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Abstract. The distribution of organic substrates and microor-
ganisms in soils is spatially heterogeneous at the microscale.
Most soil carbon cycling models do not account for this mi-
croscale heterogeneity, which may affect predictions of car-
bon (C) fluxes and stocks. In this study, we hypothesize that
the mean respiration rateR at the soil core scale (i) is affected
by the microscale spatial heterogeneity of substrate and mi-
croorganisms and (ii) depends upon the degree of this hetero-
geneity. To theoretically assess the effect of spatial hetero-
geneities on R, we contrast heterogeneous conditions with
isolated patches of substrate and microorganisms versus spa-
tially homogeneous conditions equivalent to those assumed
in most soil C models. Moreover, we distinguish between
biophysical heterogeneity, defined as the nonuniform spatial
distribution of substrate and microorganisms, and full het-
erogeneity, defined as the nonuniform spatial distribution of
substrate quality (or accessibility) in addition to biophysical
heterogeneity.

Four common formulations for decomposition kinet-
ics (linear, multiplicative, Michaelis–Menten, and inverse
Michaelis–Menten) are considered in a coupled substrate–
microbial biomass model valid at the microscale. We start
with a 2-D domain characterized by a heterogeneous sub-
strate distribution and numerically simulate organic matter
dynamics in each cell in the domain. To interpret the mean
behavior of this spatially explicit system, we propose an ana-
lytical scale transition approach in which microscale hetero-

geneities affect R through the second-order spatial moments
(spatial variances and covariances).

The model assuming homogeneous conditions was not
able to capture the mean behavior of the heterogeneous sys-
tem because the second-order moments cause R to be higher
or lower than in the homogeneous system, depending on the
sign of these moments. This effect of spatial heterogeneities
appears in the upscaled nonlinear decomposition formula-
tions, whereas the upscaled linear decomposition model de-
viates from homogeneous conditions only when substrate
quality is heterogeneous. Thus, this study highlights the in-
adequacy of applying at the macroscale the same decomposi-
tion formulations valid at the microscale and proposes a scale
transition approach as a way forward to capture microscale
dynamics in core-scale models.

1 Introduction

Soil organic substrates and microorganisms are heteroge-
neously distributed in the soil medium (Nunan et al., 2002;
Peth et al., 2014; Raynaud and Nunan, 2014; Rawlins et al.,
2016). The importance of this heterogeneous distribution in
soil organic matter (SOM) dynamics has been shown both
experimentally and in modeling studies. Early experimental
results show that the mineralization of SOM is affected by
the nonuniform distribution of the substrates within macrop-
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ores and micropores (Killham et al., 1993). The recognition
that the spatial location of substrates and microorganisms
constrains decomposition and thus C persistence is causing
a paradigm shift from the previous emphasis on the chemical
composition of organic substrates to a focus on the biophys-
ical environment in which decomposition occurs (Schmidt
et al., 2011; Don et al., 2013; Schnecker et al., 2019). Soil
pore structure is emerging as a fundamental property that in-
tegrates these biophysical constraints (Dungait et al., 2012;
Falconer et al., 2015; Fraser et al., 2016). The biophysi-
cal and biochemical properties of the pore structure, such
as pore connectivity, the tortuosity of water and air diffu-
sion pathways, and adsorption–desorption, limit the access
decomposers have to organic substrates. As a result, these
microscale constraints create a spatially heterogeneous land-
scape with highly variable distributions of substrate and mi-
crobial C. In the following, we refer to this type of variability
as microscale heterogeneity.

Despite the importance of microscale heterogeneities,
most SOM decomposition models are based on reaction ki-
netics that are valid in well-mixed media, including C cycling
schemes implemented in ecosystem and Earth system mod-
els. In well-mixed systems, the mean concentrations of sub-
strate and microbial C, and the rates defined using these mean
values, are assumed to be representative of the system. Most
existing SOM models embrace this assumption regardless of
whether they are microbial implicit (i.e., based on first-order
kinetics) or microbial explicit (i.e., based on multiplicative
and enzyme kinetics) (Manzoni and Porporato, 2009). This
approach is often referred to as mean field approximation
and is meant to describe spatially averaged SOM dynam-
ics at soil core to plot scales. There is an underlying, but
untested, assumption that the kinetics that are valid under
well-mixed conditions at fine scales also hold at larger scales,
at which conditions are often far from well-mixed. For this
assumption to hold, a spatially averaged C flux should be
equal to the average flux when organic C is uniformly dis-
tributed throughout the system. This is not the case when C
concentrations vary spatially and the kinetics are nonlinear
(Chesson, 1998; Melbourne and Chesson, 2006; Morozov
and Poggiale, 2012; Van Oijen et al., 2017). For example,
even in the simple case of only two soil patches, the overall
C fluxes follow more complex behaviors than within an indi-
vidual homogeneous patch, requiring the use of kinetics that
differ from those applied at the microscale (Manzoni et al.,
2008). The use of the same decomposition kinetics across a
wide range of spatial scales is therefore questionable in sys-
tems that are spatially heterogeneous and regulated by non-
linear kinetics.

To understand at which scale a model developed for well-
mixed conditions is expected to work, both the spatial scale
at which heterogeneities become important and the scale
at which homogeneity can be assumed must be identified.
The average inter-cell distance in soil is of the order of
10 µm (Raynaud and Nunan, 2014), and the median length

of the spatial correlation of SOM varies between approxi-
mately 40 and 175 µm (Rawlins et al., 2016). Furthermore, it
has been argued that the pore class with diameters between
30 and 150 µm is the most important for microbial activity
(Kravchenko and Guber, 2017). This heterogeneity occur-
ring at scales from ∼ 10 to 200 µm is generally neglected
in C cycling models. Below the ∼ 50 µm scale, diffusion
timescales can be assumed to be faster than advection and
reaction timescales (Watt et al., 2006). Thus, it can be argued
that below ∼ 50 µm the assumption of homogeneity is likely
to hold, while it is no longer valid above this threshold (see
Sect. 2.1.1 for details). If homogeneity cannot be assumed,
how should decomposition kinetics be described in soil cores
or at larger scales that include strong spatial heterogeneity?

Including microscale heterogeneities in the kinetics of
SOM models is recognized as a much needed advancement
in the field (Manzoni and Porporato, 2009; Sierra and Muller,
2015; Wieder et al., 2015), though only a few attempts have
been made in this direction (e.g., Ebrahimi and Or, 2016;
Van Oijen et al., 2017). In contrast, there are several exam-
ples of upscaling schemes for chemical reaction networks
(Tang and Riley, 2013, 2017). The challenge is therefore
to develop spatially upscaled models that describe SOM de-
composition at the macroscale while taking into account the
microscale heterogeneities. Mathematically, this upscaling
problem is equivalent to the spatial averaging of the mass
balance equations based on the well-mixed assumption writ-
ten at the microscale.

Three types of upscaling approaches are often used for
dynamical systems such as those used to describe soil bio-
geochemical processes: (i) the spatial averaging of numeri-
cally simulated C flux fields, (ii) the definition of effective
parameters to capture fine-scale heterogeneity, and (iii) scale
transition theory or the volume averaging of the equations at
the microscale. Spatial averaging of simulated dynamics at
the microscale is relatively common (Allison, 2012; Kaiser
et al., 2014; Yan et al., 2016; Wang and Allison, 2019),
but this approach does not lend itself to analytical solutions
that would offer insights into the effects of heterogeneity on
macroscopic properties. The effective parameter approach,
more common in subsurface hydrology (e.g., Dagan, 1987),
has been used to relate the macroscopic decomposition rate
to the characteristic parameters of microscale heterogene-
ity, but only in a minimal “lumped” model (Manzoni et al.,
2008). The estimated effective parameters tend to be specific
to studied scenarios and difficult to generalize. Here, we fo-
cus mainly on the third method based on scale transition the-
ory because this approach provides a dynamic link between
the microscale and macroscale using spatial moment approx-
imations. Using scale transition theory, it is possible to obtain
an analytical, but approximate, representation of dynamics at
the macroscale by accounting for the heterogeneity at the mi-
croscale.

Scale transition theory is based on the spatial averaging of
the dynamical equations themselves (as opposed to averaging
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known fluxes as in point i). For example, this approach has
been used to study predator–prey population dynamics at the
patch and regional scales (Bergström et al., 2006; Englund
and Leonardsson, 2008; Barraquand and Murrell, 2013). In
these examples, the macroscopic (regional) population dy-
namics are controlled by the mean population densities of
predator and prey, which in turn relate to the spatial statis-
tics of population densities at the microscale (patch). Sim-
ilar approaches are also used in hydrology to calculate av-
erage hydrologic fluxes when soil and microclimatic condi-
tions are spatially heterogeneous (Albertson and Montaldo,
2003; Fatichi et al., 2015) and in groundwater hydrology to
derive transport equations at the Darcy or field scale (in this
field the approach is called “volume averaging”; Dentz et al.,
2011). We are aware of only one study using similar tech-
niques to scale up C and N fluxes in soils from the plot to
regional scale (Van Oijen et al., 2017). Specifically, an empir-
ical nonlinear function was used to link methane and nitrous
oxide fluxes to soil moisture and temperature in each grid cell
(corresponding to the microscale model), and the scale tran-
sition theory was applied to calculate the mean fluxes at the
regional scale. Such an analytical expression linking fluxes
to C pools at any time point is not always available. In most
C cycle models, the fluxes are calculated by first solving the
mass balance equations for the C pools (i.e., a system of dif-
ferential equations). Therefore, to proceed, these differential
equations at the microscale must be scaled up. This upscaling
exercise is expected to yield a set of differential equations de-
scribing the mass balances of the spatially averaged C com-
partments, including kinetics for the macroscale C fluxes that
depend on the degree of microscale heterogeneity.

Here, using scale transition theory, we develop a gen-
eral theoretical approach to link microscales and macroscales
in SOM decomposition models. Two types of microscale
heterogeneity are identified and accounted for: biophysical
and biochemical. Biophysical heterogeneity is caused by the
nonuniform spatial distribution of substrate and microorgan-
isms (i.e., heterogeneous distribution of the state variables),
and biochemical heterogeneity is a result of spatial variations
in substrate quality and thus turnover rates (i.e., heteroge-
neous distribution of the values of kinetic constants). With
the proposed upscaling approach, we test the hypotheses that
the rate of decomposition (i) is affected by the microscale
spatial heterogeneity of substrate and microbial C and (ii) de-
pends upon the degree of spatial heterogeneity. Scale tran-
sition theory is applied to four types of microscale decom-
position kinetics commonly employed in C cycling models:
conventional linear, multiplicative (M), Michaelis–Menten
(MM), and inverse Michaelis–Menten (IMM). Considering
these kinetic laws allows us to assess the consequences of
neglecting spatial heterogeneities in the most common C cy-
cling models. Our specific objectives are

1. to develop an analytical upscaling solution for a two-
pool C model;

2. to quantify the impact of different spatial structures of
substrate Cs, microbial biomass Cb, and kinetic param-
eters k on the C dynamics; and

3. to compare the results of a spatially explicit heteroge-
neous model to the homogeneous equivalent as a func-
tion of the degree of heterogeneity.

While the proposed upscaling approach is general, we ap-
ply it to scale up pore-scale processes to the scale of a small
soil core or laboratory soil sample. These theoretical devel-
opments can be applied to SOM models, employed to study
respiration and microbial responses to perturbations at this
relatively small spatial scale, or in models describing dynam-
ics at a larger scale over relatively uniform spatial domains.

2 Methods

2.1 Theory

We distinguish between microscale equations valid at the
small scale at which the well-mixed assumption holds from
macroscale equations valid at a larger scale of interest, which
result from the spatial averaging of the microscopic equa-
tions. While our derivations are general, in the presented
model setup and results, we interpret macroscale as the scale
of a small soil core. The goal of spatial upscaling is to derive
the macroscale soil C dynamics by the spatial averaging of
the microscale dynamics.

To obtain the macroscale dynamics we employ two ap-
proaches: (i) a numerical approach based on grid-scale sim-
ulations followed by spatial averaging (upper panel, Fig. 1)
and (ii) an analytical approach based on scale transition the-
ory (lower panel, Fig. 1). The first is a computationally de-
manding approach and requires solving the microscale equa-
tions at each cell of the domain grid. Spatial averages and
variances are thus calculated numerically over the domain
at each time point in the simulation. With the analytical ap-
proach, the dynamic equations are first averaged and then
solved directly for the mean state variables. The obtained an-
alytical expressions are used to interpret the results of the
numerical simulations.

To proceed, the spatial average operator for our 2-D do-
main is defined as

χ(t)=

∫ ∫
χ(x,y, t)dxdy∫ ∫

dxdy
≈

1
NxNy

Nx∑
i=1

Ny∑
j=1

χi,j (t), (1)

where the double integral extends to the whole 2-D domain,
χ is a generic variable (Cs or Cb) or C flux, and Nx and
Ny are the number of grid cells in the x and y direction.
The second equality allows for the estimation of χ using the
simulated time series of the variable of interest in each grid
cell (denoted by χi,j ). In contrast to numerically solving the
problem at each grid cell, the analytical approach derives the
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Figure 1. Schematic of the two upscaling approaches used to study the C dynamics at the macroscale. Numerical spatial averaging (top):
the microscale model is applied at each grid cell of the heterogeneous domain; the mean C pools (substrate Cs and microbial biomass Cb,
where the overbar indicates spatial averaging), their mean fluxes, and second-order spatial moments

(
σ 2
Cs
,σ 2
Cb
,C′sC′b

)
are estimated by

Eqs. (24)–(29) at each time step. This approach is referred to as the “distributed model”. Analytical upscaling (bottom): the microscale
decomposition flux is dynamically scaled up using scale transition theory, which provides the mean C fluxes as a function of mean C
concentrations (mean field approximation) and second-order spatial moments representing the degree of heterogeneity. The deviations from
the mean field approximation are denoted as “second-order terms” (SOTs) in the expressions of the mean decomposition fluxes (D, where
the overbar represents mean quantities). The numerical results obtained from the distributed model are explained using the mathematical
expression derived from analytical upscaling. This upscaling scheme is applied to four types of decomposition kinetics (linear, multiplicative,
Michaelis–Menten, and inverse Michaelis–Menten).

dynamics of the macroscale variables and fluxes using scale
transition theory, as discussed in Sect. 2.1.2.

2.1.1 Microscale model of soil carbon dynamics

The dynamics of soil organic C in a homogeneous medium
are characterized by specific reaction kinetics that define or-
ganic C fluxes, as well as the number and arrangement of
the soil C pools. For simplicity, we used a two-pool model
in which organic C is divided into (i) soil organic carbon
substrate (Cs) and (ii) microbial biomass carbon (Cb) (Man-
zoni and Porporato, 2007; German et al., 2012). This simple
structure was selected because it is at the core of most micro-
bial explicit models (Zelenev et al., 2000; Schimel and Wein-
traub, 2003). It should be noted that conceptually we include
in Cs only organic C that is available for depolymerization
and not stabilized; in other words, we focus on decompo-
sition timescales of the order of weeks to months. Model-
ing all the processes (and associated heterogeneity effects)
leading to C stabilization is beyond our scope. The typical
timescale of diffusive fluxes is given by τdiff = x

2/D, where

x is the length scale of space discretization and Ddiff is the
diffusion coefficient (Hunt and Manzoni, 2015), and the typ-
ical timescale of reactive fluxes is given by the turnover time
of the substrate; i.e., τreact. The ratio of the two timescales
defines the Damköhler number, Da= τdiff/τreact, which rep-
resents the relative importance of mass transport of the sub-
strate via diffusion vs. reaction (Dentz et al., 2011). For a
relevant substrate such as glucose, Ddiff is of the order of
10−11 m2 s−1 (Watt et al., 2006), the turnover time is of the
order of∼ 1 d, and the length scale is of the order of∼ 50 µm.
With these values, Da� 1, which characterizes a reaction-
limited system in well-mixed conditions. The result of this
approximated calculation would not change with reaction
timescales of the order of a few hours. Thus, the well-mixed
assumption is valid at the scale of a pore of size∼ 50 µm; we
refer to this model as the “microscale model” (Fig. 1).

To include spatial fluxes across grid cells, we implemented
a generic mass transfer mechanism. This mechanism is im-
plemented by assuming that a fraction α of the decomposi-
tion rate D (i.e., αD) is transferred in equal amounts to the
four neighboring grid cells. Hence, in each grid cell microor-
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ganisms receive additional C from neighboring grid cells at
a rate α

4 (Di−1,j +Di+1,j +Di,j−1+Di,j+1). This choice
is motivated by the observation that the products of depoly-
merization are more soluble than stable organic matter and
are thus more likely to be transported away from the site of
decomposition. Thus, instead of modeling mobile carbon ex-
plicitly, we assumed that a fraction of the source of soluble C
is transported to neighboring cells. This mass transfer mech-
anism can be interpreted as a consequence of various types
of spatial redistribution, including diffusion or bioturbation.
The microscale equations at one grid cell (control volume)
take the following form:

dCsi,j

dt
= I −Di,j + Ti,j , (2)

dCbi,j

dt
= Y

[
(1−α)Di,j +

α

4(
Di−1,j +Di+1,j +Di,j−1+Di,j+1

)]
− Ti,j , (3)

dCO2i,j

dt
= (1−Y )

[
(1−α)Di,j

+
α

4

(
Di−1,j +Di+1,j +Di,j−1+Di,j+1

)]
, (4)

where I is the rate of external input of organic C, D is the
rate of decomposition, T is the microbial mortality, and Y
is the microbial C-use efficiency. The substrate Cs and mi-
crobial carbon Cb are the state variables of the microscale
model, and their mass balances, Eqs. (2) and (3), describe
their temporal evolution. If α = 0, no mass transfer occurs
and the model reduces to a simplified reactive system with
two C pools, whereby grid cells are disconnected and thus
independent. If α > 0, mass transfer among the grid cells oc-
curs. In this way, by changing the value of α, the effect of
spatial redistribution on mean carbon dynamics can be as-
sessed. With α = 0, the general mathematical description of
the simplified microscale model is given by

dCs

dt
= I −D+ T , (5)

dCb

dt
= YD− T , (6)

where for conciseness we removed the subscripts indicat-
ing grid cell positions. The rate of decomposition is de-
scribed by four commonly used formulations: linear (Eq. 7),
multiplicative (M, Eq. 8), Michaelis–Menten (MM, Eq. 9),
and inverse Michaelis–Menten (IMM, Eq. 10) (comparisons
among these formulations can be found in Schimel and Wein-
traub, 2003; Wutzler and Reichstein, 2008; Manzoni and Por-
porato, 2009).

D = kLCs (7)
D = kMCsCb (8)

D = kMM
CsCb

KMM+Cs
(9)

D = kIMM
CsCb

KIMM+Cb
(10)

Here, kL, kM, kMM, and kIMM are the decomposition rate con-
stants for linear, multiplicative, MM, and IMM kinetics, re-
spectively; KMM and KIMM are the half-saturation constants
for the MM and IMM kinetics, respectively. Table 1 summa-
rizes the functional forms ofD and the steady-state solutions
to Eqs. (5) and (6) for each case. Microbial mortality is as-
sumed to follow first-order kinetics (T = kBCb). We assume
constant temperature and soil moisture conditions so that D
is only a function of Cs and Cb. This assumption facilitates
an assessment of the role of spatial heterogeneity of C sub-
strates and microbial biomass in our idealized system. The
analytical upscaling theory developed in the following sec-
tion is based on the simplified microscale model given by
Eqs. (5) and (6). For the mass transfer model, only the nu-
merical averaging method is used.

2.1.2 Spatial upscaling of soil carbon dynamics: scale
transition theory

The scale transition theory is applied to study the C dynamics
at the microscale and macroscale and to derive the changes in
the structure of the equations describing the C pools and their
fluxes at the macroscale. To upscale the microscale model,
the spatial averaging operator given by Eq. (1) is applied to
Eqs. (5) and (6), leading to the governing equations at the
macroscale,

dCs

dt
= I −D+ T , (11)

dCb

dt
= YD− T , (12)

where the overbars denote the spatially averaged microscale
quantities so thatD and T are the macroscale rates of decom-
position and microbial mortality. Since the order of averag-
ing and differentiation can be exchanged, the left-hand side
of Eqs. (11) and (12) can be written as dCs

dt and dCb
dt . More-

over, we assume that Y and I are spatially invariant so that
averaging does not alter their values. The final mass balance
equations for substrate and microbial C at the macroscale are
thus given by
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Table 1. Summary of the microscopic decomposition functions and steady-state solutions.

Conventional Multiplicative Michaelis–Menten Inverse Michaelis–
(subscript L) (subscript M) (subscript MM) Menten (subscript IMM)

D kLCs kMCsCb
kMMCsCb
Cs+KMM

kIMM
CsCb

KIMM+Cb

T kBCb kBCb kBCb kBCb

Steady-state C∗s
I

(1−Y )kL
kB
YkM

KMMkB
YkMM−kB

KIMMkB(1−Y )+YI
Y (1−Y )kIMM

Steady-state C∗b
YI

(1−Y )kB
YI

(1−Y )kB
YI

(1−Y )kB
YI

(1−Y )kB

dCs

dt
= I −D+ T , (13)

dCb

dt
= YD− T , (14)

R =
dCO2

dt
= (1−Y )D. (15)

where R is the mean respiration at the macroscale. In
Eqs. (13)–(15), the macroscale variables Cs and Cb can be
obtained once the average fluxes D and T are known. The
next step is therefore to express D and T as a function of
macroscale (Cs, Cb) and microscale state variables (Cs, Cb).

We can generalize the problem and consider a generic mi-
croscopic C flux (i.e.,D or T ) to be a nonlinear (and smooth)
function F of state variables Cs–Cb and a parameter vec-
tor k ([k1,k2, . . .,kn]), where n is the number of parameters.
The spatial averages of Cs, Cb, and k are denoted as Cs,
Cb, and k

(
[k1,k2, . . .,kn]

)
. Applying the averaging opera-

tor given by Eq. (1) to a multivariate Taylor series expan-
sion of F(Cs,Cb,k) around the spatial average value of Cs,
Cb, and k and truncating the series to second order gives the
macroscopic C flux (a detailed derivation is provided in Ap-
pendix A1),

F(Cs,Cb,k)=

F(Cs,Cb,k)+
1
2
∂2F

∂C2
s

∣∣∣∣
Cs,Cb,k

σ 2
Cs
+

1
2
∂2F

∂C2
b

∣∣∣∣
Cs,Cb,k

σ 2
Cb

+
1
2

n∑
i=1

n∑
j=1

∂2F

∂ki∂kj

∣∣∣∣
Cs,Cb,k

k′ik′j +
∂2F

∂Cs∂Cb

∣∣∣∣
Cs,Cb,k

C′sC′b

+

n∑
i=1

∂2F

∂ki∂Cs

∣∣∣∣
Cs,Cb,k

k′iC′s+

n∑
i=1

∂2F

∂ki∂Cb

∣∣∣∣
Cs,Cb,k

k′iC′b,

(16)

where prime symbols represent variations with respect to the
spatial mean values, F(Cs,Cb,k) is the macroscopic C flux,
σ 2
Cs

, and σ 2
Cb

are the spatial variances of substrate and micro-
bial C, respectively; k′ik′j is the spatial variance (if i = j ) or
spatial covariance (if i 6= j ) between the microscale param-
eters; C′sC′b, k′iC′s and k′iC′b are the spatial covariances

between microscale substrate and microbial C, substrate and
parameters, and microbial biomass and parameters, respec-
tively.

In Eq. (16), the first term on the right-hand side,
F(Cs,Cb,k), represents the first-order approximation of
F(Cs,Cb,k), also known as mean field approximation
(MFA). The MFAs for the chosen models are kMCsCb
for multiplicative kinetics, kMMCsCb/(KMM+Cs) for
Michaelis–Menten kinetics, and kIMMCsCb/(K IMM+Cb)

for inverse Michaelis–Menten kinetics. Most C cycling mod-
els neglect all the other terms in Eq. (16). The remaining six
spatial variance and covariance terms in Eq. (16) are col-
lectively referred to as second-order terms (SOTs). Higher-
order terms can also be included by truncating the series be-
yond the SOT. We refer to all terms of order higher than or
equal to second order as “high-order terms” (HOTs). When
the system is well-mixed, all variances and covariance terms
vanish, leaving only the MFA. Therefore, only considering
the MFA is equivalent to assuming well-mixed conditions at
the macroscale (i.e., Eqs. 5 and 6 are equivalent to Eqs. 13
and 14).

Equation (16) provides a proof that the mean field approx-
imation is a specific case of the more general expression for a
macroscopic C flux that also depends on spatial heterogene-
ity through the SOT. The MFA is valid only when either of
the following two conditions are met. First, the microscale
decomposition rate is assumed to follow first-order kinet-
ics with homogeneous kL because when F is a linear func-
tion of substrate and microbial C, the second-order partial
derivatives in Eq. (16) are zero. Second, Cs,Cb, and kinetic
parameters are spatially homogeneous because in this case
all the second-order moments (spatial variances and covari-
ances) are zero. However, if F is nonlinear, the second-order
partial derivatives are nonzero; similarly, if any type of mi-
croscale biophysical or biochemical heterogeneity is present,
the SOTs in Eq. (16) play a role in determining the macro-
scopic C dynamics.

Equation (16) illustrates the advantage of using scale tran-
sition theory as it provides an approximate analytical relation
between the microscale and macroscale quantities, which al-
lows for an immediate assessment of the role of both nonlin-
earities in the C flux formulations and spatial heterogeneities.
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Importantly, in some cases, Eq. (16) yields an exact (rather
than approximated) equation for macroscale quantities, as
shown in the following section.

2.2 Effect of microscale heterogeneities on macroscale
dynamics

Depending upon the kinetics of the microscale decomposi-
tion model (Table 1), the macroscale D is expected to take
different forms. Using different kinetic models, we now dis-
cuss some specific cases of microscale heterogeneities based
on their biophysical or biochemical nature. Biophysical het-
erogeneity is characterized by the spatially heterogeneous
distribution of substrate and microbial C, whereas biochem-
ical heterogeneity is characterized by the spatially heteroge-
neous distribution of substrate quality and microbial proper-
ties, captured by the kinetic parameters. The inaccessibility
of SOM can result in C persistence. Therefore, inaccessibil-
ity can be modeled (at least at a conceptual level) through
low values of the kinetic rate constants, similar to biochem-
ical properties. In the simple model used here, accessibil-
ity to substrates or chemical recalcitrance is not mechanis-
tically distinguished, so variations in substrate “quality” in
the broadest sense can be interpreted as spatial heterogene-
ity in either chemical characteristics or accessibility at the
microscale.

First, we focus on systems with only biophysical hetero-
geneity of substrate and microbial C. For the first-order kinet-
ics model, the rate of decomposition is given by D = kLCs,
and using Eq. (16) and substituting F =D = kLCs, we ob-
tain

D = kLCs. (17)

In Eq. (17),D has the same form asD, indicating that micro-
bial implicit first-order kinetic models do not show any sen-
sitivity to spatial heterogeneities because of the linearity of
the decomposition function. For the multiplicative model, the
rate of decomposition at the microscale is given by Eq. (8),
and inserting Eq. (8) into Eq. (16) gives

D = kMCsCb+ kMC′sC′b. (18)

In Eq. (18), the biophysical heterogeneities play a role
through the covariance term C′sC′b. Note that Eq. (18) is
an exact equation because all the spatial moments of order
higher than the second order are zero. Thus, only the mean
state variables and the spatial covariance are needed to fully
characterize the macroscale dynamics in this case. Further-
more, a positive spatial covariance (i.e., colocation of sub-
strates and microorganisms) would increase the mean de-
composition rate (D), whereas a negative spatial covariance
(i.e., spatial separation between substrates and microorgan-
isms) would decrease it.

Similar to the multiplicative decomposition model, also in
models based on MM and IMM kinetics, the rate of decom-
position at the macroscale depends on the covariance term

C′sC′b and additional terms representing the spatial vari-
ances of the substrate and microbial C (Table 2). The spa-
tial variance terms are always negative because variances are
positive quantities and the partial derivatives multiplying the
variances are negative in all decomposition functions that sat-
urate at high substrate or microbial biomass concentration.
In contrast, the spatial covariance term is positive or negative
based on the sign of C′sC′b. Therefore, when using the MM
or IMM kinetics, D can be the approximated by the MFA
only if the variance and covariance balance each other or are
both negligible.

Second, we consider only biochemical heterogeneity. In
this case, model parameters k vary spatially, but the initial
values of the state variables Cs and Cb are assumed homo-
geneous. With linear decomposition, substituting D = kLCs
into Eq. (16) yields

D = kL Cs+ k′LC′s. (19)

Equation (19) shows that for a biochemical heterogeneous
system, even the simplest linear model requires an additional
covariance term to describe the governing equations at the
macroscale. This covariance term might change the linear
microscopic model into a nonlinear macroscopic model. For
the multiplicative model (Eq. 8), Eq. (16) yields

D = kMCsCb+Cb k′MC′s+Cs k′MC′b, (20)

where k′MC′s and k′MC′b are respectively the spatial covari-
ances between the state variablesCs–Cb and the rate constant
parameter kM. These two additional spatial covariance terms
capture the effects of biochemical heterogeneity caused by
the spatial variation in the rate constants of decomposition.
Similar terms also appear when using the MM and IMM
models.

Lastly, we consider a heterogeneous system with com-
bined biophysical and biochemical heterogeneities, denoted
as “fully heterogeneous”. Again, we use the multiplicative
model to illustrate the relation between the dynamics at the
microscale and macroscale. Now, all the state variables and
parameters in D at the microscale are spatially variable. For
the multiplicative kinetics, kM, Cs, and Cb are spatially vari-
able so that inserting Eq. (8) into Eq. (16) gives

D = kMCsCb+Cb k′MC′s+Cs k′MC′b+kM C′sC′b. (21)

This generalized case includes all the spatial covariances be-
tween parameters and the state variables, thereby capturing
biophysical and biochemical heterogeneities simultaneously.
Moreover, Eqs. (20) and (21) are second-order approxima-
tions, but an exact equation can be obtained by including
a third-order term k′MC′sC′b. A similar derivation is de-
scribed for MM and IMM kinetics in the Appendix; however,
an exact expression for the macroscale decomposition rate
for these two kinetics cannot be found and we only use the
second-order approximation. Table 2 provides a summary of
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the theoretical results for the discussed heterogeneous cases
and for all four types of decomposition kinetics.

The same rationale used to derive Eq. (21) can be applied
in systems in which the C input rate I or the microbial C-
use efficiency Y are not homogeneous as we assumed. This
would cause additional second- and higher-order terms to ap-
pear in the macroscale equations, with consequences for the
overall C balances.

Similar derivations can be done for the microbial mortality
rate (F = T ). The Taylor expansion of microbial mortality is
simpler because we assume T to follow first-order kinetics,
implying that all the second-order terms are equal to zero.
Therefore, the mean field approximation is exact and the spa-
tial variance of this parameter has no effect on the macroscale
dynamics,

T = kBCb. (22)

To illustrate how macroscale decomposition kinetics are
affected by spatial heterogeneity, we define a macroscale spe-
cific growth rate (SGR), which is calculated by dividing the
mean respiration rate by mean microbial C in the system.

SGR=
R

Cb
= (1−Y )

D

Cb
(23)

To summarize, we started with the spatial averaging of the
SOM dynamics equations at the microscale and applied scale
transition theory to derive relations between the microscale
and macroscale C fluxes, which depend on both mean state
variables and their spatial statistics (Table 2). Thus, to solve
the macroscale Eqs. (13) and (14), we still need information
regarding the second-order moments, e.g., σ 2

Cs
and C′sC′b.

To close the problem mathematically, these moments can be
regarded as extra state variables requiring additional differ-
ential equations to describe their dynamics (Keeling et al.,
2002; Murrell et al., 2004; Barraquand and Murrell, 2013).
Alternatively, the second-order moments can be parameter-
ized as empirical functions of first-order terms Cs , Cb, and
k (Bergström et al., 2006). Here, our goal is to quantify
how heterogeneities alter C fluxes in idealized systems, so
we leave the closure problem for a future contribution and
instead use the numerically simulated dynamics at the mi-
croscale to calculate the spatial moments and SOT.

2.3 Model setup

As in previous spatially explicit models (Ginovart and Valls,
1996; Allison, 2005; Kaiser et al., 2014), we start with a
2-D domain characterized by an initial heterogeneous field
of the substrate and microbial C, and we numerically sim-
ulate the dynamics of SOM with the microscale two-pool
model in Eqs. (2)–(4) at each cell in the domain. The 2-D
domain has 100× 100 square grid cells with an edge length
of 50 µm, and we populate it with randomly generated ini-
tial substrate and microbial C fields. This numerical model

is referred to as the distributed model (see Fig. 1). From the
solution of the distributed model, the mean behavior of the
system (Cs,Cb,D,σ

2
Cs
,σ 2
Cb

, and C′sC′b) can be calculated
at each time step by using sample statistics of Cs and Cb:

Cs(t)≈
1

NxNy

Nx∑
i=1

Ny∑
j=1

Csi,j (t), (24)

Cb(t)≈
1

NxNy

Nx∑
i=1

Ny∑
j=1

Cbi,j (t), (25)

D(t)≈
1

NxNy

Nx∑
i=1

Ny∑
j=1

kMi,j
Csi,j (t)Cbi,j (t), (26)

σ 2
Cs
(t)≈

1
NxNy

Nx∑
i=1

Ny∑
j=1

[
Csi,j (t)−Cs(t)

]2
, (27)

σ 2
Cb
(t)≈

1
NxNy

Nx∑
i=1

Ny∑
j=1

[
Cbi,j (t)−Cb(t)

]2
, (28)

C′sC′b(t)≈

1
NxNy

Nx∑
i=1

Ny∑
j=1

[
Csi,j (t)−Cs(t)

][
Cbi,j (t)−Cb(t)

]
, (29)

whereD is specified for multiplicative kinetics; a similar ap-
proach was applied for MM and IMM kinetics. Table A1 in
the Appendix lists all the parameters related to different ki-
netic models used in the simulations. We performed the sim-
ulations in mass units of femtograms (fg; fg= 10−15 g) and
later converted the state variables to concentration units, i.e.,
milligrams of carbon per gram of soil.

2.4 Initial 2-D random fields of SOM and kinetic
parameters

Two-dimensional spatially heterogeneous distributions of
substrates and microbial C were generated to run the dis-
tributed model. The obtained distributions were based on the
following constraints: (i) the total amount of organic C is set,
(ii) the total amount of microbial C is 1 % of total organic C,
(iii) the maximum amount of C in a cell is set (Eq. A12), and
(iv) some grid cells have no microbial biomass. For details
on the spatial field generation, see Appendix A2.

To study the effects of the degree of heterogeneity on de-
composition, random fields of substrate C with different de-
grees of correlation with microbial C were generated. We
created three cases in which substrate and microbial C were
initially positively correlated, negatively correlated, or uncor-
related. The three cases were obtained by applying a linear
operator on the microbial C fields with positive and negative
slope to obtain positively and negatively correlated substrate
C fields, respectively. The uncorrelated substrate C field was
generated independently from the microbial C field and can
be interpreted as the result of external disturbances disrupting
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Table 2. Summary of macroscale equations for the decomposition rate (D).

Biophysical heterogeneity Biochemical heterogeneity Full-heterogeneity

Linear kLCs kL Cs+ k′LC′s kL Cs+ k′LC′s

Multiplicative∗ kMCsCb+ kMC′sC′b
kMCsCb+Cs k′MC′b

+Cb k′MC′s+ k′MC′sC′b

kMCsCb+Cs k′MC′b

+Cb k′MC′s+ kMC′sC′b

+ k′MC′sC′b

Michaelis–Menten

kMMCsCb

KMM+Cs
+

1
2

[
−2kMMKMMCb

(KMM+Cs)3

]
σ 2
Cs

+

[
kMMKMM

(Cs+KMM)2

]
C′sC′b

Eq. (A8) Eq. (A9)

Inverse Michaelis–Menten

kIMMCsCb

KIMM+Cb
+

1
2

[
−2kIMMKIMMCb

(KIMM+Cb)3

]
σ 2
Cb

+

[
kIMMKIMM

(Cb+KIMM)2

]
C′sC′b

Eq. (A10) Eq. (A10)

∗ The expression of D for multiplicative kinetics in each heterogeneity case is exact.

preexisting spatial correlations. The case of positive initial
correlation between substrate and microbial C would result
in a heterogeneous system with spatial co-occurrence of sub-
strate and microbial C, whereas initial negative correlation
would result in isolated patches of substrate and microbial
C. In all scenarios, the substrate distributions are normalized
to have the same amount of total substrate C, thereby allow-
ing for comparisons among different degrees of heterogene-
ity (Fig. 2).

To generate a heterogeneous random field for kinetic pa-
rameters, we considered a uniform distribution for KMM and
KIMM and a log-uniform distribution for kM, kMM, and kIMM
(Forney and Rothman, 2012; Manzoni et al., 2012). The log-
uniform distributions were defined so that the mean kinetic
constants were equal to those of the homogeneous system
(Table A1), and their variances were tuned to characterize
different degrees of heterogeneity. To generate the initial
fields, Nx ×Ny random numbers were extracted from the
chosen distributions and placed into the 2-D domain. Fig-
ure A7 in the Appendix shows the probability densities for
two different standard deviations for kMM and kM (the pa-
rameters of the distributions are listed in Tables A2 and A3).

2.5 Estimation of kinetic parameters

To choose parameter values for the linear and multiplicative
kinetics that allow for comparisons with the MM model, we
first simulated the substrate C dynamics at the microscale for
a given initial condition and using MM kinetics. Second, we
fit the linear and multiplicative kinetics models to the time
series obtained using MM kinetics (using the optimization
toolbox in MATLAB). In this procedure, we assumed that
the microbial mortality constant (kB) was the same for all
choices of the decomposition model. The parameters of the

inverse MM are chosen (by trial and error) so that the respi-
ration rate in the homogeneous system is comparable to the
MM kinetics in the homogeneous system.

2.6 Simulation scenarios

Two scenarios, based on varying initial conditions (ICs),
were implemented to investigate the effects of microscale
heterogeneities on macroscopic decomposition (Fig. 3).

Scenario 1 (steady-state simulation – SS): in this scenario,
the initial heterogeneous field of substrate and microbial C
was generated as described in Sect. 2.4. The spatial mean
of the initial substrate and microbial C match their steady-
state values given by the microscale equations (Eqs. 5 and 6)
forced with a constant substrate input. Additionally, a mini-
mum amount of microbial C was set in each cell (values at
least 1 order of magnitude lower than those at steady state)
to ensure that OM could be decomposed, albeit at a slower
rate than elsewhere.

Scenario 2 (high substrate simulation – HS): in this sce-
nario, the initial heterogeneous field of substrate C was per-
turbed around a value much larger than the steady state as
described in Sect. 2.4.

In the HS scenario, simulations were based on three non-
linear decomposition models (multiplicative, MM, and IMM
kinetics). However, in the SS scenario, we present results
only for multiplicative kinetics because MM kinetics can be
approximated by multiplicative kinetics when the substrate
is much smaller than the half-saturation constant (KMM), as
is the case with the chosen initial heterogeneous substrate
field and the values of KMM. Results using the linear de-
composition model are not shown because with this model
the spatially averaged fluxes are equal to the macroscale flux
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Figure 2. Steady-state simulation: examples of the homogeneous (a) and the heterogeneous distributions of substrate C constrained to have
the same total amount of substrate C (b–d). The fields in (b–d) were obtained by imposing different degrees of correlation with the initial
heterogeneous distributions of microbial C, shown in (e).

calculated at the mean C concentration (Eq. 17), as long as
kL is homogeneously distributed.

In both scenarios, we explore the effects of biophysical
and full heterogeneity on the temporal evolution of the mean
state variables (substrate and microbial C) and their asso-
ciated rates. We used the distributed model to estimate the
mean quantities and second-order spatial moments (and thus
SOT) for three degrees of biophysical heterogeneity. A ho-
mogeneous system in which the initial substrate and mi-
crobial C, as well as kinetic parameters, are spatially uni-
form was always used as a control. The combined effect
of biophysical and biochemical heterogeneity was simulated
by imposing the spatially heterogeneous kinetic parameters
along with the heterogeneous initial substrate and microbial
C.

3 Results

3.1 Scenario 1: steady-state simulation (SS)

Figure 4 illustrates the temporal evolution of the macroscopic
decomposition dynamics for the three different heteroge-
neous cases with varying degrees of initial correlation be-
tween substrate and microbial C in comparison to the homo-
geneous system. In Fig. 4, the left and right columns respec-
tively show the effects of biophysical heterogeneity and full
heterogeneity on the mean C pools and fluxes (kM is based
on the case “biochemical heterogeneity 1” in Table A3). For
this analysis, we focus on the multiplicative decomposition
model. With the current parameter choice, the ratio of mi-
crobial biomass to substrate C attains at steady-state values
that are larger than would be expected for ratios of biomass
to total soil organic C (Xu et al., 2013). This is due to our
interpretation of substrate C as a relatively active fraction of
total soil organic C.

Since the mean initial condition corresponds to the steady
state of the microscale system, in a homogeneous soil no
changes occur in substrate C (solid line in Fig. 4a and b) and
microbial C (solid line in Fig. 4c and d), and the mean respi-

Figure 3. Two scenarios were implemented based on the initial spa-
tial distribution of substrate and microbial C. In scenario 1, substrate
and microbial C are perturbed around the steady state of the mi-
croscale differential equations, and simulations are only carried out
with the multiplicative (M) kinetics. In scenario 2, substrate and
microbial C are perturbed to values larger than the steady state,
and simulations are conducted for multiplicative (M), Michaelis–
Menten (MM), and inverse Michaelis–Menten (IMM) kinetics. For
each scenario and type of heterogeneity, three different initial dis-
tributions of substrate and microbial biomass are considered to be
representative of microscale heterogeneities (positively correlated
(+), negatively correlated (−), and uncorrelated (0) fields of sub-
strate and microbial C).
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Figure 4. Scenario 1 (steady-state simulation): effect of biophysical
(left) and full heterogeneity (right) on the macroscopic decomposi-
tion dynamics when the substrate is distributed randomly around
the steady state and only considering multiplicative kinetics at the
microscale: (a, b) mean substrate C (Cs), (c, d) mean microbial C
(Cb), (e, f) mean respiration rate (R), and (g, h) sum of second- and
third-order terms

(∑
HOT

)
.

ration rate is equal to the constant rate of input of external C
(solid line in Fig. 4e and f). In contrast, for the system with
biophysical heterogeneity, the mean C pools and respiration
(R) fluctuate towards the steady state of the microscale sys-
tem as a result of the heterogeneous initial placement of C
substrates. Similarly, for the fully heterogeneous system the
mean microbial C pool (Fig. 4d) and fluxes (Fig. 4f) fluctu-
ate near their steady-state values, but the mean substrate C
pool (Fig. 4b) reaches a new steady state. The value of the
new steady state for Cs depends upon the parameters of the
log-uniform distribution of kM and is given in Appendix A3.

In all heterogeneity scenarios, R is initially higher than
in the homogeneous system when substrate and microbial C
are initially correlated, whereas it is lower when substrate
and microbial C are negatively correlated. When substrate
and microbial C are uncorrelated, the system exhibits a be-
havior similar to that of the positively correlated fields but
with higher respiration peaks (Fig. 4e). This is caused by the

Figure 5. Scenario 2 (HS with multiplicative kinetics): effect of
biophysical heterogeneity (left) and full heterogeneity (right) on
the macroscopic decomposition dynamics when the substrate is dis-
tributed around a value higher than the steady state of the homoge-
neous system: (a, b) mean substrate C (Cs), (c, d) mean microbial
C (Cb), (e, f) mean respiration rate (R), and (g, h) sum of second-
and third-order terms

(∑
HOT

)
.

high initial spatial variance of substrate C that resulted in hot
spots richer in substrate C than in the positively correlated
case (Fig. 2). Furthermore, in the multiplicative kinetics, the
respiration flux is proportional to the amount of substrate C
so that larger variations in substrate cause larger fluctuations
in the mean respiration flux. In the fully heterogeneous sys-
tem, fluxes show similar dynamics as those in the biophys-
ically heterogeneous system, except for the different steady
state. Varying the mean (Fig. A1) and variability (Fig. A2) of
kM alters the quantitative, but not qualitative, behavior of the
macroscale system (results shown in Appendix A4).

Figure 4g and h show the sum of all higher-order terms
(
∑

HOT; see Table 2 for multiplicative kinetics). For a bio-
physically heterogeneous system, the

∑
HOT only includes

the spatial covariance term (Eq. 18), but for a fully hetero-
geneous system it includes the last three terms in Eq. (21) as
well as the third-order term k′MC′sC′b. The

∑
HOT is ini-

tially positive, zero, and negative, respectively, for positively
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correlated, uncorrelated, and negatively correlated substrate
and microbial C, and it exhibits strong temporal variations
(Fig. A3). A positive

∑
HOT value enhances R, whereas a

negative value decreases it in all three heterogeneous cases
compared to homogeneous R. This result is aligned with our
expectation from the analytical expression of the macroscale
multiplicative model. In systems including both biophysical
and full heterogeneity, the sums of the HOTs are stable in the
long term, once the steady state has been reached. This was
confirmed by running the model for 100 years. Furthermore,
any additional perturbation of the new steady state caused by
an external factor will reintroduce these fluctuations.

3.2 Scenario 2: high substrate simulation (HS)

3.2.1 Dynamics of substrate and microbial C at the
macroscale

Figure 5 illustrates the temporal evolution of the mean prop-
erties of the macroscopic decomposition dynamics for mul-
tiplicative kinetics for systems with either biophysical (left)
or full (right) heterogeneity when the initial condition is per-
turbed from the steady state by adding C substrates. In this
scenario, both homogeneous and heterogeneous systems ex-
hibit transient dynamics because the initial conditions are set
far from the steady state. The results in Fig. 5c indicate that,
during the microbial growth phase, the production of micro-
bial C is faster when substrate and microbial C are positively
correlated or uncorrelated compared to the case of negative
correlation. Consequently, at the beginning of the simulation,
the mean substrate Cs (Fig. 5a) is decomposed faster due to
the higher respiration (Fig. 5e) for the positively correlated
and the uncorrelated substrate and microbial C, and it is de-
composed slower for the negatively correlated substrate and
microbial C when compared to the homogeneous system. By
the end of the simulation period, in all heterogeneous scenar-
ios, biomass production and substrate consumption are lower
than in the homogeneous system. As in scenario 1, the initial
mean respiration for the uncorrelated case is higher than that
in the positively correlated case. Moreover, the fully hetero-
geneous system (Fig. 5, right) shows a similar behavior as
the biophysically heterogeneous system, but the peaks of R
appear earlier for all degrees of correlation between substrate
and microbial C.

Similar to Fig. 4, Fig. 5g and h show the sum of all higher-
order terms (see Table 2, multiplicative kinetics). For both
heterogeneous systems, R is higher than the MFA when
the

∑
HOT is positive, whereas R is lower than the MFA

when the contribution of these moments is negative. This
result agrees with the analytical expression and is valid for
all types of biophysical heterogeneities. The

∑
HOT for bio-

physical heterogeneity is initially positive for the positively
correlated and uncorrelated substrate and microbial C, but it
later becomes negative, whereas it is always negative for the
negatively correlated substrate and microbial C. Spatial co-

Figure 6. Scenario 2 (HS with Michaelis–Menten kinetics): effect
of biophysical heterogeneity (left) and full heterogeneity (right) on
the macroscopic decomposition dynamics when the substrate is dis-
tributed around a value higher than the steady state of the homoge-
neous system: (a, b) mean substrate C (Cs), (c, d) mean microbial
C (Cb), (e, f) mean respiration rate (R), and (g, h) sum of second-
order terms

(∑
HOT

)
.

variances among kinetic parameters and state variables (i.e.,
k′MC′s,k′MC′b,k′MC′sC′b) also contribute to the

∑
HOT in

the fully heterogeneous system in addition to C′sC′b. Specif-
ically, the spatial covariance between kM and Cb gives rise to
early peaks of R (see all HOTs in Fig. A4).

Figures 6 and 7 show similar results as Fig. 5, but for
Michaelis–Menten and inverse Michaelis–Menten kinetics,
respectively. The transient dynamics of the mean C pools and
fluxes differ from those obtained using multiplicative kinet-
ics. For both MM and IMM kinetics, during the initial growth
period, the mean respiration rate in the biophysically hetero-
geneous systems is similar to that occurring in a homoge-
neous system, but R attains lower peaks (Figs. 6e and 7e).
As a result, substrate loss (Figs. 6a and 7a) and microbial
growth (Figs. 6c and 7c) slow down compared to homoge-
neous conditions. Interestingly, with MM kinetics, in the un-
correlated case R is not higher than in the other heterogene-
ity cases as occurred with multiplicative kinetics (compare
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Figs. 6e and 5e). This is because with MM kinetics the respi-
ration flux is limited by the maximum rate of decomposition
and not only by substrate availability. In contrast, with IMM
kinetics R in the uncorrelated case is higher than in the other
heterogeneity cases, as it was with multiplicative kinetics.
This is because the initial microbial C is often much lower
than the half-saturation constant for IMM kinetics, making
the IMM decomposition rates numerically similar to those
obtained using the multiplicative decomposition model.

The fully heterogeneous system (right panels in Figs. 5,
6, and 7) shows different behavior compared to the bio-
physically heterogeneous system. The peaks of R appear
much earlier than in the biophysically heterogeneous system,
though the temporal shift of the peak is not as pronounced
with IMM kinetics. Additionally, the values of mean fluxes
and substrate C pools after the peak are respectively smaller
and larger than in the homogeneous system or the system
with only biophysical heterogeneity. The smaller mean fluxes
are due to the right-skewed probability distribution of the ki-
netic parameters kM and kMM, which causes slower decay
despite the mean values of the kinetic parameters being the
same. Mathematically, this behavior is caused by the addi-
tional covariances in the fully heterogeneous system as ex-
plained in the following paragraph.

3.2.2 Dynamics of the second-order terms

The
∑

SOT (same as
∑

HOT but now limiting the HOTs
to second order) for MM and IMM kinetics for the bio-
physically heterogeneous system is given by the sum of the
last two terms of D in Table 2, and for the fully heteroge-
neous system it is given by the last eight terms of Eqs. (A9)
and (A10), respectively. For the biophysically heterogeneous
system, the values of

∑
SOT (Figs. 6g and 7g) are initially

positive (very small in magnitude) for the positively corre-
lated substrate and microbial C and later become negative,
while for the negatively correlated case

∑
SOT is always

negative. For uncorrelated substrate and microbial C,
∑

SOT
is initially negative in MM kinetics but mildly positive in
IMM kinetics and later becomes negative. Furthermore, the
balance between variance and covariance terms makes the
MFA a good approximation of R only when the combined
second-order terms are negligible, which is not the case in
this example (see Figs. A5 and A6). The

∑
SOT of the fully

heterogeneous system for MM kinetics is positive for the first
100 d of simulation and then negative onward, even though
the heterogeneous R is smaller than the homogeneous R
(Fig. 6h). This initial positive

∑
SOT is driven by the sixth

SOT in Eq. (A9), i.e., ∂2F
∂kMM∂Cb

∣∣∣∣
Cs,Cb,kMM,KMM

C′bk′MM be-

cause grid cells with a high amount of microbial C and a
high rate constant cause the covariance C′bk′MM to be posi-
tive. This covariance becomes negative only after microbial
C nears the steady state.

Figure 7. Scenario 2 (HS with inverse Michaelis–Menten kinet-
ics): effect of biophysical heterogeneity (left) and full heterogeneity
(right) on the macroscopic decomposition dynamics when the sub-
strate is distributed around a value higher than the steady state of
the homogeneous system: (a, b) mean substrate C (Cs), (c, d) mean
microbial C (Cb), (e, f) mean respiration rate (R), and (g, h) sum of
second-order terms

(∑
HOT

)
.

3.2.3 Emerging macroscopic kinetics

Figure 8 highlights the effects of spatial heterogeneities on
the mean specific growth rate (SGR) for multiplicative (pan-
els a, b), MM (panels c, d), and IMM kinetics (panels e, f).
The depicted SGR curves can be interpreted as the macro-
scopic kinetic laws emerging from the spatial averaging. For
all three kinetics, the functional relation between the mean
SGR and Cs for the heterogeneous system depends upon the
initial degree of heterogeneity. In contrast, in the homoge-
neous system the mean SGR is a linear, saturating, and non-
linearly increasing function ofCs for the multiplicative, MM,
and IMM kinetics, respectively. The effects of biophysical
heterogeneity in all kinetic models are shown in Fig. 8a, c,
and e. The negative correlation between substrate and mi-
crobial C leads to lower SGR than in the homogeneous sys-
tem, even if both heterogeneous and homogeneous systems
have exactly the same amount of total initial substrate and
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Figure 8. Effect of spatial heterogeneity on the mean specific
growth rate (SGR) for the HS scenario with the simplified mi-
croscale model (no C redistribution): the effect of biophysical (a, c,
e) and full (b, d, f) heterogeneity on the mean SGR as a function
of mean substrate C (Cs) for (a, b) multiplicative, (c, d) Michaelis–
Menten, and (e, f) inverse Michaelis–Menten kinetics. Time pro-
gresses from right to left as Cs is depleted.

microbial C. In the case of positive correlation, the initial
mean SGR is higher than in the homogeneous system, but in
the later phase of decomposition, mean SGR becomes lower.
Thus, when the substrate is colocated with the microorgan-
isms, the mean SGR is initially higher but it decreases at a
faster rate as the substrate is decomposed when compared to
the homogeneous system. If substrate and microbial C are
uncorrelated, the SGR functional response remains between
the negative and the positive correlation cases.

In the fully heterogeneous system (Fig. 8b, d, and f), the
nonlinear character of the relation between mean SGR and
Cs increases compared to the biophysically heterogeneous
system. Interestingly, the mean SGR in the case of nega-
tive correlation for multiplicative and MM kinetic models
is higher (for high Cs) than for the homogeneous system,
despite the colocation of substrates and microorganisms be-
ing less likely. This behavior is caused by the occurrence of
patches with a high turnover rate that control the mean SGR
(Fig. 8b and d). In contrast, for IMM kinetics, the mean SGR
in the case of negative and positive correlation is lower than
the homogeneous system. This behavior might be a conse-
quence of the chosen value of KIMM; i.e., in our parameter-
ization of the IMM kinetics, initially the system is limited
by microbial C, resulting in a relatively low decomposition
rate and dynamics comparable to those obtained with a mul-
tiplicative model (see Fig. 8e, f).

Figure 9. Effect of spatial heterogeneity on the mean specific
growth rate (SGR) for the HS scenario including C redistribution:
effect of biophysical (a, c, e) and full (b, d, f) heterogeneity on the
mean SGR as a function of mean substrate C (Cs) for an uncorre-
lated initial distribution of substrates and microorganisms. The three
horizontal panels are for (a, b) multiplicative, (c, d) Michaelis–
Menten, and (e, f) inverse Michaelis–Menten kinetics. Different col-
ors represent varying values of α. Time progresses from right to left
as Cs is depleted.

In Fig. 9, we show the specific growth rate as a function
of substrate C and α for an uncorrelated initial distribution
of substrate and microbial C, as well as for all three kinetics
– multiplicative, Michaelis–Menten, and inverse Michaelis–
Menten. When α = 0, the results in Fig. 9 are the same as
in Fig. 8 for the uncorrelated case. When α > 0, microor-
ganisms that were initially deprived of substrate now re-
ceive additional substrate from neighboring grid cells. As
a consequence of this improved substrate availability, mi-
croorganisms can consume all the substrate in the long term,
whereas without mass transfer some C remains undecom-
posed (Figs. 5b, 6b, and 7b).

4 Discussion

4.1 Predicted effects of spatial heterogeneity on
decomposition

The heterogeneous spatial distribution of organic matter in
soils is a result of complex physical, chemical, and biological
processes. Both the experimental quantification of the effects
of heterogeneity on SOM dynamics (Kravchenko and Gu-
ber, 2017) and capturing such effects in mathematical mod-
els (Wieder et al., 2015) are challenging. Here, we used scale
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transition theory, applied to a two-pool model, as a simple
approach to analytically account for spatial heterogeneities
and scale up SOM dynamics in idealized scenarios that cover
different types of spatial heterogeneity. Even with the sim-
plest scenarios, the macroscopic decomposition dynamics
of a heterogeneous system differ from those predicted from
the mean field approximation (equivalent to assuming well-
mixed conditions). This difference in the dynamics at two
spatial scales arises because the spatial averaging of the non-
linear kinetics at the microscale creates additional terms in
the macroscale equations that depend on the spatial distribu-
tion of organic matter and microorganisms (i.e., the second-
order spatial moments – SOTs).

These second-order terms represent corrections to the
mean field approximation and depend on the spatial vari-
ability and covariation of the state variables (i.e., Cs, and
Cb). Our numerical results showed that the second-order spa-
tial moments have their own dynamics that drive the hetero-
geneous system away from the mean field approximation.
Notably, while it is recognized that spatial distributions at
the microscale affect macroscale dynamics (Falconer et al.,
2015), none of the current spatially lumped SOM models
include second- or higher-order terms that depend on mi-
croscale heterogeneity (see Sect. 4.3).

The simplicity of the microscale model and the derived
analytical expressions is such that specific insights on how
heterogeneity shapes microscale decomposition patterns can
be gleaned and hypotheses generated. The main predictions
of this model are the following.

1. Perturbing a system that is initially homogeneous and at
steady state by redistributing substrates triggers fluctua-
tions around the steady state (Fig. 4).

2. When only biophysical heterogeneity occurs, in the
early microbial growth phase, macroscopic C fluxes
are enhanced by the colocation of substrates and
microorganisms and reduced when they are isolated
(Fig. 8a, c, e).

3. Combined biophysical and biochemical heterogeneity
enhances C fluxes in the early stage of decomposition
but reduces them in the later stages compared to a ho-
mogeneous system (Fig. 8b, d).

4. Both biophysically and fully heterogeneous systems re-
sult in a transient persistence of SOM (Figs. 5a, b, 6a,
b, and 7a, b). In the biophysically heterogeneous system
at steady state, all C is eventually decomposed, whereas
in the fully heterogeneous system more C is retained
as the substrate pool reaches a new equilibrium (Ap-
pendix A3).

5. For a successive reduction in the degree of heterogene-
ity (i.e., systematically moving from a heterogeneous
to a homogeneous system), macroscale dynamics con-

verge to the mean field approximation; i.e., the same
kinetics can be used at all scales (Sect. 2.1.2).

6. Increasing local connectivity among grid cells moder-
ately reduces the effect of spatial heterogeneity on the
macroscale variables and fluxes.

7. The inverse Michaelis–Menten kinetics appear to be
less sensitive to the scale transition than multiplicative
and Michaelis–Menten kinetics, but this result might de-
pend on the specific choice of parameter values (for a
discussion on scale invariance of upscaled kinetics for
reaction networks, see Tang and Riley, 2017).

Our analysis suggests that the persistence of SOM in het-
erogeneous systems may be a consequence of the microscale
heterogeneity in soil carbon cycling. In the transient simula-
tions with biophysical heterogeneity, persistence is a result
of spatial disconnection between substrates and microorgan-
isms, captured in our framework by a low probability of colo-
cation at the beginning of the simulation. In the transient sim-
ulations for the fully heterogeneous systems, persistence is a
result of the combined effects of a low probability of colo-
cation and a high probability of a low decomposition rate
constant at the beginning of the simulation. The heterogene-
ity in substrate quality thus explains the higher persistence
of SOM in the fully heterogeneous system compared to the
biophysically heterogeneous system.

4.2 Linking theory and observations

We studied three initial heterogeneous distributions of sub-
strate and microbial C: positive, negative, or no correla-
tion between these two variables. These heterogeneities may
correspond to spatial aggregation, isolation, or the random
occurrence of substrate and microorganisms, respectively.
Spatial aggregation is expected in litter and in the surface
soil where substrate is abundant and microbial colonies are
formed around hot spots (Nunan et al., 2003). Spatial isola-
tion is more likely to occur in the subsoil because of lower
substrate and microorganism density as well as poor pore
connectivity (Ekschmitt et al., 2008; Salomé et al., 2010),
and C-rich patches occur around roots that are separated by
large (in a relative sense) volumes of soil that only receive
diluted resources via percolation, diffusion, and bioturbation
(Kuzyakov and Blagodatskaya, 2015). Uncorrelated spatial
fields of substrate and microorganisms may correspond to
spatial distributions between these two extremes. There are
other examples of contrasting homogeneous vs. heteroge-
neous conditions. Disturbed, sieved, or dispersed samples
may be considered homogeneous, whereas intact soil sam-
ples retain their natural heterogeneity.

Despite the correspondence of our idealized heterogene-
ity scenarios with conditions in natural soils or soil samples,
linking our model predictions to observations is challeng-
ing, mostly because the effects of heterogeneity cannot be
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easily isolated in experiments or field observations. Experi-
ments studying the effects of soil structure on the dynamics
of SOM mineralization (Killham et al., 1993; Stenger et al.,
2002; Ruamps et al., 2011; Juarez et al., 2013; Negassa et al.,
2015; Herbst et al., 2016) may introduce other types of het-
erogeneities that are not dealt with here. For example, sam-
ples with different pore networks (Ruamps et al., 2011) likely
exhibit different water and air diffusive pathways, which in
turn affect microbial respiration (Manzoni and Katul, 2014;
Herbst et al., 2016; Koestel and Schlüter, 2019). When tar-
geting experiments to test our upscaled equations, using data
from previous studies is challenging because (i) spatial dis-
tributions of substrate and/or microbial C are not changed
in a controlled manner and (ii) the scale at which physical
treatments are performed is probably larger than the scale at
which heterogeneity affects C dynamics.

Thus, experiments in which soil structure was manipu-
lated do not allow for the direct testing of the predicted
links between heterogeneity and decomposition kinetics at
the macroscale. Further, an experimental validation of the
present work should stem from designing microscale experi-
ments using artificial porous media with different degrees of
heterogeneity. Recent applications of micro-fluidics in soil
science (Stanley et al., 2016; Aleklett et al., 2018) could al-
low for the isolation of the effect of spatial heterogeneity.
If any difference is observed among heterogeneous systems,
then our framework could be used to attribute these differ-
ences to spatial heterogeneity at the microscale. While the
proposed mathematical framework is conceptually useful, it
is thus challenging to test. Nevertheless, the prediction that
the colocation of microorganisms and substrates promotes
decomposition is consistent with and theoretically explains
the results of recent experiments (Don et al., 2013; Schnecker
et al., 2019).

4.3 Developing soil carbon cycling models that account
for microscale heterogeneity

Historically, linear microbial implicit models were devel-
oped to explain long-term loss of C from agricultural soils
or regional-scale variations in SOM (Jenny et al., 1949; Ol-
son, 1963; Jenkinson and Rayner, 1977; Parton et al., 1987).
However, when applied at fine spatial or temporal scales,
these models fail to describe the dynamics of SOM (Zelenev
et al., 2000; Manzoni and Porporato, 2007). To fill this gap
and describe microbial processes at the macroscale, nonlin-
ear microbial explicit models have been proposed (Schimel
and Weintraub, 2003; Manzoni and Porporato, 2009; Xie,
2013). In contrast to these approaches that impose nonlinear
kinetics at the macroscale, here we started from the assump-
tion that SOM kinetics are either linear or nonlinear at the
microscale and let scale transition theory determine the type
of kinetics at the macroscale.

Conceptually, this approach is similar to upscaling chem-
ical reaction networks to obtain a compact kinetic law that

only depends on the concentrations of reactants and products
(Tang and Riley, 2013, 2017). However, here we focus on
spatial heterogeneity rather than on the complexity of chemi-
cal reactions. In a more complete upscaling approach, both
sources of microscale variability should be taken into ac-
count.

When assuming linear kinetics at the microscale, we
showed analytically that the kinetics at the macroscale re-
main linear and independent of soil biophysical heterogene-
ity (Eqs. 17 and 22). This result has implications for exper-
imental studies linking soil architecture to SOM mineraliza-
tion. In some of these studies, first-order microbial implicit
kinetics are used to describe the data (Bouckaert et al., 2013;
Juarez et al., 2013). If a linear model captures the SOM dy-
namics in a heterogeneous system well, then either the un-
derlying microscale dynamics are indeed linear, or the aver-
aging of underlying nonlinear equations leads to linearity at
the macroscale.

Conversely, we demonstrate that nonlinear kinetics at the
microscale do not remain the same when scaling up. The
macroscale dynamics retain a clear signature of nonlineari-
ties at the microscale in the MFA term, but the second-order
terms could be even more important than the MFA. Thus,
nonlinear kinetics might improve SOM predictions because
microbial activity is accounted for (Wieder et al., 2013) (at
the cost of increased uncertainty; Wieder et al., 2018), but the
question remains: which kinetic formulation should be used
at the macroscale to capture both microbial activity and spa-
tial heterogeneities? We offer a framework to advance this
area by using appropriately upscaled nonlinear kinetics in-
cluding SOT at the macroscale. This upscaling framework
can be extended to account for the role of other microscale
interactions, such as among substrates, microorganisms, and
minerals, or even temporally varying connectivity due to wa-
ter movement. These improvements, however, would come
at the cost of an increased number of nonlinear second-order
spatial moments.

To summarize, the proposed theoretical developments al-
low for the integration of spatial heterogeneity into decom-
position kinetics. Assuming that the second-order spatial mo-
ments are known, this integration can be achieved by using
the equations listed in Table 2 instead of standard linear or
nonlinear kinetic equations used in current models (Wieder
et al., 2018; Abramoff et al., 2018). However, the second-
order moments and their dynamics are not known in general,
as discussed at the end of the following section.

4.4 Limitations of the upscaling approach

To illustrate the effects of spatial heterogeneities alone, we
simulated idealized laboratory conditions in which the en-
vironmental conditions are constant so that the decomposi-
tion rate is not affected by soil moisture and temperature
changes through time and space. Moreover, the simulated
domain is small compared to an actual soil sample, but we
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regard the number of simulated grid cells (104) as repre-
sentative of the range of variation occurring in larger, sim-
ilarly idealized samples. In other studies, more complex mi-
croscale models based on nonlinear reactive and diffusive
fluxes have been implemented (Monga et al., 2008, 2014;
Nguyen-Ngoc et al., 2013); however, their spatial upscaling
would require the volume averaging of the coupled transport
and reaction equations, making the problem mathematically
intractable when aiming for analytical solutions (Whitaker,
1999; Valdés-Parada et al., 2009; Porter et al., 2011; Lugo-
Méndez et al., 2015). The two-pool microscale model with
initial heterogeneous distributions of substrate and microor-
ganisms as described in this study offers a simplified way of
simulating reaction–diffusion systems. The two end-member
cases of homogeneous and fully heterogeneous systems in
which grid cells are independent are representative of con-
ditions in which diffusivities are high compared to reaction
kinetics in the former and negligible in the latter. In more
realistic settings, conditions are likely to be intermediate be-
tween these two cases, as described by varying the value of
the mass transfer coefficient α (Fig. 9).

Including C redistribution as a simple mass transfer pro-
cess does not allow for the study of how soil structure af-
fects macroscale dynamics by creating and maintaining het-
erogeneous distributions of resources and oxygen, such as in
aggregates (Keiluweit et al., 2017; Ebrahimi and Or, 2018).
These patterns result from the interaction of transport and re-
action processes that the proposed idealized models cannot
capture.

The upscaling mechanism described in this work assumes
that microbial mortality is first order in microbial C so that
this term remains structurally similar in the macroscopic
Eqs. (13) and (14). A nonlinear mortality generalized by
T = kBC

β

b (Georgiou et al., 2017) would create an additional
term in the macroscale equations. The mean microbial mor-
tality can be calculated by inserting the nonlinear T into
Eq. (16), resulting in T = kBCb

β
+βCb

β−1
σ 2
Cs

, where σ 2
Cs

is
the spatial variance of microbial C (for the biophysically het-
erogeneous system; i.e., kB is spatially invariant). For β = 1,
the first-order mortality is recovered (Eq. 22); for β 6= 1,T
has an additional positive variance term that increases mor-
tality at the macroscale.

Finally, the upscaled macroscale equations still require a
closure scheme for integration, i.e., a set of equations linking
the spatial moments to the mean state variables. With such a
set of additional equations, the problem becomes mathemati-
cally “closed”, as the only remaining unknowns are the mean
state variables. Examples of closure from other fields are
mentioned in the Introduction (e.g., Bergström et al., 2006),
but finding a robust closure scheme remains challenging and
will be the subject of future work.

Moreover, our derivations are general, but how these clo-
sure equations are formulated and parameterized will likely
depend on the scale transition under consideration – soil pore

to core (as in this work), soil core to field, or even field
to landscape. It is possible that a whole hierarchy of scale
transitions is required to determine the macroscale equations
suitable for regional- or global-scale applications. Along
similar lines, the number of terms in the Taylor expansion
that should be retained at each level of this hierarchy remains
an open question. It is also possible that the dynamics at the
microscale, in combination with C redistribution, lead to low
values of higher-order moments because substrate consump-
tion, the mortality of the microorganisms, microbial mortal-
ity, and transport contribute to smoothing spatial gradients.

5 Conclusions and perspective

Most carbon cycling models implicitly assume a spatially ho-
mogeneous distribution of SOM in different C pools and are
based on the mean field approximation of the rate of decom-
position. However, the assumption of homogeneity is ade-
quate only at the microscale in soils due to the homogeniz-
ing effect of diffusion, which brings carbon sources and de-
composers into direct contact with each other at such scales.
Therefore, the mean field approximation is valid only at
the microscale, creating a challenge when developing SOM
models at the macroscale that also account for environmental
heterogeneity. In this contribution, we used scale transition
theory to establish an analytical expression for the macro-
scopic mean decomposition rate that accounts for the mi-
croscale heterogeneities. Unlike the mean field approxima-
tion adopted in most C cycling models, the upscaled govern-
ing equations we derived include second-order spatial mo-
ments, i.e., spatial variances and/or covariances between mi-
croscale state variables and model parameters. The dynam-
ical behavior of the second-order terms drives the heteroge-
neous system away from the mean field approximation. For a
heterogeneous system initially near steady state, microscale
heterogeneities led to oscillations in the macroscale respira-
tion flux and higher SOM persistence in a fully heteroge-
neous system. For a heterogeneous system perturbed from
its equilibrium, the colocation of substrate and microorgan-
isms increased macroscopic C fluxes compared to a case in
which they were isolated.

In conclusion, this work provides a methodology to explic-
itly include microscale heterogeneity in soil C cycling mod-
els. Our upscaled kinetic equations could be used in lieu of
current formulations, but additional equations describing the
dynamics of spatial moments should be further developed to
mathematically close the problem. The upscaled equations
show that (i) heterogeneities alter the form of the carbon flux
equations at the macroscale, and as a result (ii) the colocation
(isolation) of microorganisms and their substrates promotes
(suppresses) carbon fluxes in soils.
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Appendix A

A1 Derivation of the macroscale rate of decomposition

Here we describe the derivation of the spatially averaged C
flux for a generic microscopic C flux F(Cs,Cb,k) using scale
transition theory. As a first step, we calculate the multivariate
Taylor’s series expansion of F(Cs,Cb,k) around the spatial
average value of Cs, Cb, and k,

F(Cs,Cb,k)=

F(Cs,Cb,k)+
∂F

∂Cs
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(A1)

where O(C3
s ,C

3
b ,k

3
i ) represents the higher-order terms and

the overbars denote the spatially averaged microscale quan-
tities.

Second, the averaging operator given by Eq. (1) is applied
in Eq. (A1). Truncating terms above the second-order terms,
Eq. (A1) becomes

1∫ ∫
dxdy
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(A2)

In Eq. (A2), the first-order partial derivatives (second, third,
and fourth term between the square brackets) disappear, be-
cause the partial derivatives evaluated at the mean state vari-
ables are constants that are multiplied by the expectation
of the deviation of a quantity, which is zero ( ∂F

∂χ

∣∣∣
χ

∫ ∫
(χ −

χ) dxdy = 0, where χ is CS,Cb, or k).
Finally, after applying the averaging operator, deviations

multiplying the second-order partial derivatives become spa-
tial variances and covariances. As a result, the macroscale C
flux F(Cs,Cb,k) is obtained:
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(A3)

Equation (A3) can be used to obtain the macroscale C flux
given the decomposition function D at the microscale. Ex-
plicit solutions for the multiplicative kinetics are reported in
the main text (Eqs. 18, 20, and 21).

For illustration, here we report the derivation of the spa-
tially averaged rate of decomposition for Michaelis–Menten
(MM) kinetics. The microscale rate of decomposition for
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MM kinetics is given by

F =
kMMCsCb

KMM+Cs
, (A4)

where both the parameters kMM and KMM and the state vari-
ables Cs and Cb are considered spatially variable quantities.
Inserting Eq. (A4) into Eq. (A3) gives the macroscale rate of
decomposition:
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The partial derivative of F with respect to kMM and Cb is
zero because F is a linear function of kMM and Cb. Now, for
a biophysical heterogeneous and biochemical homogeneous
system, covariances and variances related to parameters are
zeros so that we are left with
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Calculating the derivatives gives
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For a biophysical homogeneous and biochemical heteroge-
neous system, covariances and variances of state variables
(Cs and Cb) are zeros so that we are left with
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F(Cs,Cb,kMM,KMM)+
1
2
∂2F

∂kMM
2

∣∣∣∣
Cs,Cb,kMM,KMM

σ 2
KMM

+
∂2F

∂kMM∂KMM

∣∣∣∣
Cs,Cb,kMM,KMM

k′MMK ′MM

+
∂2F

∂kMM∂Cs

∣∣∣∣
Cs,Cb,kMM,KMM

C′sk′MM

+
∂2F

∂kMM∂Cb

∣∣∣∣
Cs,Cb,kMM,KMM

C′bk′MM

+
∂2F

∂KMM∂Cs

∣∣∣∣
Cs,Cb,kMM,KMM

C′sK ′MM

+
∂2F

∂KMM∂Cb

∣∣∣∣
Cs,Cb,kMM,KMM

C′bK ′MM.

(A8)

For a completely heterogeneous system with biophysical and
biochemical heterogeneity, the mean rate of decomposition
at the macroscale is given by Eq. (A9):
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F(Cs,Cb, [kMM,KMM])=

F(Cs,Cb,kMM,KMM)+
1
2
∂2F

∂C2
s

∣∣∣∣
Cs,Cb,kMM,KMM

σ 2
Cs

+
1
2

∂2F

∂KMM
2

∣∣∣∣
Cs,Cb,kMM,KMM

σ 2
KMM

+
∂2F

∂kMM∂KMM

∣∣∣∣
Cs,Cb,kMM,KMM

k′MMK ′MM

+
∂2F

∂Cs∂Cb

∣∣∣∣
Cs,Cb,kMM,KMM

C′sC′b

+
∂2F

∂kMM∂Cs

∣∣∣∣
Cs,Cb,kMM,KMM

C′sk′MM

+
∂2F

∂kMM∂Cb

∣∣∣∣
Cs,Cb,kMM,KMM

C′bk′MM

+
∂2F

∂KMM∂Cs

∣∣∣∣
Cs,Cb,kMM,KMM

C′sK ′MM

+
∂2F

∂KMM∂Cb

∣∣∣∣
Cs,Cb,kMM,KMM

C′bK ′MM. (A9)

Similar to MM kinetics, the mean rate of decomposition
for a completely heterogeneous system for IMM kinetics can
also be calculated as

F(Cs,Cb, [kIMM,KIMM])=

F(Cs,Cb,kIMM,K IMM)+
1
2
∂2F

∂C2
s

∣∣∣∣
Cs,Cb,kIMM,K IMM

σ 2
Cb

+
1
2

∂2F

∂KIMM
2

∣∣∣∣
Cs,Cb,kIMM,K IMM

σ 2
KIMM

+
∂2F

∂kIMM∂KIMM

∣∣∣∣
Cs,Cb,kIMM,K IMM

k′IMMK ′IMM

+
∂2F

∂Cs∂Cb

∣∣∣∣
Cs,Cb,kIMM,K IMM

C′sC′b

+
∂2F

∂kIMM∂Cs

∣∣∣∣
Cs,Cb,kIMM,K IMM

C′sk′IMM

+
∂2F

∂kIMM∂Cb

∣∣∣∣
Cs,Cb,kIMM,K IMM

C′bk′IMM

+
∂2F

∂KIMM∂Cs

∣∣∣∣
Cs,Cb,kIMM,K IMM

C′sK ′IMM

+
∂2F

∂KIMM∂Cb

∣∣∣∣
Cs,Cb,kIMM,K IMM

C′bK ′IMM.

(A10)

A2 Initial 2-D random fields of substrate C and
microbial C

The heterogeneous field of microbial C was created using a
random field generator that provides 100×100 spatially cor-
related random numbers between −1 and 1 (Lennon, 2000).
These values were then rescaled by an appropriate mean and
standard deviation of microbial C. To simulate the dead zones
in the heterogeneous system, some grid cells were forced
to have no microbial C (the obtained field is denoted yi,j ).
Moreover, to allow for comparison among simulations, the
microbial C field was renormalized to have a specified value
of total initial microbial C:

Cbi,j =
yi,j∑
i,jyi,j

Cb,total (fg). (A11)

It is assumed that Cb,total is equal to 1 % of the total amount
of substrate in the domain (Witter, 1996), which is in turn
calculated as Cs,total = Cs,0×Nx×Ny , where Cs,0 is the ini-
tial mean substrate C in a single grid cell (fg). The amount
of substrate C in any grid cell is limited by the maximum
amount of C that the cell can accommodate, according to the
density of organic matter (ρSOM) and assuming that 50 % of
organic matter on a mass basis is composed of organic C. The
maximum amount of substrate C that one cell can contain is
thus given by

Cmax = 0.5ρSOMcellvolume(fg), (A12)

where cellvolume is the volume of a grid cell. The value ofCs,0
was chosen so that the maximum C amount at a micro-site
does not exceed Cmax. To summarize, the obtained spatially
heterogeneous random fields of microbial C and substrate C
satisfy the following constraints: (i) the total amount of or-
ganic C is set, (ii) the total amount of microbial C is 1 %
of total organic C, (iii) the maximum amount of C in a cell
is set (Eq. A12), and (iv) some grid cells have no microbial
biomass.

A3 Steady-state substrate C for multiplicative kinetics
in fully heterogeneous systems

The substrate C at steady state for all decomposition kinet-
ics is given in Table 1 and is restated here for multiplicative
kinetics only:

C∗s =
kB

YkM
, (A13)

where ∗ represents steady-state conditions. Equation (A13)
shows that the steady-state substrate C depends only on the
kinetic parameters and microbial C-use efficiency. Thus, if
the kinetic parameters are spatially variable (i.e., a fully het-
erogeneous system) thenC∗s is also spatially variable and dif-
ferent from the steady-state values of biophysically hetero-
geneous or homogeneous systems. Knowing the probability
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Table A1. List of parameters. Values in brackets correspond to the units reported in brackets.

Parameter Value Unit Description

I 6.06× 10−4 mgC per g of soil h−1 Rate of input of external carbon

KMM 5 156 250 fgC per grid cell Half-saturation constant (MM)
(25) (mgC per g of soil)

kMM 0.018 h−1 Decomposition rate constant
for the MM kinetics

KIMM 2× 106 fgC per grid cell Half-saturation constant (IMM)
(9.69) (mgC per g of soil)

kIMM 0.0045 h−1 Decomposition rate constant
for the IMM kinetics

kM 7.45× 10−10 h−1 (fgC per grid cell)−1 Decomposition rate constant
(1.53× 10−4) (h−1 (mgC per g of soil)−1) for the multiplicative kinetics

kB 0.00028 h−1 Decomposition rate constant
for the MM kinetics

Y 0.31 – Microbial C-use efficiency

ρBD 1.65 gcm−3 Soil bulk density

ρOM 1.1 gcm−3 Organic matter density

distributions of the kinetic parameters, the mean steady-state
substrate C in the fully heterogeneous system can be calcu-
lated as the mean value of C∗s .

The mean value of a generic function, g(x), is given by
g(x)=

∫
∞

−∞
g(x)fX(x)dx, where fX(x) is the probability

density function of x. Accordingly, the mean value of C∗s is
given by

C
∗

s =

b∫
a

kB

YkM
f (kM)dkM, (A14)

where f (kM) is the probability density function of kM. As in
Forney and Rothman (2012), we can assume that the kinetic
constant kM follows a log-uniform distribution f (kM)=

1
(b−a)kM ln10 , with mean 10a−10b

(b−a) ln(10) where a and b are the pa-
rameters of log-uniform distribution. With this distribution
the mean C∗s becomes

C
∗

s =
kB
(
10−a − 10−b

)
Y (b− a) ln(10)

. (A15)

Equation (A15) shows that C
∗

s in the heterogeneous sys-
tem deviates from the value attained in a homogeneous sys-

tem because in general kM differs from
(b− a) ln(10)
10−a − 10−b

. Sim-

ilar derivations can be made for the other formulations of
decomposition kinetics.

A4 Sensitivity of simulated fluctuations to changes in
kM in scenario 1

We performed two sensitivity analyses in which we altered
the kinetic constant parameter for the multiplicative decom-
position model kM: (1) decreasing kM in the system with
biophysical heterogeneity–positively correlated Cs and Cb
(Fig. A1) and (2) increasing the heterogeneity of kM (by in-
creasing its standard deviation) in the full heterogeneity case
(Fig. A2). From Fig. A1, it is clear that decreasing the rate
constant increases the amplitude and wavelength of the os-
cillations. As shown in Fig. A2, increasing the heterogene-
ity of the rate constant increases the amount of undecom-
posed substrate C compared to a lower degree of heterogene-
ity (Fig. 4). This pattern can be explained using the analyti-
cal expression of the steady-state substrate C (see Eq. A15 in
Appendix A3). For the increased heterogeneity case shown
in Fig. 4, we used values of a and b as listed in Table A3
for biochemical heterogeneity 1 and multiplicative kinetics,
wherein a and b have the same meaning as in Eq. (A15).
The analytical expression for the steady state, evaluated with
these values of a and b, results in exactly the same steady
state of substrate C as simulated by the distributed model
(i.e., 15 mgC per g of soil).

These fluctuations are similar to those noted in earlier pa-
pers using spatially lumped models (Manzoni and Porporato,
2007; Sierra and Muller, 2015). These papers showed that
the occurrence and amplitude of the fluctuations depend on
the kinetic parameter values, as is the case here.
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Figure A1. (a) Mean substrate C (Cs), (b) mean microbial C (Cb), (c) mean respiration rate (R), and (d) sum of second- and third-order
terms (

∑
HOT) are shown as a function of time for positively correlated initial spatial heterogeneity of Cs and Cb. This figure is similar to

Fig. 4 (initial substrate is distributed randomly around the steady state). Varying levels of the rate constant kM are shown (as indicated by
different line styles and colors; the base case is the same as in Fig. 4). Panels on the right are enlarged views of the time trajectories of Cs.

Table A2. Initial mean substrate and microbial C in scenarios SS
and HS, expressed in both femtograms of carbon (fgC) per grid cell
and milligrams of carbon per gram of soil (values in brackets).

Scenario
Initial Cs Initial Cb

fgC per grid cell (mgCg−1 soil)

Steady-state 1.212× 105(5.9) 2.005× 105(0.9725)
simulation (SS)

High substrate 0.5× 107(121.21) 2.5× 105(1.21)
simulation (HS)
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Table A3. Probability distributions of the parameters for the multiplicative, MM, and IMM kinetics models. Values in brackets indicate the
minimum and maximum parameter values.

Biochemical heterogeneity 1 Biochemical heterogeneity 2

Multiplicative kM
(h−1) (fgC per grid cell)−1

log10 uniform (−10.1, −8.56) log10 uniform (−9.4,−8.9)

MM kMM (h−1) log10 uniform (−1.098, −3)
KMM (fgC per grid cell) Uniform (0.25,49.75)

IMM kIMM (h−1) kMM/4
KIMM (fgC per grid cell) Uniform (1,18.4)

Figure A2. (a) Mean substrate C (Cs), (b) mean microbial C (Cb),
(c) mean respiration rate (R), and (d) sum of second- and third-order
terms (

∑
HOT) are shown as a function of time for different scenar-

ios of initial spatial heterogeneity. This figure is similar to Fig. 4 for
the full heterogeneity case, but with increased heterogeneity of the
rate constant (kM).
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Figure A3. Scenario 1 (steady-state simulation): temporal evolution of mean respiration rate in the heterogeneous system (Rhet, including
the mean field approximation (MFA) and second-order terms) and the respiration rate in the homogeneous system (Rhom) for multiplicative
kinetics and for (a–c) the biophysical and (d–f) the fully heterogeneous system with (a–d) positively and (b–e) negatively correlated or
(c–f) uncorrelated initial substrate and microbial C.
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Figure A4. Scenario 2 (HS simulation with multiplicative kinetics): temporal evolution of mean respiration rate in the heterogeneous system
(Rhet), which includes the mean field approximation (MFA) and second-order terms, and the respiration rate in the homogeneous system
(Rhom) for (a–c) the biophysically and (d–f) the fully heterogeneous system with positive (a–b), negative (c–d), and uncorrelated (e–f)
substrate and microbial C for multiplicative kinetics.

www.geosci-model-dev.net/13/1399/2020/ Geosci. Model Dev., 13, 1399–1429, 2020



1424 A. Chakrawal et al.: Dynamic upscaling of decomposition kinetics

Figure A5. Scenario 2 (HS with Michaelis–Menten kinetics): tem-
poral evolution of mean respiration rate in the biophysically het-
erogeneous system (Rhet, including the mean field approximation
(MFA) and second-order terms) and the respiration rate in the ho-
mogeneous system (Rhom) for (a) positively and (b) negatively cor-
related or (c) uncorrelated substrate and microbial C.

Figure A6. Scenario 2 (HS with inverse Michaelis–Menten kinet-
ics): temporal evolution of mean respiration rate in the biophysi-
cally heterogeneous system (Rhet, including the mean field approx-
imation (MFA) and second-order terms) and the respiration rate in
the homogeneous system (Rhom) for (a) positively and (b) nega-
tively correlated or (c) uncorrelated substrate and microbial C.
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Figure A7. Distribution of the decomposition rate constant for different degrees of biochemical heterogeneity and for (a) multiplicative and
(b) Michaelis–Menten kinetics. Black and grey shading represents a higher and lower degree of biochemical heterogeneity, respectively, and
the dashed line represents the mean rate constant for the homogeneous system. The half-saturation constant KMM is uniformly distributed;
not shown in figure.
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