Articles | Volume 13, issue 3
https://doi.org/10.5194/gmd-13-1075-2020
https://doi.org/10.5194/gmd-13-1075-2020
Model description paper
 | 
10 Mar 2020
Model description paper |  | 10 Mar 2020

EXPLUME v1.0: a model for personal exposure to ambient O3 and PM2.5

Myrto Valari, Konstandinos Markakis, Emilie Powaga, Bernard Collignan, and Olivier Perrussel

Related authors

CHIMERE-2017: from urban to hemispheric chemistry-transport modeling
Sylvain Mailler, Laurent Menut, Dmitry Khvorostyanov, Myrto Valari, Florian Couvidat, Guillaume Siour, Solène Turquety, Régis Briant, Paolo Tuccella, Bertrand Bessagnet, Augustin Colette, Laurent Létinois, Kostantinos Markakis, and Frédérik Meleux
Geosci. Model Dev., 10, 2397–2423, https://doi.org/10.5194/gmd-10-2397-2017,https://doi.org/10.5194/gmd-10-2397-2017, 2017
Short summary
Mid-21st century air quality at the urban scale under the influence of changed climate and emissions – case studies for Paris and Stockholm
Konstantinos Markakis, Myrto Valari, Magnuz Engardt, Gwendoline Lacressonniere, Robert Vautard, and Camilla Andersson
Atmos. Chem. Phys., 16, 1877–1894, https://doi.org/10.5194/acp-16-1877-2016,https://doi.org/10.5194/acp-16-1877-2016, 2016
Short summary
Climate-forced air-quality modeling at the urban scale: sensitivity to model resolution, emissions and meteorology
K. Markakis, M. Valari, O. Perrussel, O. Sanchez, and C. Honore
Atmos. Chem. Phys., 15, 7703–7723, https://doi.org/10.5194/acp-15-7703-2015,https://doi.org/10.5194/acp-15-7703-2015, 2015
Short summary
Air quality in the mid-21st century for the city of Paris under two climate scenarios; from the regional to local scale
K. Markakis, M. Valari, A. Colette, O. Sanchez, O. Perrussel, C. Honore, R. Vautard, Z. Klimont, and S. Rao
Atmos. Chem. Phys., 14, 7323–7340, https://doi.org/10.5194/acp-14-7323-2014,https://doi.org/10.5194/acp-14-7323-2014, 2014
CHIMERE 2013: a model for regional atmospheric composition modelling
L. Menut, B. Bessagnet, D. Khvorostyanov, M. Beekmann, N. Blond, A. Colette, I. Coll, G. Curci, G. Foret, A. Hodzic, S. Mailler, F. Meleux, J.-L. Monge, I. Pison, G. Siour, S. Turquety, M. Valari, R. Vautard, and M. G. Vivanco
Geosci. Model Dev., 6, 981–1028, https://doi.org/10.5194/gmd-6-981-2013,https://doi.org/10.5194/gmd-6-981-2013, 2013

Related subject area

Atmospheric sciences
Exploring the footprint representation of microwave radiance observations in an Arctic limited-area data assimilation system
Máté Mile, Stephanie Guedj, and Roger Randriamampianina
Geosci. Model Dev., 17, 6571–6587, https://doi.org/10.5194/gmd-17-6571-2024,https://doi.org/10.5194/gmd-17-6571-2024, 2024
Short summary
Analysis of model error in forecast errors of extended atmospheric Lorenz 05 systems and the ECMWF system
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 17, 6489–6511, https://doi.org/10.5194/gmd-17-6489-2024,https://doi.org/10.5194/gmd-17-6489-2024, 2024
Short summary
Description and validation of Vehicular Emissions from Road Traffic (VERT) 1.0, an R-based framework for estimating road transport emissions from traffic flows
Giorgio Veratti, Alessandro Bigi, Sergio Teggi, and Grazia Ghermandi
Geosci. Model Dev., 17, 6465–6487, https://doi.org/10.5194/gmd-17-6465-2024,https://doi.org/10.5194/gmd-17-6465-2024, 2024
Short summary
AeroMix v1.0.1: a Python package for modeling aerosol optical properties and mixing states
Sam P. Raj, Puna Ram Sinha, Rohit Srivastava, Srinivas Bikkina, and Damu Bala Subrahamanyam
Geosci. Model Dev., 17, 6379–6399, https://doi.org/10.5194/gmd-17-6379-2024,https://doi.org/10.5194/gmd-17-6379-2024, 2024
Short summary
Impact of ITCZ width on global climate: ITCZ-MIP
Angeline G. Pendergrass, Michael P. Byrne, Oliver Watt-Meyer, Penelope Maher, and Mark J. Webb
Geosci. Model Dev., 17, 6365–6378, https://doi.org/10.5194/gmd-17-6365-2024,https://doi.org/10.5194/gmd-17-6365-2024, 2024
Short summary

Cited articles

ADEME: Les chiffres clés du bâtiment: énergie-environnement, Tech. Rep. Chiffes clés, Agence de l'Environnement et de la Maitrise de l'Energie, 2013. a, b
AIRPARIF: Quelle qualité de l'air en voiture pendant les trajets quotidiens domicile-travail, Tech. rep., AIRPARIF, available at: https://www.airparif.asso.fr/_pdf/publications/synthese_expovoituredomtra.pdf (last access: 29 July 2019), 2009. a
Anderson, H. R., Atkinson, R. W., Peacock, J., Marston, L., and Konstantinou, K.: Meta-analysis of time-series studies and panel studies of particulate matter (PM) and ozone (O3): report of a WHO task group, available at: https://apps.who.int/iris/handle/10665/107557 (last access: 28 July 2019), 2004. a
Appel, K. W., Gilliam, R. C., Pleim, J. E., Pouliot, G. A., Wong, D. C., Hogrefe, C., Roselle, S. J., and Mathur, R.: Improvements to the WRF-CMAQ modeling system for fine-scale air quality simulations, EM: Air And Waste Management Association's Magazine For Environmental Managers, 16–21, available at: https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NERL&dirEntryId=288280 (last access: 28 July 2019), 2014. a
Atkinson, R. W., Mills, I. C., Walton, H. A., and Anderson, H. R.: Fine particle components and health – a systematic review and meta-analysis of epidemiological time series studies of daily mortality and hospital admissions, J. Expo. Sci. Env. Epid., 25, 208–214, https://doi.org/10.1038/jes.2014.63, 2015. a
Download
Short summary
To understand how atmospheric pollution affects human health, we need to know the inhaled dose of pollutants. We develop a model that follows the individuals of a population during their daily activities and estimates pollutant concentration levels in the ambient air. We show that certain practices, such as biking in the city, expose people to PM2.5 concentration levels higher than the WHO recommendations. We also show that living in green buildings will significantly decrease exposure to ozone.