) with a higher-order turbulence closure: Model
description and low-cloud simulations, J. Adv. Model. Earth
Syst., 7, 484–509, https://doi.org/10.1002/2014MS000375, 2015. a
Miura, H., Satoh, M., Nasuno, T., Noda, A. T., and Oouchi, K.: A Madden-Julian
Oscillation Event Realistically Simulated by a Global Cloud-Resolving Model,
Science, 318, 1763–1765, https://doi.org/10.1126/science.1148443, 2007. a
Miyakawa, T., Satoh, M., Miura, H., Tomita, H., Yashiro, H., Noda, A. T.,
Yamada, Y., Kodama, C., Kimoto, M., and Yoneyama, K.: Madden-Julian
Oscillation prediction skill of a new-generation global model demonstrated
using a supercomputer, Nat. Commun., 5, 3769,
https://doi.org/10.1038/ncomms4769, 2014. a
Miyamoto, Y., Kajikawa, Y., Yoshida, R., Yamaura, T., Yashiro, H., and Tomita,
H.: Deep moist atmospheric convection in a subkilometer global simulation,
Geophys. Res. Lett., 40, 4922–4926, https://doi.org/10.1002/grl.50944, 2013. a
Morrison, H., Thompson, G., and Tatarskii, V.: Impact of Cloud Microphysics on
the Development of Trailing Stratiform Precipitation in a Simulated Squall
Line: Comparison of One- and Two-Moment Schemes, Mon. Weather Rev., 137,
991–1007, https://doi.org/10.1175/2008MWR2556.1, 2009. a
Moss, S., Francis, P., and Johnson, D.: Calculation and parameterization of the
effective radius of ice particles using aircraft data, in: Proc. 12th Int.
Conf. on Clouds and Precipitation, 1255–1258, 1996. a
Nordeng, T. E.: Extended versions of the convective parametrization scheme at
ECMWF and their impact on the mean and transient activity of the model in the
tropics, Technical Momorandum 206, ECMWF Research Department, European
Centre for Medium Range Weather Forecasts, Reading, UK, 1994. a
O’Dell, C. W., Wentz, F. J., and Bennartz, R.: Cloud Liquid Water Path from
Satellite-Based Passive Microwave Observations: A New Climatology over the
Global Oceans, J. Climate, 21, 1721–1739,
https://doi.org/10.1175/2007JCLI1958.1, 2008. a
Parishani, H., Pritchard, M. S., Bretherton, C. S., Terai, C. R., Wyant, M. C.,
Khairoutdinov, M., and Singh, B.: Insensitivity of the Cloud Response to
Surface Warming Under Radical Changes to Boundary Layer Turbulence and Cloud
Microphysics: Results From the Ultraparameterized CAM, J. Adv.
Model. Earth Syst., 10, 3139–3158, https://doi.org/10.1029/2018MS001409, 2018. a, b, c
Pritchard, M. S. and Somerville, R. C. J.: Assessing the Diurnal Cycle of
Precipitation in a Multi-Scale Climate Model, J. Adv. Model.
Earth Syst., 1, 12, 2009a. a
Pritchard, M. S. and Somerville, R. C. J.: Empirical orthogonal function
analysis of the diurnal cycle of precipitation in a multi-scale climate
model, Geophys. Res. Lett., 36, L05812, https://doi.org/10.1029/2008GL036964, l05812,
2009b. a, b
Pritchard, M. S., Bretherton, C. S., and DeMott, C. A.: Restricting 32–128 km
horizontal scales hardly affects the MJO in the Superparameterized Community
Atmosphere Model v.3.0 but the number of cloud-resolving grid columns
constrains vertical mixing, J. Adv. Model. Earth Syst., 6,
723–739, https://doi.org/10.1002/2014MS000340, 2014. a, b, c
Probst, P., Rizzi, R., Tosi, E., Lucarini, V., and Maestri, T.: Total cloud
cover from satellite observations and climate models, Atmos.
Res., 107, 161–170, https://doi.org/10.1016/j.atmosres.2012.01.005, 2012. a
Qin, H., Pritchard, M. S., Kooperman, G. J., and Parishani, H.: Global Effects
of Superparameterization on Hydrothermal Land-Atmosphere Coupling on Multiple
Timescales, J. Adv. Model. Earth Syst., 10, 530–549,
https://doi.org/10.1002/2017MS001185, 2018. a, b, c
Randall, D., Khairoutdinov, M. F., Arakawa, A., and Grabowski, W.: Breaking the
cloud parameterization deadlock, B. Am. Meteor.
Soc., 84, 1547–1564, https://doi.org/10.1175/BAMS-84-11-1547, 2003. a
Randall, D. A.: Beyond deadlock, Geophys. Res. Lett., 40, 5970–5976,
https://doi.org/10.1002/2013GL057998, 2013. a
Roeckner, E., Bäuml, G., Bonaventura, L., Brokopf, R., Esch, M., Giorgetta,
M., Hagemann, S., Kirchner, I., Kornblueh, L., Manzini, E., Rhodin, A.,
Schlese, U., Schulzweida, U., and Tompkins, A.: The atmospheric general
circulation model ECHAM 5. Part I: Model description., Tech. Rep. 349,
Max-Planck-Institute for Meteorology, Hamburg,
available at: https://www.mpimet.mpg.de/fileadmin/publikationen/Reports/max_scirep_349.pdf (last access: 27 May 2020),
2003. a, b, c
Roeckner, E., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kornblueh,
L., Manzini, E., Schlese, U., and Schulzweida, U.: Sensitivity of simulated
climate to horizontal and vertical resolution in the ECHAM5 atmosphere model,
J. Climate, 19, 3771–3791, https://doi.org/10.1175/JCLI3824.1, 2006. a, b
Rybka, H. and Tost, H.: SP-EMAC – analysis and plotting scripts, Zenodo,
https://doi.org/10.5281/zenodo.3387004, 2019a. a
Rybka, H. and Tost, H.: SP-EMAC – model source code and input files, Zenodo,
https://doi.org/10.5281/zenodo.3386969, 2019b. a
Sato, T., Miura, H., Satoh, M., Takayabu, Y. N., and Wang, Y.: Diurnal Cycle of
Precipitation in the Tropics Simulated in a Global Cloud-Resolving Model,
J. Climate, 22, 4809–4826, https://doi.org/10.1175/2009JCLI2890.1, 2009. a, b, c
Song, H., Zhang, Z., Ma, P.-L., Ghan, S., and Wang, M.: The importance of considering sub-grid cloud variability when using satellite observations to evaluate the cloud and precipitation simulations in climate models, Geosci. Model Dev., 11, 3147–3158, https://doi.org/10.5194/gmd-11-3147-2018, 2018. a
Stephens, G. L., L'Ecuyer, T., Forbes, R., Gettelmen, A., Golaz, J.-C.,
Bodas-Salcedo, A., Suzuki, K., Gabriel, P., and Haynes, J.: Dreary state of
precipitation in global models, J. Geophys. Res.-Atmos.,
115, D24211, https://doi.org/10.1029/2010JD014532, 2010. a
Stevens, B., Satoh, M., Auger, L., Biercamp, J., Bretherton, C. S., Chen, X.,
Düben, P., Judt, F., Khairoutdinov, M., Klocke, D., Kodama, C.,
Kornblueh, L., Lin, S.-J., Neumann, P., Putman, W. M., Röber, N.,
Shibuya, R., Vanniere, B., Vidale, P. L., Wedi, N., and Zhou, L.: DYAMOND:
the DYnamics of the Atmospheric general circulation Modeled On
Non-hydrostatic Domains, Progr. Earth Planet. Sci., 6, 61,
https://doi.org/10.1186/s40645-019-0304-z, 2019. a
Stevens, B., Acquistapace, C., Hansen, A., Heinze, R., Klinger, C., Klocke, D.,
Rybka, H., Schubotz, W., Windmiller, J., Adamidis, P., Arka, I., Barlakas,
V., Biercamp, J., Brueck, M., Brune, S., Buehler, S., Burkhardt, U., Cioni,
G., Costa-Surós, M., Crewell, S., Crueger, T., Deneke, H., Friederichs, P.,
Carbajal Henken, C., Hohenegger, C., Jacob, M., Jakub, F., Kalthoff, N.,
Kohler, M., Li, P., Lohnert, U., Macke, A., Madenach, N., Mayer, B., Nam, C.,
Naumann, A., Peters, K., Poll, S., Quaas, J., Rober, N., Rochetin, N.,
Scheck, L., Schemann, V., Schnitt, S., Seifert, A., Senf, F., Shapkalijevski,
M., Simmer, C., Singh, S., Sourdeval, O., Spickermann, D., Strandgren, J.,
Tessiot, O., Laar, T. v., Vercauteren, N., Vial, J., Voigt, A., and Zangl,
G.: The Added Value of Large-eddy and Storm-resolving Models for Simulating
Clouds and Precipitation, J. Meteor. Soc. Japan, 98, 395–435,
https://doi.org/10.2151/jmsj.2020-021, 2020. a
Stubenrauch, C. J., Rossow, W. B., Kinne, S., Ackerman, S., Cesana, G.,
Chepfer, H., Di Girolamo, L., Getzewich, B., Guignard, A., Heidinger, A.,
Maddux, B. C., Menzel, W. P., Minnis, P., Pearl, C., Platnick, S., Poulsen,
C., Riedi, J., Sun-Mack, S., Walther, A., Winker, D., Zeng, S., and Zhao, G.:
Assessment of Global Cloud Datasets from Satellites: Project and Database
Initiated by the GEWEX Radiation Panel, B. Am.
Meteorol. Soc., 94, 1031–1049, https://doi.org/10.1175/BAMS-D-12-00117.1,
2013. a
Subramanian, A., Weisheimer, A., Palmer, T., Vitart, F., and Bechtold, P.:
Impact of stochastic physics on tropical precipitation in the coupled ECMWF
model, Q. J. Roy. Meteorol. Soc., 143, 852–865,
https://doi.org/10.1002/qj.2970, 2017. a
Sui, C.-H., Lau, K.-M., Takayabu, Y. N., and Short, D. A.: Diurnal Variations
in Tropical Oceanic Cumulus Convection during TOGA COARE, J.
Atmos. Sci., 54, 639–655,
https://doi.org/10.1175/1520-0469(1997)054<0639:DVITOC>2.0.CO;2, 1997. a
Sui, C.-H., Li, X., and Lau, K.-M.: Radiative–Convective Processes in
Simulated Diurnal Variations of Tropical Oceanic Convection, J.
Atmos. Sci., 55, 2345–2357,
https://doi.org/10.1175/1520-0469(1998)055<2345:RCPISD>2.0.CO;2, 1998. a
Sun, J. and Pritchard, M. S.: Effects of Explicit Convection on Land Surface
Air Temperature and Land-Atmosphere Coupling in the Thermal Feedback Pathway,
J. Adv. Model. Earth Syst., 10, 2376–2392,
https://doi.org/10.1029/2018MS001301, 2018. a, b, c
Suzuki, K., Stephens, G., Bodas-Salcedo, A., Wang, M., Golaz, J.-C., Yokohata,
T., and Koshiro, T.: Evaluation of the Warm Rain Formation Process in Global
Models with Satellite Observations, J. Atmos. Sci., 72,
3996–4014, https://doi.org/10.1175/JAS-D-14-0265.1, 2015. a
Swales, D. J., Pincus, R., and Bodas-Salcedo, A.: The Cloud Feedback Model Intercomparison Project Observational Simulator Package: Version 2, Geosci. Model Dev., 11, 77–81, https://doi.org/10.5194/gmd-11-77-2018, 2018. a
Tao, W. K., Chern, J. D., Atlas, R., Randall, D., Khairoutdinov, M., Li, J. L.,
Waliser, D. E., Hou, A., Lin, X., Peters-Lidard, C., Lau, W., Jiang, J., and
Simpson, J.: A Multiscale Modeling System: Developments, Applications, and
Critical Issues, B. Am. Meteorol. Soc., 90,
515–534, https://doi.org/10.1175/2008BAMS2542.1, 2009. a, b, c, d
Taylor, K. E.: Summarizing multiple aspects of model performance in a single
diagram, J. Geophys. Res.-Atmos., 106, 7183–7192,
https://doi.org/10.1029/2000JD900719, 2001. a
Tiedtke, M.: A Comprehensive Mass Flux Scheme For Cumulus Parameterization In
Large-scale Models, Mon. Weather Rev., 117, 1779–1800,
https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2, 1989. a
Tompkins, A. M.: Organization of Tropical Convection in Low Vertical Wind
Shears: The Role of Cold Pools, J. Atmos. Sci., 58,
1650–1672, https://doi.org/10.1175/1520-0469(2001)058<1650:OOTCIL>2.0.CO;2, 2001. a
Tost, H., Jöckel, P., and Lelieveld, J.: Influence of different convection parameterisations in a GCM, Atmos. Chem. Phys., 6, 5475–5493, https://doi.org/10.5194/acp-6-5475-2006, 2006. a
Tulich, S. N.: A strategy for representing the effects of convective momentum
transport in multiscale models: Evaluation using a new superparameterized
version of the Weather Research and Forecast model (SP-WRF), J.
Adv. Model. Earth Syst., 7, 938–962, https://doi.org/10.1002/2014MS000417,
2015. a, b, c
Wang, M., Ghan, S., Easter, R., Ovchinnikov, M., Liu, X., Kassianov, E., Qian, Y., Gustafson Jr., W. I., Larson, V. E., Schanen, D. P., Khairoutdinov, M., and Morrison, H.: The multi-scale aerosol-climate model PNNL-MMF: model description and evaluation, Geosci. Model Dev., 4, 137–168, https://doi.org/10.5194/gmd-4-137-2011, 2011a. a, b, c
Wang, M., Ghan, S., Ovchinnikov, M., Liu, X., Easter, R., Kassianov, E., Qian, Y., and Morrison, H.: Aerosol indirect effects in a multi-scale aerosol-climate model PNNL-MMF, Atmos. Chem. Phys., 11, 5431–5455, https://doi.org/10.5194/acp-11-5431-2011, 2011b. a
Wielicki, B. A., Barkstrom, B. R., Harrison, E. F., III, R. B. L., Smith,
G. L., and Cooper, J. E.: Clouds and the Earth's Radiant Energy System
(CERES): An Earth Observing System Experiment, B. Am.
Meteor
. Soc., 77, 853–868,
https://doi.org/10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2, 1996. a
Wyant, M. C., Bretherton, C. S., Bacmeister, J. T., Kiehl, J. T., Held, I. M.,
Zhao, M., Klein, S. A., and Soden, B. J.: A comparison of low-latitude cloud
properties and their response to climate change in three AGCMs sorted into
regimes using mid-tropospheric vertical velocity, Clim. Dynam., 27,
261–279, https://doi.org/10.1007/s00382-006-0138-4, 2006a. a
Wyant, M. C., Khairoutdinov, M., and Bretherton, C. S.: Climate sensitivity and
cloud response of a GCM with a superparameterization, Geophys. Res.
Lett., 33, L06714, https://doi.org/10.1029/2005GL025464, 2006b. a, b
Wyant, M. C., Bretherton, C. S., and Blossey, P. N.: Subtropical Low Cloud
Response to a Warmer Climate in a Superparameterized Climate Model. Part I:
Regime Sorting and Physical Mechanisms, J. Adv. Model. Earth
Syst., 1, 7, https://doi.org/10.3894/JAMES.2009.1.7, 2009. a, b
Yang, S. and Smith, E. A.: Mechanisms for Diurnal Variability of Global
Tropical Rainfall Observed from TRMM, J. Climate, 19, 5190–5226,
https://doi.org/10.1175/JCLI3883.1, 2006.
a, b
Yashiro, H., Kajikawa, Y., Miyamoto, Y., Yamaura, T., Yoshida, R., and Tomita, H.: Resolution Dependence of the Diurnal Cycle of Precipitation Simulated by a Global Cloud-System Resolving Model, SOLA, 12, 272–276,
https://doi.org/10.2151/sola.2016-053, 2016. a
Zhang, G. J. and McFarlane, N. A.: Sensitivity of Climate Simulations To the
Parameterization of Cumulus Convection In the Canadian Climate Center
General-circulation Model, Atmos.-Ocean, 33, 407–446, 1995. a
Zhang, T., Zhang, M., Lin, W., Lin, Y., Xue, W., Yu, H., He, J., Xin, X., Ma, H.-Y., Xie, S., and Zheng, W.: Automatic tuning of the Community Atmospheric Model (CAM5) by using short-term hindcasts with an improved downhill simplex optimization method, Geosci. Model Dev., 11, 5189–5201, https://doi.org/10.5194/gmd-11-5189-2018, 2018. a
Zhang, Y., Klein, S. A., Liu, C., Tian, B., Marchand, R. T., Haynes, J. M.,
McCoy, R. B., Zhang, Y., and Ackerman, T. P.: On the diurnal cycle of deep
convection, high-level cloud, and upper troposphere water vapor in the
Multiscale Modeling Framework, J. Geophys. Res.-Atmos.,
113, D16105, https://doi.org/10.1029/2008JD009905, 2008. a, b
Short summary
Simulating cloud processes and their interactions with their environment is one of the biggest challenges in atmospheric science. This study couples a cloud-resolving model with a global climate model to improve the representation of small-scale processes for climate simulations. Unlike conventional approaches, tropical precipitation is better simulated with the new model setup. However, the diurnal cycle of precipitation and cloud amounts can be significantly influenced by the chosen setup.
Simulating cloud processes and their interactions with their environment is one of the biggest...