Articles | Volume 13, issue 5
Geosci. Model Dev., 13, 2451–2474, 2020
https://doi.org/10.5194/gmd-13-2451-2020
Geosci. Model Dev., 13, 2451–2474, 2020
https://doi.org/10.5194/gmd-13-2451-2020

Development and technical paper 27 May 2020

Development and technical paper | 27 May 2020

Satellite-derived leaf area index and roughness length information for surface–atmosphere exchange modelling: a case study for reactive nitrogen deposition in north-western Europe using LOTOS-EUROS v2.0

Shelley C. van der Graaf et al.

Related authors

Data assimilation of CrIS-NH3 satellite observations for improving spatiotemporal NH3 distributions in LOTOS-EUROS
Shelley van der Graaf, Enrico Dammers, Arjo Segers, Richard Kranenburg, Martijn Schaap, Mark Shephard, and Jan Willem Erisman
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-473,https://doi.org/10.5194/acp-2021-473, 2021
Preprint under review for ACP
Short summary
NH3 emissions from large point sources derived from CrIS and IASI satellite observations
Enrico Dammers, Chris A. McLinden, Debora Griffin, Mark W. Shephard, Shelley Van Der Graaf, Erik Lutsch, Martijn Schaap, Yonatan Gainairu-Matz, Vitali Fioletov, Martin Van Damme, Simon Whitburn, Lieven Clarisse, Karen Cady-Pereira, Cathy Clerbaux, Pierre Francois Coheur, and Jan Willem Erisman
Atmos. Chem. Phys., 19, 12261–12293, https://doi.org/10.5194/acp-19-12261-2019,https://doi.org/10.5194/acp-19-12261-2019, 2019
Short summary
Technical note: How are NH3 dry deposition estimates affected by combining the LOTOS-EUROS model with IASI-NH3 satellite observations?
Shelley C. van der Graaf, Enrico Dammers, Martijn Schaap, and Jan Willem Erisman
Atmos. Chem. Phys., 18, 13173–13196, https://doi.org/10.5194/acp-18-13173-2018,https://doi.org/10.5194/acp-18-13173-2018, 2018
Short summary

Related subject area

Atmospheric sciences
Efficient ensemble generation for uncertain correlated parameters in atmospheric chemical models: a case study for biogenic emissions from EURAD-IM version 5
Annika Vogel and Hendrik Elbern
Geosci. Model Dev., 14, 5583–5605, https://doi.org/10.5194/gmd-14-5583-2021,https://doi.org/10.5194/gmd-14-5583-2021, 2021
Short summary
Position correction in dust storm forecasting using LOTOS-EUROS v2.1: grid-distorted data assimilation v1.0
Jianbing Jin, Arjo Segers, Hai Xiang Lin, Bas Henzing, Xiaohui Wang, Arnold Heemink, and Hong Liao
Geosci. Model Dev., 14, 5607–5622, https://doi.org/10.5194/gmd-14-5607-2021,https://doi.org/10.5194/gmd-14-5607-2021, 2021
Short summary
Atmosphere–ocean–aerosol–chemistry–climate model SOCOLv4.0: description and evaluation
Timofei Sukhodolov, Tatiana Egorova, Andrea Stenke, William T. Ball, Christina Brodowsky, Gabriel Chiodo, Aryeh Feinberg, Marina Friedel, Arseniy Karagodin-Doyennel, Thomas Peter, Jan Sedlacek, Sandro Vattioni, and Eugene Rozanov
Geosci. Model Dev., 14, 5525–5560, https://doi.org/10.5194/gmd-14-5525-2021,https://doi.org/10.5194/gmd-14-5525-2021, 2021
Short summary
Harmonized Emissions Component (HEMCO) 3.0 as a versatile emissions component for atmospheric models: application in the GEOS-Chem, NASA GEOS, WRF-GC, CESM2, NOAA GEFS-Aerosol, and NOAA UFS models
Haipeng Lin, Daniel J. Jacob, Elizabeth W. Lundgren, Melissa P. Sulprizio, Christoph A. Keller, Thibaud M. Fritz, Sebastian D. Eastham, Louisa K. Emmons, Patrick C. Campbell, Barry Baker, Rick D. Saylor, and Raffaele Montuoro
Geosci. Model Dev., 14, 5487–5506, https://doi.org/10.5194/gmd-14-5487-2021,https://doi.org/10.5194/gmd-14-5487-2021, 2021
Short summary
Mesoscale nesting interface of the PALM model system 6.0
Eckhard Kadasch, Matthias Sühring, Tobias Gronemeier, and Siegfried Raasch
Geosci. Model Dev., 14, 5435–5465, https://doi.org/10.5194/gmd-14-5435-2021,https://doi.org/10.5194/gmd-14-5435-2021, 2021
Short summary

Cited articles

Abida, R., Attié, J.-L., El Amraoui, L., Ricaud, P., Lahoz, W., Eskes, H., Segers, A., Curier, L., de Haan, J., Kujanpää, J., Nijhuis, A. O., Tamminen, J., Timmermans, R., and Veefkind, P.: Impact of spaceborne carbon monoxide observations from the S-5P platform on tropospheric composition analyses and forecasts, Atmos. Chem. Phys., 17, 1081–1103, https://doi.org/10.5194/acp-17-1081-2017, 2017. 
Ammann, C.: FLUXNET2015 CH-Oe1 Oensingen grassland, 2002–2008, Dataset, https://doi.org/10.18140/FLX/1440135, 2016. 
Banzhaf, S., Schaap, M., Kerschbaumer, A., Reimer, E., Stern, R., Van Der Swaluw, E., and Builtjes, P.: Implementation and evaluation of pH-dependent cloud chemistry and wet deposition in the chemical transport model REM-Calgrid, Atmos. Environ., 49, 378–390, 2012. 
Bauer, S. E., Tsigaridis, K., and Miller, R.: Significant atmospheric aerosol pollution caused by world food cultivation, Geophys. Res. Lett., 43, 5394–5400, 2016. 
Behera, S. N., Sharma, M., Aneja, V. P., and Balasubramanian, R.: Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies, Environ. Sci. Pollut. Res., 20, 8092–8131, 2013. 
Download
Short summary
Chemical transport models (CTMs) are important tools to determine the fate of reactive nitrogen (Nr) emissions. The parameterization of the surface–atmosphere exchange in CTMs is often only linked to fixed, land-use-dependent values. In this paper, we present an approach to derive more realistic, dynamic leaf area index (LAI) and roughness length (z0) input maps using multiple satellite products. We evaluate the effect on Nr concentration and deposition fields modelled in the LOTOS-EUROS CTM.