Articles | Volume 13, issue 3
https://doi.org/10.5194/gmd-13-1399-2020
https://doi.org/10.5194/gmd-13-1399-2020
Development and technical paper
 | 
23 Mar 2020
Development and technical paper |  | 23 Mar 2020

Dynamic upscaling of decomposition kinetics for carbon cycling models

Arjun Chakrawal, Anke M. Herrmann, John Koestel, Jerker Jarsjö, Naoise Nunan, Thomas Kätterer, and Stefano Manzoni

Related authors

Rainfall intensification increases the contribution of rewetting pulses to soil heterotrophic respiration
Stefano Manzoni, Arjun Chakrawal, Thomas Fischer, Joshua P. Schimel, Amilcare Porporato, and Giulia Vico
Biogeosciences, 17, 4007–4023, https://doi.org/10.5194/bg-17-4007-2020,https://doi.org/10.5194/bg-17-4007-2020, 2020
Short summary

Related subject area

Biogeosciences
Systematic underestimation of type-specific ecosystem process variability in the Community Land Model v5 over Europe
Christian Poppe Terán, Bibi S. Naz, Harry Vereecken, Roland Baatz, Rosie A. Fisher, and Harrie-Jan Hendricks Franssen
Geosci. Model Dev., 18, 287–317, https://doi.org/10.5194/gmd-18-287-2025,https://doi.org/10.5194/gmd-18-287-2025, 2025
Short summary
Lambda-PFLOTRAN 1.0: a workflow for incorporating organic matter chemistry informed by ultra high resolution mass spectrometry into biogeochemical modeling
Katherine A. Muller, Peishi Jiang, Glenn Hammond, Tasneem Ahmadullah, Hyun-Seob Song, Ravi Kukkadapu, Nicholas Ward, Madison Bowe, Rosalie K. Chu, Qian Zhao, Vanessa A. Garayburu-Caruso, Alan Roebuck, and Xingyuan Chen
Geosci. Model Dev., 17, 8955–8968, https://doi.org/10.5194/gmd-17-8955-2024,https://doi.org/10.5194/gmd-17-8955-2024, 2024
Short summary
An improved model for air–sea exchange of elemental mercury in MITgcm-ECCOv4-Hg: the role of surfactants and waves
Ling Li, Peipei Wu, Peng Zhang, Shaojian Huang, and Yanxu Zhang
Geosci. Model Dev., 17, 8683–8695, https://doi.org/10.5194/gmd-17-8683-2024,https://doi.org/10.5194/gmd-17-8683-2024, 2024
Short summary
BOATSv2: new ecological and economic features improve simulations of high seas catch and effort
Jerome Guiet, Daniele Bianchi, Kim J. N. Scherrer, Ryan F. Heneghan, and Eric D. Galbraith
Geosci. Model Dev., 17, 8421–8454, https://doi.org/10.5194/gmd-17-8421-2024,https://doi.org/10.5194/gmd-17-8421-2024, 2024
Short summary
A dynamical process-based model for quantifying global agricultural ammonia emissions – AMmonia–CLIMate v1.0 (AMCLIM v1.0) – Part 1: Land module for simulating emissions from synthetic fertilizer use
Jize Jiang, David S. Stevenson, and Mark A. Sutton
Geosci. Model Dev., 17, 8181–8222, https://doi.org/10.5194/gmd-17-8181-2024,https://doi.org/10.5194/gmd-17-8181-2024, 2024
Short summary

Cited articles

Abramoff, R., Xu, X., Hartman, M., O’Brien, S., Feng, W., Davidson, E., Finzi, A., Moorhead, D., Schimel, J., Torn, M., and Mayes, M. A.: The Millennial model: in search of measurable pools and transformations for modeling soil carbon in the new century, Biogeochemistry, 137, 51–71, https://doi.org/10.1007/s10533-017-0409-7, 2018. a
Albertson, J. D. and Montaldo, N.: Temporal dynamics of soil moisture variability: 1. Theoretical basis, Water Resour. Res., 39, 1–14, https://doi.org/10.1029/2002WR001616, 2003. a
Aleklett, K., Kiers, E. T., Ohlsson, P., Shimizu, T. S., Caldas, V. E., and Hammer, E. C.: Build Your Own Soil: Exploring Microfluidics to Create Microbial Habitat Structures, ISME J., 12, 312–319, https://doi.org/10.1038/ismej.2017.184, 2018. a
Allison, S. D.: Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments, Ecol. Lett., 8, 626–635, https://doi.org/10.1111/j.1461-0248.2005.00756.x, 2005. a
Allison, S. D.: A trait-based approach for modelling microbial litter decomposition, Ecol. Lett., 15, 1058–1070, https://doi.org/10.1111/j.1461-0248.2012.01807.x, 2012. a
Download
Short summary
Soils are heterogeneous, which results in a nonuniform spatial distribution of substrates and the microorganisms feeding on them. Our results show that the variability in the spatial distribution of substrates and microorganisms at the pore scale is crucial because it affects how fast substrates are used by microorganisms and thus the decomposition rate observed at the soil core scale. This work provides a methodology to include microscale heterogeneity in soil carbon cycling models.