Articles | Volume 13, issue 3
https://doi.org/10.5194/gmd-13-1075-2020
https://doi.org/10.5194/gmd-13-1075-2020
Model description paper
 | 
10 Mar 2020
Model description paper |  | 10 Mar 2020

EXPLUME v1.0: a model for personal exposure to ambient O3 and PM2.5

Myrto Valari, Konstandinos Markakis, Emilie Powaga, Bernard Collignan, and Olivier Perrussel

Related authors

CHIMERE-2017: from urban to hemispheric chemistry-transport modeling
Sylvain Mailler, Laurent Menut, Dmitry Khvorostyanov, Myrto Valari, Florian Couvidat, Guillaume Siour, Solène Turquety, Régis Briant, Paolo Tuccella, Bertrand Bessagnet, Augustin Colette, Laurent Létinois, Kostantinos Markakis, and Frédérik Meleux
Geosci. Model Dev., 10, 2397–2423, https://doi.org/10.5194/gmd-10-2397-2017,https://doi.org/10.5194/gmd-10-2397-2017, 2017
Short summary
Mid-21st century air quality at the urban scale under the influence of changed climate and emissions – case studies for Paris and Stockholm
Konstantinos Markakis, Myrto Valari, Magnuz Engardt, Gwendoline Lacressonniere, Robert Vautard, and Camilla Andersson
Atmos. Chem. Phys., 16, 1877–1894, https://doi.org/10.5194/acp-16-1877-2016,https://doi.org/10.5194/acp-16-1877-2016, 2016
Short summary
Climate-forced air-quality modeling at the urban scale: sensitivity to model resolution, emissions and meteorology
K. Markakis, M. Valari, O. Perrussel, O. Sanchez, and C. Honore
Atmos. Chem. Phys., 15, 7703–7723, https://doi.org/10.5194/acp-15-7703-2015,https://doi.org/10.5194/acp-15-7703-2015, 2015
Short summary
Air quality in the mid-21st century for the city of Paris under two climate scenarios; from the regional to local scale
K. Markakis, M. Valari, A. Colette, O. Sanchez, O. Perrussel, C. Honore, R. Vautard, Z. Klimont, and S. Rao
Atmos. Chem. Phys., 14, 7323–7340, https://doi.org/10.5194/acp-14-7323-2014,https://doi.org/10.5194/acp-14-7323-2014, 2014
CHIMERE 2013: a model for regional atmospheric composition modelling
L. Menut, B. Bessagnet, D. Khvorostyanov, M. Beekmann, N. Blond, A. Colette, I. Coll, G. Curci, G. Foret, A. Hodzic, S. Mailler, F. Meleux, J.-L. Monge, I. Pison, G. Siour, S. Turquety, M. Valari, R. Vautard, and M. G. Vivanco
Geosci. Model Dev., 6, 981–1028, https://doi.org/10.5194/gmd-6-981-2013,https://doi.org/10.5194/gmd-6-981-2013, 2013

Related subject area

Atmospheric sciences
A general comprehensive evaluation method for cross-scale precipitation forecasts
Bing Zhang, Mingjian Zeng, Anning Huang, Zhengkun Qin, Couhua Liu, Wenru Shi, Xin Li, Kefeng Zhu, Chunlei Gu, and Jialing Zhou
Geosci. Model Dev., 17, 4579–4601, https://doi.org/10.5194/gmd-17-4579-2024,https://doi.org/10.5194/gmd-17-4579-2024, 2024
Short summary
Implementation of a Simple Actuator Disk for Large-Eddy Simulation in the Weather Research and Forecasting Model (WRF-SADLES v1.2) for wind turbine wake simulation
Hai Bui, Mostafa Bakhoday-Paskyabi, and Mohammadreza Mohammadpour-Penchah
Geosci. Model Dev., 17, 4447–4465, https://doi.org/10.5194/gmd-17-4447-2024,https://doi.org/10.5194/gmd-17-4447-2024, 2024
Short summary
WRF-PDAF v1.0: implementation and application of an online localized ensemble data assimilation framework
Changliang Shao and Lars Nerger
Geosci. Model Dev., 17, 4433–4445, https://doi.org/10.5194/gmd-17-4433-2024,https://doi.org/10.5194/gmd-17-4433-2024, 2024
Short summary
Implementation and evaluation of diabatic advection in the Lagrangian transport model MPTRAC 2.6
Jan Clemens, Lars Hoffmann, Bärbel Vogel, Sabine Grießbach, and Nicole Thomas
Geosci. Model Dev., 17, 4467–4493, https://doi.org/10.5194/gmd-17-4467-2024,https://doi.org/10.5194/gmd-17-4467-2024, 2024
Short summary
An improved and extended parameterization of the CO2 15 µm cooling in the middle and upper atmosphere (CO2_cool_fort-1.0)
Manuel López-Puertas, Federico Fabiano, Victor Fomichev, Bernd Funke, and Daniel R. Marsh
Geosci. Model Dev., 17, 4401–4432, https://doi.org/10.5194/gmd-17-4401-2024,https://doi.org/10.5194/gmd-17-4401-2024, 2024
Short summary

Cited articles

ADEME: Les chiffres clés du bâtiment: énergie-environnement, Tech. Rep. Chiffes clés, Agence de l'Environnement et de la Maitrise de l'Energie, 2013. a, b
AIRPARIF: Quelle qualité de l'air en voiture pendant les trajets quotidiens domicile-travail, Tech. rep., AIRPARIF, available at: https://www.airparif.asso.fr/_pdf/publications/synthese_expovoituredomtra.pdf (last access: 29 July 2019), 2009. a
Anderson, H. R., Atkinson, R. W., Peacock, J., Marston, L., and Konstantinou, K.: Meta-analysis of time-series studies and panel studies of particulate matter (PM) and ozone (O3): report of a WHO task group, available at: https://apps.who.int/iris/handle/10665/107557 (last access: 28 July 2019), 2004. a
Appel, K. W., Gilliam, R. C., Pleim, J. E., Pouliot, G. A., Wong, D. C., Hogrefe, C., Roselle, S. J., and Mathur, R.: Improvements to the WRF-CMAQ modeling system for fine-scale air quality simulations, EM: Air And Waste Management Association's Magazine For Environmental Managers, 16–21, available at: https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NERL&dirEntryId=288280 (last access: 28 July 2019), 2014. a
Atkinson, R. W., Mills, I. C., Walton, H. A., and Anderson, H. R.: Fine particle components and health – a systematic review and meta-analysis of epidemiological time series studies of daily mortality and hospital admissions, J. Expo. Sci. Env. Epid., 25, 208–214, https://doi.org/10.1038/jes.2014.63, 2015. a
Download
Short summary
To understand how atmospheric pollution affects human health, we need to know the inhaled dose of pollutants. We develop a model that follows the individuals of a population during their daily activities and estimates pollutant concentration levels in the ambient air. We show that certain practices, such as biking in the city, expose people to PM2.5 concentration levels higher than the WHO recommendations. We also show that living in green buildings will significantly decrease exposure to ozone.