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Abstract. This paper presents the first version of the
regional-scale personal exposure model EXPLUME (EXpo-
sure to atmospheric PolLUtion ModEling). The model uses
simulated gridded data of outdoor O3 and PM2.5 concentra-
tions and several population and building-related datasets to
simulate (1) space–time activity event sequences, (2) the in-
filtration of atmospheric contaminants indoors, and (3) daily
aggregated personal exposure. The model is applied over the
greater Paris region at 2km× 2km resolution for the en-
tire year of 2017. Annual averaged population exposure is
discussed. We show that population mobility within the re-
gion, disregarding pollutant concentrations indoors, has only
a small effect on average daily exposure. By contrast, consid-
ering the infiltration of PM2.5 in buildings decreases annual
average exposure by 11 % (population average). Moreover,
accounting for PM2.5 exposure during transportation (in ve-
hicle, while waiting on subway platforms, and while crossing
on-road tunnels) increases average population exposure by
5 %. We show that the spatial distribution of PM2.5 and O3
exposure is similar to the concentration maps over the region,
but the exposure scale is very different when accounting for
indoor exposure. We model large intra-population variability
in PM2.5 exposure as a function of the transportation mode,
especially for the upper percentiles of the distribution. Over-
all, 20 % of the population using bicycles or motorcycles is
exposed to annual average PM2.5 concentrations above the
EU target value (25 µgm−3), compared to 0 % for people
travelling by car. Finally, we develop a 2050 horizon pro-
jection of the building stock to study how changes in the

buildings’ characteristics to comply with the thermal regu-
lations will affect personal exposure. We show that exposure
to ozone will decrease by as much as 14 % as a result of this
projection, whereas there is no significant impact on expo-
sure to PM2.5.

1 Introduction

Air pollution is the first environmental health risk with sig-
nificant effects on morbidity and mortality (Lim et al., 2012;
WHO, 2013). Despite significant improvement in European
air quality over the past decades, in 2017, approximately
77 % of the urban population was still exposed to PM2.5
concentrations exceeding the WHO air quality guidelines for
health (14 % for O3) (EEA, 2019). More than half of the mor-
tality burden attributed to exposure to suspended particles
of an aerodynamic diameter less than 2.5 µgm−3 (PM2.5)
in France occurs in cities of more than 100 000 inhabitants
(Pascal et al., 2016). Several epidemiological studies have
shown the adverse health effects of exposure to PM2.5. For
instance, in France, in 2004–2006, about 3000 deaths per
year were attributed to levels of PM2.5 exceeding the WHO
guideline value in nine French urban areas participating in
the Aphekom project (Pascal et al., 2013). Previous studies
have shown that ozone exposure correlates with both mor-
bidity and mortality (Sun et al., 2018; Di et al., 2017).

In the majority of these studies, the exposure surrogate as-
sociated with morbidity or mortality metrics is a spatially ag-
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gregated pollutant concentration from measurements at dif-
ferent sites over the urban agglomeration (Anderson et al.,
2004; Bell et al., 2005). The underlying hypothesis here is
that exposure is homogenous over the population. For this
assumption to be valid, these studies are limited to small geo-
graphical zones where population density and pollutant con-
centrations are also homogenous (Sarnat et al., 2007). Sev-
eral shortcomings of this approach have been raised in pre-
vious studies. On one hand, pollutant concentrations are spa-
tially heterogeneous, especially within cities where different
emission sources coexist and the presence of buildings im-
poses barriers to the dispersion of pollutants. For example, a
Health Effects Institute report states that the zones most im-
pacted by traffic-related pollution are up to 300–500 m from
highways and other major roads, and when calculated for
large cities in North America, that affects 30 %–45 % of the
population (HEI, 2010). Intra-urban variability in pollutant
concentration is a principal source of exposure misclassifi-
cation in environmental epidemiology models, leading to er-
rors in the evaluation of the health risk (Blair et al., 2007;
Edwards and Keil, 2017). Furthermore, large variability in
population exposure arises from human activity, population
mobility, transport usage, and building characteristics (Geor-
gopoulos et al., 2005). Therefore, to study the health risk on
specific population groups – such as children, elderly people,
asthma patients, or pregnant women (Olsson et al., 2014), or
the health effects of co-pollutants (Olstrup et al., 2019b, a;
Valari et al., 2011), or the risk associated with living or work-
ing near busy roads (Lipfert and Wyzga, 2008; Miranda et al.,
2013) – one has to account for pollutant concentration at dis-
trict level, population dynamics, and exposure indoors and
during transport (Franklin et al., 2012; Hodas et al., 2012).

To answer this emerging demand, several methods for es-
timating personal exposure have been developed. Land-use
regression models have been largely used to relate concen-
trations measured at monitor sites with concentration esti-
mates at different locations across the city (Beelen et al.,
2013; Cattani et al., 2017; Ryan and LeMasters, 2007). Then,
space–time activity data are coupled to concentration data
to provide exposure estimates (Vizcaino and Lavalle, 2018;
Xu et al., 2019a). Land-use regression models provide spa-
tial maps where urban features such as roads, buildings, and
parks may be distinguished from background concentration
levels. But concentration gradients resulting from the regres-
sion do not account for the dynamical or chemical processes
taking place at these scales. Portable instruments, based on
mass filters or high-accuracy optical methods (reference sen-
sors), have also been used during specific field campaigns to
measure exposure in cars, in subway trains, and on subway
platforms, and in residences or other indoor microenviron-
mental locations (Hwang and Lee, 2018; Lim et al., 2012;
Morales Betancourt et al., 2019; Williams and Knibbs, 2016;
Xu et al., 2019b). These methods are accurate but restricted
to limited periods and spatial contexts. The availability of
low-cost personal monitors (microsensors) is a new opportu-

nity in the atmospheric exposure field. They provide access
to almost real-time, high-resolution concentration measure-
ments (Xie et al., 2017). However, the accuracy of these in-
struments, their calibration, as well as their high sensitivity
to environmental conditions (e.g. humidity) and human ma-
nipulation are yet to be addressed before their true potential
is to be realized (Berchet et al., 2017).

Pollutant concentration fields simulated with atmospheric
dispersion models are another possible input source for ex-
posure models. The advantage of this approach is that simu-
lation data may cover long time periods to support climate
studies or policy applications adjusting for meteorological
variability, emissions regulations, and land-use classification.
Gaussian dispersion models have often been coupled with
population space–time activity data for use in exposure stud-
ies (Dias and Tchepel, 2018; Korek et al., 2015; Batterman
et al., 2014; Willers et al., 2013). These models, coupled with
regional-scale chemistry–transport models, account simulta-
neously for long-range transport, regional background con-
centrations, and local features such as traffic emissions over
the road network (Soares et al., 2014).

Regional-scale chemistry–transport models (CTMs) such
as CHIMERE (Mailler et al., 2017) or the Community Multi-
scale Air Quality model (CMAQ; Appel et al., 2014) have
achieved resolution of 1km×1km with sufficient accuracy to
be considered for use in such fine-scale applications (Beev-
ers et al., 2013). Statistical, dynamical, or hybrid downscal-
ing techniques such as kriging (Beauchamp et al., 2015)
or subgrid-scale parameterizations (Valari and Menut, 2010)
can be applied or coupled to these models to provide concen-
trations at district level. The use of CTMs instead of high-
resolution Gaussian or Lagrangian models in an exposure
context has several advantages. The study domain may be
large enough to cover an entire region, whereas typical Gaus-
sian or Lagrangian applications cover, at best, the urban ag-
glomeration. However, a large part of the population moves
in and out of the agglomeration within the day and on a sys-
tematic basis. Furthermore, the enhanced chemical mecha-
nisms of CTMs compared to the simplified chemistry (the
Chapman cycle) in Gaussian or Lagrangian models gives ac-
cess to refined information on the chemical speciation and
size distribution of particulate matter (PM). This information
is particularly relevant in the context of health impact as-
sessment, since the health impact of PM strongly depends on
these properties (Atkinson et al., 2015; Cassee et al., 2013).

This paper presents the first version of a regional-scale
model for personal exposure to O3 and PM2.5. The origi-
nality of the model lies in the development of (i) individual
activity sequences that are defined geographically in space
and time and (ii) the modelling of seasonal distributions of
indoor / outdoor ratios by building type and age. This lat-
ter feature is unique in personal exposure modelling since,
typically, indoor pollutant concentrations rely on measure-
ments for a few locations that may not represent the area’s
buildings. The model is developed as a post-processing tool
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for the CHIMERE regional-scale CTM and aims to facilitate
health impact assessment. Outdoor pollutant concentrations
are simulated with CHIMERE at 2km×2km resolution. The
model selects sample populations that reproduce essential
demographics at relevant geographical units (communes),
namely age, gender, occupation, communes of residence and
work, principal modes of transportation, and construction
dates of residence and workplace. Activity event sequences
for each member of the sample are developed by matching
the distributions in the simulated population with distribu-
tions in the Enquête Globale de Transport (EGT, 2010) study.
Infiltration of outdoor air pollution indoors in dwellings, of-
fices, and schools is modelled with the Simulation of air
RENewal (SIREN) model (Collignan et al., 2012), devel-
oped at the Centre Scientifique et Technique du Bâtiment
(CSTB). SIREN is used to develop seasonal distributions of
indoor / outdoor ratios for each type of building. For other in-
door locations (cars, buses, subway, and regional trains and
trams), we apply indoor / outdoor ratios found in the litera-
ture from previous measurement campaigns conducted in the
region. Adjustments are also applied for specific activities
such as cycling, walking on busy roads, and waiting on the
subway platforms, as well as for car journeys that intersect
tunnels or the Boulevard Periphèrique (ring road). Space–
time activity sequences define the geographical coordinates
of each member of the population at each minute of the sim-
ulation. Daily averaged personal exposure is calculated from
the products of time spent by a person in different microenvi-
ronments and the time-averaged pollutant concentrations oc-
curring in those locations (Klepeis, 2006). Personal exposure
is simulated for the entire year of 2017 over the Île-de-France
region (greater Paris).

2 Personal exposure calculation

The most accurate exposure assessment would rely on real-
time personal monitoring devices affixed to people as they
move within all the locations that are part of their daily rou-
tines (Klepeis, 2006). In practice, such equipment is too ex-
pensive to affix to large cohorts. Also questions such as the
calibration of the monitors and the assessment of the uncer-
tainties still need to be tackled before such studies could be
carried out at regional scale. In a modelling framework, dis-
crete locations (termed “microenvironments”) are considered
rather than fully continuous space. In this case, the expo-
sure trajectory of the receptor is followed explicitly. This ap-
proach has been adapted in cohort studies such as McBride
et al. (2007). As in Klepeis (2006), in the exposure model
developed here, receptors are simulated through individuals.
Further discretizing in time, we calculate exposure as the sum
of the product of time spent by a person in different microen-
vironments and the time-averaged pollutant concentrations
occurring in those locations:

Ei =

m∑
j=1

CijTij . (1)

Here, Tij is the time spent in microenvironment j by per-
son i with units in minutes, Cij is the air-pollutant con-
centration person i experiences in microenvironment j in
units of µgm−3, Ei is the integrated exposure for person
i (µgm−3 min), and m the number of different microenvi-
ronments. In this formulation, concentration Cij is averaged
over the corresponding time period Tij .

The general structure of the model with the necessary
input datasets for the exposure calculation is illustrated in
Fig. 1. Outdoor pollutant concentrations are simulated with a
regional-scale chemistry–transport model. We use hourly av-
eraged data over a horizontal grid with 2 km spacing in both
the west–east and the south–north directions (Sect. 3.1). In-
doors pollutant concentrations (in buildings and during trans-
portation) are deduced from outdoor concentrations by ap-
plying indoor / outdoor ratios. The model does not account
for indoor sources so far. For buildings, indoor / outdoor ra-
tios are calculated through a ventilation model (Sect. 3.2.1).
For other indoor microenvironments, indoor / outdoor ratios
are either taken from previous studies in the Île-de-France re-
gion or calculated from existing indoor and outdoor concen-
tration data, as is the case for subway platforms (Sect. 3.2.2).

To obtain activity event sequences that determine the lo-
cation of each member of the simulated population in time,
we draw on the 2010 survey “Enquête globale de transport”
(EGT, 2010) conducted by the Direction Régional et Interdé-
partemental de l’Equipement et de l’Aménagement d’Île-de-
France. This survey questioned 43 000 individuals and iden-
tified 143 000 journeys. Each journey is characterized by the
origin and destination points, the motive for travelling, the
duration, and the means of transportation used. The mobil-
ity of the sample population is simulated with a Monte Carlo
model that matches the simulated data with the EGT (2010)
data (Sect. 4).

3 Pollutant concentrations

3.1 Outdoor O3 and PM2.5 concentration predictions

Pollutant concentrations are modelled with the CHIMERE
model (Mailler et al., 2017) at a horizontal resolution of
2km× 2km. Four-level one-way nesting is used for the
CHIMERE simulation with grids of 60, 20, 7, and 2 km spac-
ing between cells at both west–east and south–north direc-
tions. Overall, 15 vertical layers are used from 998 up to
300 hPa, with layers becoming thicker with distance from the
surface level. Meteorological conditions are modelled with
the Weather Research and Forecasting model (WRF; Ska-
marock et al., 2008) offline at the same four-level nesting
grids as for the CHIMERE simulation but with a two-way

www.geosci-model-dev.net/13/1075/2020/ Geosci. Model Dev., 13, 1075–1094, 2020



1078 M. Valari et al.: EXPLUME v1.0

Figure 1. Overview of the EXposure to atmospheric PolLUtion ModEling (EXPLUME) model structure from the input data to the exposure
calculation.

nesting configuration. Global HTAP (Hemispheric Trans-
port of Atmospheric Pollutants) anthropogenic emissions are
used outside the European continent, European Monitoring
and Evaluation Programme (EMEP) emissions for Europe
outside the Île-de-France region, and finally a 1km× 1km
resolution bottom-up emission inventory developed by the
AIRPARIF agency for anthropogenic emissions over the Île-
de-France region.

Table 1 summarizes the comparison between the 2017
simulation against measurements at all the available monitor
sites of the AIRPARIF air-quality network. Urban monitor-
ing sites are divided into two groups: traffic sites are located
on the road network and have a relatively small spatial rep-
resentativeness, whereas urban background stations are lo-
cated away from the road network and their spatial repre-
sentativeness spans over larger areas. Rural monitor sites are
located outside the city and have the largest spatial repre-
sentativeness. A good temporal correlation on an hourly ba-
sis is observed for ozone, especially for summer periods on
both urban background and rural locations. The correlation
is lower for the winter period. Afternoon ozone concentra-
tions are underestimated over urban background stations, as
also shown in Fig. 2. This is due to the model’s horizontal
resolution that is too coarse to spatially resolve the fast NO
titration near high-emission sources. On the contrary, day-

time ozone is slightly overestimated over rural locations; see
Fig. S1 in the Supplement. In both urban background and ru-
ral locations, nighttime ozone is largely overestimated. The
model keeps bringing ozone at the surface layer from the
stratosphere, and ozone accumulates in the surface layer in
the absence of local NO emissions and dry deposition that
remove it during daytime.

Temporal correlation, on an hourly basis, between simu-
lated and observed PM2.5 concentrations is much better for
winter than for summer. Pearson correlation over urban back-
ground sites drops from 0.56 for the winter period to 0.19 for
summer. The CHIMERE model overestimates PM2.5 con-
centrations over urban sites and underestimates them over
traffic stations (Table 1 and Fig. S2). Road transport is a ma-
jor source of fine particles in urban areas. The 2km× 2km
horizontal resolution is insufficient to reproduce the high
PM2.5 concentrations near these sources. Another possible
reason for the model’s underestimation of PM2.5 concen-
trations over traffic stations is a poor representation of sec-
ondary organic aerosol formation near traffic emissions. The
distribution of the above statistics across sites is shown in
Fig. S2 in the Supplement. As shown there, the underestima-
tion of PM2.5 concentrations over traffic sites may be partic-
ularly high.
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Table 1. Common metrics of statistical performance of the CHIMERE model, namely Pearson correlation, mean bias, and root mean square
error, aggregated over the whole year of 2017, and for summer and winter seasons. Comparisons with traffic background and rural stations
are conducted separately.

O3 hourly (ppb) PM2.5 hourly (µgm−3)

Urban background Rural Urban background Traffic
(15 sites) (7 sites) (6 sites) (4 sites)

Year/Pearson cor. (non-dim.) 0.74 0.74 0.55 0.57
Year/mean bias 0.06 0.95 2.14 -1.91
Year/RMSE 10.25 9.6 11.8 12.7
Summer/Pearson cor. (non-dim.) 0.72 0.75 0.19 0.23
Summer/mean bias 0.79 2.58 0.19 −3.48
Summer/RMSE 10.7 10.1 5.4 7.3
Winter/Pearson cor. (non-dim.) 0.58 0.62 0.56 0.59
Winter/mean bias −0.73 1.9 0.74 −1.35
Winter/RMSE 9.7 9.7 16.8 18.1

Figure 2. Hourly mean bias of simulated surface O3 (summer) and
PM2.5 (summer and winter) concentrations calculated during the
year 2017 over 15 and 6 urban background monitor sites, respec-
tively.

Globally, we assume that the CHIMERE model at 2km×
2km resolution provides reliable O3 and PM2.5 background
concentrations, being able to spatially differentiate the ur-
ban agglomeration from peri-urban and remote rural loca-
tions for PM2.5 (Fig. 3). The formation of well-structured
ozone plumes over the rural area is also well represented,
as shown in Fig. 3a, where a specific date/hour surface ozone
concentration map is shown. The model is also capable of
reproducing the diurnal cycle of ozone and PM2.5. Pollutant
episodes induced by favourable meteorological conditions
are also well-captured by the model, even though a trend to
underestimate ozone peaks and overestimate PM2.5 peaks is
observed.

Based on this analysis, for the personal exposure calcu-
lation, we use simulated background O3 and PM2.5 concen-
trations from the CHIMERE model grid cell where the ac-
tivity takes place. Over the road network, where we know
that the 2km× 2km CHIMERE model resolution is insuffi-
cient to reproduce the high PM2.5 concentration levels, we
apply correction coefficients to increase modelled concentra-
tions. This happens in two cases: the Boulevard Periphérique
(road ring) and inside road tunnels (see Sect. 3.2.2). There-
fore, no stochastic selection operates for the estimation of
outdoor pollutant concentrations.

3.2 Infiltration of outdoor O3 and PM2.5 indoors

3.2.1 Dwellings, offices, and schools

Indoor pollutant concentration levels depend on indoor
sources and on outdoor pollutants entering the building
through natural or mechanical ventilation. As air flows
through the envelope of the building, pollutants react with
the surfaces over which they flow. Therefore, the actual flow
indoors depends on the specific path that the air flow takes:
permeability of the building shell, natural air entry, or ducts
(Walker and Sherman, 2013). Other sinks of pollutants in-
door are deposition on the indoor surfaces and chemical re-
actions with other indoor species. The relationship between
these sources and sinks is expressed in Eq. (2) as in Walker
et al. (2009):

dCX,in
dt
=

∑
i

(PX,iQin,i) ·CX,out− (Qout+ ηQh)CX,in

− kdCX,in−
∑
j

kj [chemj ] +
CX

V
. (2)

Here,

– CX,in and CX,out are the concentrations of pollutant X
indoors and outdoors, respectively (µgm−3);
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Figure 3. Surface O3 (a, c) and PM2.5 (b, d) concentrations modelled with the CHIMERE chemistry–transport model. Maps on top show
example of hourly averaged O3 concentration (a, c) and daily averaged PM2.5 concentration (b, d) for a specific hour/date. Maps on the
bottom are annual averaged concentrations.

– PX,I is the dimensionless penetration factor for the pol-
lutant X through leak path i, i.e. the fraction of the pol-
lutant in the infiltration air that passes through the build-
ing shell or air entrance;

– Qin,i , Qout, and Qh are, respectively, the volume-
normalized air flow rates into the building through path
i, out of the building, and through the heating, venti-
lating, and air-conditioning equipment expressed in air
changes per hour units (h−1);

– η is the removal efficiency on the heating, ventilating,
and air-conditioning equipment;

– kd is the indoor deposition loss rate coefficient (h−1);

– chemj is the concentration of the j th chemical species
reacting with the X pollutant (µgm−3);

– kj is the second-order rate constant for the j reaction
(h−1);

– SX is the time-varying indoor production rate (µgh−1);
and

– V is the volume (m3).

Several studies have measured indoor / outdoor ratios for
different building types and meteorological conditions in
cities around the world for ozone (Collignan et al., 2012;
Weschler, 2000) and airborne particles (Cyrys et al., 2004;
Matson, 2005; Monn, 2001). Results show a strong depen-
dence on the building usage (residence or office/school),

the air tightness of the building, the ventilation system, and
the proximity to atmospheric pollution sources. Ozone in-
door / outdoor (I /O) ratios generally vary between 0.2 and
0.7 (Weschler, 2000), while for PM2.5, in the absence of in-
door sources, they vary between 0.5 and 1 (Morawska and
He, 2003).

To account for the variability in I /O ratios due to
these factors, we modelled ozone and fine airborne particles
(PM2.5) I /O ratios with the building ventilation model de-
veloped at the CSTB, called SIREN (Collignan et al., 2012).
The differential equation (Eq. 2) is reformulated based on
three assumptions: (i) no indoor sources for O3 and PM2.5;
(ii) no chemical reactions with other atmospheric contami-
nants indoors; and (iii) initial concentration indoors is null.
We conducted simulations for a typical dwelling and of-
fice/school.

To account for the variability of I /O ratios due to air tight-
ness and ventilation systems, we applied a classification of
the building stock based on the construction date. This infor-
mation integrates air tightness and ventilation system evolu-
tion based on the national thermal and ventilation regulations
(ADEME, 2013), the evolution of the building stock as de-
scribed in (INSEE, 2014), and the use of ventilation systems
in French buildings (OQAI, 2006). Table 2 shows the applied
parameterizations for the different usages and construction
dates. The values of air tightness range from 2.5 m3 h−1 m−2

(representative of old leaky buildings) to 0.6 m3 h−1 m−2

(corresponding to new air-tight constructions). A sensitiv-
ity analysis with the SIREN model showed that the I /O ra-
tio for O3 decreases from 0.3 for the leaky building to 0.2
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for the air-tight building and from 1 (air-tight building) to
0.8 (leaky building) for PM2.5. Based on the INSEE (2014)
data, the percentages of dwellings constructed before 1974
in the non-thermally rehabilitated and thermally rehabilitated
classes are 25 % and 75 %, respectively. No thermal rehabil-
itation is applied in offices and schools constructed before
1974. The air tightness and ventilation systems for offices
and schools built after 2012 do not change but the proportion
of buildings in this category increases with time.

Climatological conditions, temperature, pressure, and out-
door pollutant concentrations are simulated with atmospheric
models (WRF for meteorology and CHIMERE for ozone and
PM2.5 concentrations) at a 4×4 km2 horizontal resolution for
a 10-year period from 1991 to 2000. Atmospheric fields are
spatially averaged over the eight departments of the region.
So, the atmospheric conditions database input for the SIREN
model consists of 10-year period hourly data for the eight
departments of the Île-de-France region.

For each Île-de-France department, eight SIREN simu-
lations are conducted (five for dwellings and three for of-
fices/schools) at a 3 min time step. The penetration factor is
fixed to 0.8 through the building shell and 1 through air inlet
based on the state of the art (Chen and Zhao, 2011; Monn,
2001; Stephens et al., 2012; Thatcher et al., 2003). Con-
fronting numerical simulations with SIREN and I /O ratio
measurements, the deposition rate was fixed to 0.1 h−1. The
SIREN model output consists of a decade-long database of
I /O ratios for ozone and PM2.5 at 3 min resolution for each
of the eight Île-de-France departments, for five construction
date classes for dwellings and three construction date classes
for offices and schools. This database is further processed to
provide seasonal I /O ratios for each pollutant, building type,
construction date, and geographical zone as shown in Fig. 4.
Indoor / outdoor ratios for the personal exposure calculation
are drawn randomly from the corresponding seasonal distri-
bution depending on the personal profile and month.

3.2.2 Transportation

Ambient concentrations inside the principal transportation
modes are deduced from outdoor concentrations by adjusting
for indoor / outdoor coefficients taken from a study dedicated
to evaluating the pollutant levels to which the Île-de-France
citizens are exposed while commuting to work and back dur-
ing morning and evening rush hours (Delaunayet al., 2012).
A significant number of contrasting situations is retained; 20
routes are chosen implementing the main modes of transport:
car, bus, subway, tramway, cycling, and walking. Each route
has been reproduced 30 times (15 round trips). The measure-
ment campaign took place during the winter period of 2007
and 2008.

To define the indoor / outdoor ratio for each journey in the
model, we chose a random number within a uniform distri-
bution between the minimum and maximum values obtained
by the study of Delaunayet al. (2012). The extreme values of

these distributions are shown in Table 3. For public transport,
we distinguish between waiting on the platform and the jour-
ney. For the suburban train (RER), we distinguish between
journeys inside the subway network in the Paris agglomer-
ation and the rest of the network. For journeys in cars, we
distinguish between the road network in the Paris agglomer-
ation, the Boulevard Periphèrique (road ring), and the rest of
the network (rural).

Several studies have shown that pollutant concentrations
measured inside tunnels are several times higher than con-
centrations over the road but outside the tunnel. Orru et al.
(2015) conducted a study to evaluate the health impact of the
exposure to traffic exhaust inside road tunnels. Here, we ap-
ply a special adjustment for car journeys that cross tunnels.
We assume that if the itinerary of an individual intersects a
grid cell (2km× 2km) containing a tunnel, there is a 20 %
probability that the driver will pass through the tunnel. Due
to lack of actual data, this number is assigned here in an arbi-
trary manner. Further investigation on traffic data could pro-
vide a more accurate estimate of this probability. Based on
the measurement campaign described in AIRPARIF (2009),
we assume that the PM2.5 concentration inside road tunnels
is 2 times higher than the outdoor concentration (see also
Sect. 2).

PM2.5 concentrations in the subway train tunnels are par-
ticularly high, especially for lines with rubber-tired rail-
way vehicles. To keep a record of the air quality in the
subway platforms, the RATP (Régie Autonome des Trans-
ports Parisiens) operates measurements on a 24 h basis at
two metro stations and one RER platform (SQUALES). We
used hourly on-platform measurements of the SQUALES
network and outdoor concentration measurements from the
AIRPARIF network for the entire year of 2013 to establish
a diurnal cycle of the indoor / outdoor ratio inside the sub-
way platforms (Fig. 5). For the personal exposure calcula-
tion, we draw a random value from the hourly distributions
of indoor / outdoor ratios.

3.2.3 Other indoors

The SIREN model provides indoor / outdoor ratios for
dwellings, offices, and schools (Sect. 3.2.1). For other activ-
ities taking place indoors, such as entertainment and shop-
ping, we use the same indoor / outdoor ratios that SIREN
predicts for offices and schools. For the personal exposure
calculation, we draw random values for indoor / outdoor ra-
tios from the seasonal distributions. To decide whether shop-
ping takes place indoors or outdoors, we used statistics from
the IAURIF (2006) study, following which 14 % of the shop-
ping activity in the Île-de-France region takes place outdoors.
Entertainment other than exercise is assumed to always take
place indoors. For exercise activities, we first chose the type
of exercise activity (IAURIF, 2006) and then whether it takes
place indoors or outdoors depending on the specific activity.
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Table 2. Parameterization of the SIREN ventilation model depending on the construction date and the type of building, referring to the
buildings’ air tightness and the ventilation system.

Dwelling Office/school

Air tightness under Ventilation Air tightness under Ventilation
4 Pa depressurization 4 Pa depressurization

Before 1974 not
thermally rehabilitated

2.5 m3 h−1 m−2 Natural ventilation based
on the principle of rooms
ventilated separately

2.5 m3 h−1 m−2 No ventilation system

Before 1974 thermally
rehabilitated

1.7 m3 h−1 m−2 Natural ventilation based
on the principle of rooms
ventilated separately

n/a n/a

1974–2005 1.7 m3 h−1 m−2 Cross-ventilation principle
induced by an exhaust me-
chanical ventilation system

2.0 m3 h−1 m−2 Cross-ventilation prin-
ciple by separated room
induced by an exhaust
mechanical ventilation
system

2006–2012 1.0 m3 h−1 m−2 Cross-ventilation principle
induced by an exhaust me-
chanical ventilation system

1.5 m3 h−1 m−2 Cross-ventilation prin-
ciple induced by a
double flow mechanical
ventilation system

After 2012 0.6 m3 h−1 m−2 Cross-ventilation principle
induced by a double flow
mechanical ventilation sys-
tem

n/a n/a

n/a – not applicable

4 Population data

The methodological steps to obtain activity event sequences
for the sample population are listed here:

– select the population sample size that statistically re-
produces essential demographics such as population of
each administrative unit;

– assign attributes to the members of the population such
as age, gender, principal occupation, etc.; and

– simulate the mobility of the population by matching the
journeys of EGT (2010).

The Monte Carlo sampling method is used to randomly
generate a dataset of simulated individuals based on these
steps.

4.1 Generation of the sample population

The population data implemented in the model are public
census data published by the INSEE (Institut Nationale de
la Statistique et des Études Économiques). The current ver-
sion of the model implements datasets for the year 2009. The
administrative unit chosen for the current study is the com-
mune. The Île-de-France region has 1300 communes and a
population of 11 726 743. The most densely populated com-
munes are located at the outer rings of the Paris agglomera-
tion, followed by a second circle of high population density

in the suburbs directly attached to the agglomeration. A third
highly urbanized ring is distinguished before reaching the ru-
ral areas at the outskirts of the Île-de-France region (Fig. 6).

The size of the sample population is fixed at 250 000 indi-
viduals (≈ 2 % of the actual population). A sensitivity anal-
ysis showed that further increasing this number does not sig-
nificantly affect the results of the simulation (not shown). The
first module of the model sequence assigns several demo-
graphic attributes to each member of the sample population.
These attributes, referred to as exposure factors hereafter, re-
main unchanged throughout the simulation. The procedure
consists of randomly selecting values from a distribution that
matches the distribution of each attribute in the actual popu-
lation of each commune. By repeating this process for each
member of the sample population, we are sure to reproduce
the distribution of the exposure factors in the simulated pop-
ulation.

The population is divided in four age groups. Five occupa-
tion classes are defined, and two possible contract types (full
time or part time), corresponding to 9 or 5 h working days.
Data on the construction date of the building of residence
and work are also implemented to account for the infiltration
of outdoor pollution indoors. The 10 exposure factors imple-
mented in the model are listed below. The different possible
values for each model parameter are shown.

– Home commune: 1 out of 1300.
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Figure 4. O3 and PM2.5 indoor / outdoor ratios modelled with the SIREN model for dwellings (unitless). The number of occurrences of the
histogram is normalized over the size of the dataset.

Table 3. O3 and PM2.5 indoor / outdoor ratios for the principal means of transportation.

Waiting Journey

O3 PM2.5 O3 PM2.5

Subway 1 1 0 1.7–3.7
Bus 0 SQUALES 0 5.5–8.5
Tram 0 SQUALES 0 5.5–8.5
On foot 0 SQUALES 0 5.5–8.5
Two wheels 0 SQUALES 0 5.5–8.5

Paris intra-muros/outside

RER 0/1 SQUALES/1 0/0 3.2–5.4/2.9–3.2
O3 PM2.5

Rural Boulevard Periphérique Paris agglomeration
Car 0 0.9–2 0.9–2.1 0.9–3.3
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Figure 5. Hourly distributions of indoor / outdoor PM2.5 ratios for subway platforms issued from in-platform measurements of the
SQUALES network and outdoor measurements of the AIRPARIF network. The blue line is the median I /O ratio.

Figure 6. Population density at the commune level in the Île-de-France region (left). Distribution of exposure factors in the sample population
(right). Data source: census 2009 (INSEE).

– Gender: male, female.

– Age group: < 4, 4–24, 25–64, > 64.

– Occupation: day care, pupils/students, active employed,
active unemployed, not active (retired, at home, other).

– Contract: no contract, full time, part time.

– Work area: same commune as residence, different com-
mune in the same department, different commune in dif-

ferent Île-de-France department, outside Île-de-France
or abroad.

– Work commune: 1 out of 1300.

– Means of transportation: no transportation, on foot, two
wheels, car, public transport.

– Construction date of residence: < 1974 not rehabili-
tated, < 1974 rehabilitated, 1974–2004, > 2005.
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– Construction date of work place: < 1974, 1974–2004,
> 2005.

A certain dependency exists between the exposure factors.
For example, the professional occupation strongly depends
on gender and age. To preserve the subpopulation variability
in the sample population, the random sampling of the expo-
sure factors operates on stratified data, where exposure fac-
tors are supposed to be homogeneous. First, we assigned the
commune of residence and then the other attributes in the fol-
lowing order: gender, age group, principal occupation, and
finally the kind of contract. Once these primary attributes
were assigned, we then proceeded to the selection of the
other, secondary characteristics. Working area is a function
of the occupation and the commune of residence; the con-
struction date of the buildings of residence depends on the
commune, the gender, and the age group. For offices, gen-
eral statistics are provided by Agence de l’Environnement et
de la Maîtrise de l’Énergie (ADEME) for each Île-de-France
department dividing offices in three age classes.

4.2 Modelling the activity sequences

The second module of the model compiles 24 h activity event
sequences for each member of the sample population. Two
diaries are compiled for each individual: one for weekdays
and one for weekends. At each moment in time, people are
either at home, engaged in an activity, or in transport. Eligi-
ble activities are the six motives for transport in the EGT
(2010), namely work, professional affairs, school, market,
recreation, or personal affairs. From this study, we deduce
the number of journeys to take place at each hour in the re-
gion for each of the six aforementioned motives. Whenever
an activity ends, or once every hour if the person is at home,
the model checks whether the individual is about to move.
Some restrictions are implemented, because not all individu-
als are eligible for all activities. For example, only certain age
groups are eligible to go to day care or school, only employed
people are bound to go to work, etc. Once these restrictions
are implemented, people will move in order to match the pro-
portions of journeys per motive at each hour. If the person is
bound to move, a number of choices are made in the follow-
ing order: (i) transportation mode; (ii) destination commune;
(iii) travel distance; (iv) travel time; (v) activity duration (see
also Fig. 7). For journeys to work and back, the INSEE pro-
vides a detailed dataset with the principal modes of transport.
This information is part of the exposure factors assigned in
the previous module (Sect. 4.1). The only stochastic choice
here is for the two-wheel case, which has a 40 % and 60 %
share between bicycles and motorcycles, respectively (EGT,
2010). For the rest of the journeys, we match the proportions
of the transportation modes per motive and hour from the
EGT (2010).

In some cases, the destination commune is known (the per-
son goes to work, to study, or back home). For other cases,

we only know whether the destination commune lies in the
same department as the residence or in a different depart-
ment. In this case, we first define the destination department
based on data on the interdepartmental flows. Then we com-
bine two pieces of information to assign the destination com-
mune:

– We use the data on the average distance travelled per
means of transportation. We assume a straight line con-
necting the centroids of the communes. Several possi-
ble destination communes are selected based on the dis-
tance criterion.

– We use the information on the destination commune for
the journeys in EGT (2010) to assign a degree of attrac-
tiveness to the communes of the Île-de-France region
for each motive.

To assign the distance of the journey, we distinguish between
two cases. If the destination lies in a different commune, then
the journey distance is assumed to be equal to the distance
over a straight line connecting the centroids of the two com-
munes. If the destination lies within the commune of the cur-
rent location, then a stochastic choice is made for the trav-
elled distance. We use statistics for the mean distance trav-
elled per transportation means from the residents of the dif-
ferent departments. Depending on the transport mode, we as-
sign a certain range around this average value and scale the
limits to the commune size (radius of a circle with an area
equal to the commune’s area) and randomly choose a travel
distance within this range.

To estimate the duration of the travel, we use two pieces
of information at subcommunal scale. The first is the pop-
ulation density at 1× 1 km2 resolution. Individuals are dis-
tributed over the 1×1 km2 resolution grid based on the popu-
lation density. The second piece of information is the average
speed and flow over the road segments of the traffic network.
We assume a straight line linking the centres of the origin and
destination cells of the 1× 1 km2 grid and search for all grid
cells that intersect this trajectory. The speed at which the grid
cell is passed through is assigned stochastically based on the
distribution of speeds over the road segments within the grid
cell. We note here that it would be more accurate to base our
selection on the flows over each road segment rather than the
speed distribution, but the geometry of the problem would
become too complex. Given the high resolution of the appli-
cation, our insight is that this simplification is not bound to
introduce significant errors to the transport model. The dura-
tion of the travel is then deduced from the distance and speed.

The final step is to define the duration of the activity. For
children younger than 3 years old, we use statistics on the
time spent at day care. In all other cases, we use statistics
at department scale on the time spent by the population per
activity.

A further distinction is whether the activity or transporta-
tion takes place indoors or outdoors. Certain activities may
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Figure 7. Flow chart of the compilation of activity event sequences.

occur indoors or outdoors based on existing statistics (e.g.
market and recreation). Possible means of transportation are
on foot, two wheels (bicycle or motorcycle), car, bus, subway
(metro), train (RER), and tramway. For public transporta-
tion, we distinguish between waiting time and travel time.
For tramway, bus, and RER outside Paris, waiting takes place
outdoors.

Figure 8 shows the results of the transport model. The di-
urnal patterns of the mobility of the population per motive
are well reproduced. The model fails to reach the rush hour
peaks, especially the morning peaks for work and school mo-
tives. It systematically underestimates the lunch hour peak.
This is because the model does not implement secondary
journeys, i.e. people leaving the workplace to go for lunch
and then back to work. These remarks become clear when
looking at the total number of journeys (bottom left of Fig. 8),
where we also see that the model underestimates the num-
ber of journeys at all hours. However, the general picture of
the simulation results is that the EGT (2010) data have been
globally well implemented in the transport module.

The transport module simulates the mobility of the popu-
lation. When individuals reach their destination, they engage
in the activity corresponding to the journey’s motive. For ac-
tivities other than travel, we assign a mean duration. Activity
event sequences are simulated at 1 min temporal resolution.
The ambient concentration at which people are exposed dur-
ing the activity is the corresponding hour-averaged concen-
tration modelled with the CHIMERE model at the grid cell
where the activity takes place. In the case of travelling, the
model simulates the trajectory of the journey. For car jour-
neys, we use the mean hourly traffic flows on each segment
of the road network to assign probabilities to each road and
assign the route trajectories. The trajectory of the journey
may intersect several CHIMERE grid cells. The correspond-

ing outdoor concentrations are weighted by the time spent in
each grid cell to estimate the aggregated exposure. Figure 8
(bottom right) shows the number of people engaged in each
of the implemented activities at each hour of the simulation.
Here, time activity is modelled based on available data for the
region based on questionnaires. Modelling mobility patterns
using smartphones with built-in GPS is an emerging trend
in personal exposure assessment (Yu et al., 2019). Combin-
ing GPS-derived data on the trajectories of large number of
individuals with information from questionnaires on the lo-
cations and activities of the population could help overcome
a large part of the uncertainties relating to the time activity
module developed in this study.

5 Results

In this section, we highlight different possible applications of
the exposure model. Each section looks at a different aspect
of the model output as examples of its use in applications.
The spatial distribution of exposure over the Île-de-France
region is discussed in Sect. 5.1, the relative contribution of
each microenvironment in the daily aggregated exposure is
quantified in Sect. 5.2, the variability in exposure patterns
across subpopulations is studied in Sect. 5.3, and the impact
of considering (1) the infiltration of pollutants indoors and
(2) the mobility of the population is illustrated in Sect. 5.4.
Finally, in Sect. 5.5, we develop a 2050 horizon projection
in the building stock of the Île-de-France region and quantify
its impact in exposure to PM2.5 and ozone.

5.1 Exposure maps

Personal exposure may be spatially averaged over the com-
munes to provide population exposure maps (Fig. 9). The an-

Geosci. Model Dev., 13, 1075–1094, 2020 www.geosci-model-dev.net/13/1075/2020/



M. Valari et al.: EXPLUME v1.0 1087

Figure 8. Number of journeys per motive (first and second rows) and total number of journeys with all motives included (bottom left) at each
hour. The number of individuals engaged in each activity at each hour of the day.

nual averaged exposure to ozone is 3 times higher for the res-
idents of the remote rural areas compared to the exposure of
the Parisians. NO emitted by cars over the dense road net-
work in the city of Paris reacts fast with O3 to form NO2.
This explains the absence of O3 over the urban agglomera-
tion. NO2 emitted in large amounts over Paris under the in-
fluence of sunshine and in the presence of volatile organic
compounds forms O3 downwind, over the rural area (see also
Fig. 3). We also note that the exposure to ozone is much
lower than outdoor ozone concentration (30 and 15 ppb for
the rural and urban areas, respectively; compare to maps in
Fig. 3). This difference is due to the high amount of time
people spent indoors, where ozone concentrations are close
to zero (see also I /O ratios for O3 Fig. 4).

The traffic network is a large source of PM2.5, which ex-
plains why exposure to PM2.5 is much higher in the Paris
agglomeration than in the rural areas. Exposure to PM2.5 is
much closer to concentration levels because I /O ratios in
buildings for PM2.5 are closer to 1 than those for O3. Annual
mean PM2.5 concentrations are however lower than annual
mean PM2.5 exposure (compare with concentration maps in
Fig. 9). Even if indoor PM2.5 sources in buildings are not
yet implemented in the model, and therefore concentrations
in buildings are always lower than outdoor concentrations,
PM2.5 concentrations in cars, subway trains, or on subway
platforms are several times higher than outdoor concentra-
tions (see Table 3). Even if the time spent in transport is rel-
atively lower than the time spent inside buildings, concen-
trations there are so high that the daily aggregated exposure
is higher than outdoor concentrations. The construction date

of buildings also plays an important role, with older build-
ings (higher I /O ratios) contributing to exposure at higher
pollutant levels. Buildings in the Paris agglomeration are in
general older than buildings outside of the city centre, and
therefore indoor exposure to PM2.5 is higher for the residents
of Paris.

5.2 Exposure in different microenvironments

The relative contribution of exposure in different microenvi-
ronments in the aggregated daily exposure depends on out-
door concentrations, the indoor / outdoor coefficients if the
activity takes place indoors, and the time spent in the mi-
croenvironment. For the active population (between 4 and
65 years old), residential exposure accounts for about 75 %
of daily exposure to PM2.5 and almost 80 % of the aggregated
exposure to O3 (Fig. 10), reflecting the large amount of time
spent at home (see also bottom right panel in Fig. 8). Expo-
sure at school represents the second largest part of total daily
exposure to both pollutants (more than 10 %). Exposure out-
doors represents a larger part of the total exposure for people
between 24 and 65 years old (working population) than for
children going to school (4–23 years old). For PM2.5 expo-
sure in public, transportation and cars also have significant
contributions.

5.3 Exposure of subpopulation groups

Here, we study the impact of several exposure factors on per-
sonal exposure. Figure 11 shows the cumulative distribution
of exposure over specific subpopulations. We identify the
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Figure 9. Annual averaged O3 and PM2.5 exposure maps. Personal exposure is spatially averaged among the residents of each commune.

Figure 10. Relative contribution of the different microenvironments
in the aggregated daily exposure depending on the age group.

two factors that have the largest impact on personal exposure,
namely the mode of transportation and the construction date
of the building of residence. Both factors seem to strongly
affect exposure to PM2.5 and ozone. People travelling by mo-
torcycle or bicycle are exposed to the highest PM2.5 levels,
while exposure in cars is the lowest. Overall, 10 % of the
population using two wheels as a transportation mode is ex-
posed to PM2.5 levels higher than the 25 µgm−3 EU target
value related to human health. The percentage of the popula-
tion exposed to PM2.5 levels above the EU target value drops
to 5 % for people travelling by foot, 3 % for public transport,
and 1 % for people travelling by car. The construction date
of the home building also plays an important role in personal
exposure. For both pollutants, exposure is higher for build-
ings constructed before 1974. A total of 100 % of the popu-
lation living in buildings constructed after 2005 are exposed
to PM2.5 levels below the EU target value, while 5 % of the
population living in constructions before 1974 is exposed to
levels above the EU target value.

5.4 Model sensitivity to population mobility and
exposure indoors

Often, epidemiological methods estimate exposure metrics
by modelling pollution concentrations at individual ad-

dresses. However, these models do not take into account ex-
posure indoors nor population mobility. To provide insight
into the exposure misclassification error due to this omission,
we conducted several sensitivity studies. We calculated per-
sonal exposure to PM2.5 with and without accounting for the
mobility of the population and exposure indoors as follows:

– REF: the population stays at home and indoor concen-
trations are the same as outdoors.

– +MOBILITY: the population moves but concentrations
indoors are the same as outdoors.

– +INDOORS BUILDINGS: the population stays at
home and indoor / outdoor coefficients for buildings are
applied.

– +INDOORS BUILDINGS & TRANSPORT: the popu-
lation moves and indoor / outdoor coefficients for both
buildings and transportation are applied.

Comparing the REF simulation with +MOBILITY shows
that the mobility of the population within the region alone
has a small negative impact on personal exposure (−1.5 %
on the median). This may be explained by the fact that peo-
ple spend most of their time indoors. We note here that
Shekarrizfard et al. (2016) found an increase in personal ex-
posure to NO2 that may be as high as +10 % in the Mon-
treal metropolitan area when population mobility was ac-
counted for compared to the simpler set-up where exposure
at individual address was considered. This is explained by
the difference in the air-quality models used in each study:
a Gaussian dispersion model around each segment of the
road network for the Shekarrizfard et al. (2016) study com-
pared to a regional-scale CTM in our case. Accounting for
residential exposure in the +INDOORS BUILDINGS simu-
lation strongly affects personal exposure (−11 % difference
with the REF in the median exposure). Accounting also for
indoors exposure during transportation +INDOORS BUILD-
INGS & TRANSPORT leads to a 4.6 % increase in the me-
dian exposure compared to only accounting for residential
exposure (+INDOORS BUILDINGS). PM2.5 concentrations
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Figure 11. Cumulative distributions of exposure to PM2.5 (a, b) and O3 (c, d) for subpopulations distinguished by the transportation mode (a,
c) and construction date of the building where they live (b, d).

Figure 12. Cumulative distributions of exposure to PM2.5 resulting
for simulations integrating increasing levels of complexity in the
input data.

during transportation are higher than outdoors, whereas con-
centrations in buildings are always lower than outdoors (no
indoor sources in buildings). These results are comparable
to the findings of Smith et al. (2016), who also estimated
a decrease in personal exposure to PM2.5 in the London
metropolitan area when population mobility and indoor ex-
posure are accounted for. In the REF simulation, 5 % of the
population is exposed to concentrations above the EU target
value of 25 µgm−3, while in the complete implementation

of indoor exposure only 2 % of the population is exposed to
PM2.5 above this threshold (Fig. 12).

5.5 2050 horizon projection of the building stock

Based on data on the evolution of the French building stock
(INSEE, 2014) and the national thermal building regulation
found in the 2013 report of the ADEME (ADEME, 2013), the
CSTB developed a projection for the evolution of the build-
ing stock that is applied here for the 2050 horizon. To comply
with thermal legislations and energy demand, buildings will
tend to be more air tight and ventilation systems more effi-
cient. This evolution in the building stock will also affect air
quality in buildings and therefore human exposure to atmo-
spheric contaminants.

Following this projection, in 2050 dwellings, offices and
schools will still fall in the same categories presented in Ta-
ble 2 but the proportions of buildings falling in each category
will change due to demolition, new construction, and thermal
rehabilitation. The projection developed here models the an-
nual rate of change in the building stock as follows:

For dwellings (Eq. 3),

– buildings belonging to the fifth class (construction date
> 2012) will increase;

– buildings belonging to the first class (< 1974 not reha-
bilitated) will decrease due to demolition and thermal
rehabilitation; and
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Figure 13. Exposure to O3 (µgm−3) considering the actual building stock (a) and the 2050 horizon projection of the building stock (b).

– buildings belonging to the second class (< 1974 reha-
bilitated) will increase due to thermal rehabilitation of
buildings in the first class.
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For offices and schools (Eq. 4),

– buildings belonging to the third class (2006–2012) will
increase; and

– buildings belonging to the first class (< 1974 not reha-
bilitated) will decrease due to demolition.
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The projection is applied to the Île-de-France building
stock, and we simulate personal exposure to quantify its im-
pact. Due to new buildings being more air tight with a better
control of air renewal using more efficient ventilation sys-
tems, even less ozone penetrates the building shell. The re-
sulting reduction in annual average exposure to O3 is up to
14 % (Fig. 13). The change in annual averaged PM2.5 expo-
sure is very small (not shown).

6 Conclusions

We developed a regional-scale model for personal expo-
sure to PM2.5 and O3. The model uses simulated outdoor
pollutant concentrations and models the infiltration of out-
door contaminants indoors in buildings with a ventilation
mass-balance model. Three building types are considered:
dwellings, schools, and offices. It also models population
mobility inside the region considering the different possible
transportation modes and adjusts for pollutant concentrations
inside cars, buses, trams, subway trains, and regional trains.
A special treatment for concentrations in subway platforms
is applied considering online measurements on the platform
and outdoors. An adjustment for ambient concentrations in-
side road tunnels is also applied from data from the literature.
The model also uses data from the road traffic network to es-
timate the most probable trajectory for travel, as well as mean
travel speed and duration.

We show that considering the population daily movement
inside the region without accounting for the penetration of
outdoor pollution indoors or indoor concentration during
transportation has a small negative impact on annual aver-
aged personal exposure. This is in contrast with the previous
study of Shekarrizfard et al. (2016), who found an increase
in exposure to NO2 in the Montreal metropolitan area when
population mobility is accounted for. However, the two mod-
els are not directly comparable since they look at different
pollutants at different timescales and use different air-quality
models.

We show that accounting for the penetration of outdoor
pollution indoors in buildings without considering popula-
tion movement decreases annual averaged personal exposure
by 11 % for PM2.5. This decrease stems only from the build-
ings’ envelope acting as barrier to pollution infiltration in-
doors. When accounting also for population movement, an-
nual averaged population exposure increases by 5 %, show-
ing the importance of exposure during transportation. Even
if travelling represents only a small portion of time, expo-
sure to PM2.5 is too high and increases the daily burden
of exposure. These results are in alignment with the previ-
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ous study of Smith et al. (2016), who also found that per-
sonal exposure decreases in London when population mo-
bility and exposure indoors are taken into account. The dis-
crepancy in the magnitude of the decrease (−37 % in their
case vs. −7 % in ours) may be due to the relatively coarse
resolution of the outdoor concentration fields simulated with
CHIMERE (2km× 2km). However, if this resolution is not
enough to solve concentration gradients at the proximity of
local sources such as roads, it is capable to distinguish be-
tween urban, suburban, and rural concentrations. Most of the
daily movement in the region crosses these boundaries (e.g.
people living in the suburbs work in Paris,k and vice versa).

We conclude that both infiltration of pollutant indoors and
population movement need to be considered to estimate the
aggregated daily exposure. We note here that, so far, the
model does not implement indoor sources of PM2.5 in build-
ings. We are aware that PM2.5 indoors may be several times
higher than outdoor concentrations (as is the case during
transport). However, in this version of the model, we were
more interested to see how different building types and char-
acteristics affect personal exposure independent of human
activity that would drive indoor sources. The CSTB is work-
ing actively to develop parameterizations accounting for in-
door emission sources of PM2.5 as well as their resuspension
due to human activity.

Several applications of the model are presented. We first
show the maps of exposure to O3 and PM2.5 over the region.
The spatial distribution of the exposure field is very similar
to the concentration one, showing the strong correlation of
the aggregated exposure to outdoor concentration. However,
we show that if we focus on specific subpopulation groups,
such as people using bicycles or motorcycles systematically
in their daily journeys, or people living in houses built be-
fore 1974, the upper percentiles of exposure are much higher
than the general population. To study the impact of buildings’
characteristics on personal exposure, we implemented a 2050
horizon projection of the building stock in the Île-de-France
region. Following this projection, older buildings will be de-
molished or rehabilitated to comply with the thermal regula-
tion and newer constructions will have modernized charac-
teristics. The share of people living in the different building
categories is modified to match this projection and personal
exposure is simulated. The 2050 horizon personal exposure
to O3 is decreased by as much as 14 % according to this pro-
jection.

This first version of the model is parameterized for data
available for greater Paris. However, the input data required
for the simulation are also available in other regions: census
data, construction dates of buildings, and mobility data. We
can therefore imagine that with small adjustments in the for-
mat, the model could be applied to other regions. In all appli-
cations presented here, outdoor concentration data are simu-
lated with the CHIMERE model, and therefore the horizontal
resolution is limited to the order of 1km× 1km. However,
this resolution limit is not inherent for the exposure model. If

outdoor concentration fields at higher horizontal resolution
were available from another dispersion model (e.g. Gaus-
sian or Lagrangian), the exposure calculation would have run
without any modification being necessary.

Code and data availability. The source code of the EXPLUME
v1.0 model as well as all necessary input data for the Île-de-France
region (open source; see the acknowledgements) are available un-
der https://doi.org/10.5281/zenodo.3352713 (Valari and Markakis,
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Lindley, S., Madsen, C., Cesaroni, G., Ranzi, A., Badaloni,
C., Hoffmann, B., Nonnemacher, M., Krämer, U., Kuhlbusch,
T., Cirach, M., de Nazelle, A., Nieuwenhuijsen, M., Bellan-
der, T., Korek, M., Olsson, D., Strömgren, M., Dons, E., Jer-
rett, M., Fischer, P., Wang, M., Brunekreef, B., and de Hoogh,
K.: Development of NO2 and NOx land use regression mod-
els for estimating air pollution exposure in 36 study areas in
Europe – The ESCAPE project, Atmos. Environ., 72, 10–23,
https://doi.org/10.1016/j.atmosenv.2013.02.037, 2013.

Beevers, S. D., Kitwiroon, N., Williams, M. L., Kelly, F. J.,
Ross Anderson, H., and Carslaw, D. C.: Air pollution disper-
sion models for human exposure predictions in London, J. Expo.
Sci. Env. Epid., 23, 647–653, https://doi.org/10.1038/jes.2013.6,
2013.

Bell, M. L., Dominici, F., and Samet, J. M.: A meta-analysis of
time-series studies of ozone and mortality with comparison to the
national morbidity, mortality, and air pollution study, Epidemiol-
ogy, 16, 436–445, 2005.

Berchet, A., Zink, K., Muller, C., Oettl, D., Brunner, J.,
Emmenegger, L., and Brunner, D.: A cost-effective method
for simulating city-wide air flow and pollutant dispersion
at building resolving scale, Atmos. Environ., 158, 181–196,
https://doi.org/10.1016/j.atmosenv.2017.03.030, 2017.

Blair, A., Stewart, P., Lubin, J. H., and Forastiere, F.: Methodologi-
cal issues regarding confounding and exposure misclassification
in epidemiological studies of occupational exposures, Am. J. Ind.
Med., 50, 199–207, https://doi.org/10.1002/ajim.20281, 2007.

Cassee, F. R., Héroux, M.-E., Gerlofs-Nijland, M. E., and
Kelly, F. J.: Particulate matter beyond mass: recent health
evidence on the role of fractions, chemical constituents
and sources of emission, Inhal. Toxicol., 25, 802–812,
https://doi.org/10.3109/08958378.2013.850127, 013.

Cattani, G., Gaeta, A., Di Menno di Bucchianico, A., De San-
tis, A., Gaddi, R., Cusano, M., Ancona, C., Badaloni, C.,
Forastiere, F., Gariazzo, C., Sozzi, R., Inglessis, M., Silibello,
C., Salvatori, E., Manes, F., and Cesaroni, G.: Development
of land-use regression models for exposure assessment to ul-
trafine particles in Rome, Italy, Atmos. Environ., 156, 52–60,
https://doi.org/10.1016/j.atmosenv.2017.02.028, 2017.

Chen, C. and Zhao, B.: Review of relationship between
indoor and outdoor particles: I/O ratio, infiltration fac-
tor and penetration factor, Atmos. Environ., 45, 275–288,
https://doi.org/10.1016/j.atmosenv.2010.09.048, 2011.

Collignan, B., Lorkowski, C., and Améon, R.: De-
velopment of a methodology to characterize radon
entry in dwellings, Build. Environ., 57, 176–183,
https://doi.org/10.1016/j.buildenv.2012.05.002, 2012.

Cyrys, J., Pitz, M., Bischof, W., Wichmann, H.-E., and Heinrich,
J.: Relationship between indoor and outdoor levels of fine par-
ticle mass, particle number concentrations and black smoke un-
der different ventilation conditions, J. Expo. Sci. Env. Epid., 14,
275–283, https://doi.org/10.1038/sj.jea.7500317, 2004.

Delaunay, C., Goupil, G., Ravelomanantsoa, H., Person, A., Ma-
zoue, S., and Morawski, F.: City dwellers exposure to atmo-
spheric pollutants when commuting in Paris urban area, Pollution
Atmospherique no. 215, 2012.

Di, Q., Wang, Y., Zanobetti, A., Wang, Y., Koutrakis, P., Choirat, C.,
Dominici, F., and Schwartz, J. D.: Air Pollution and Mortality in
the Medicare Population, New Engl. J. Med., 376, 2513–2522,
https://doi.org/10.1056/NEJMoa1702747, 2017.

Dias, D. and Tchepel, O.: Spatial and Temporal Dynamics in Air
Pollution Exposure Assessment, Int. J. Env. Res. Pub. He., 15,
558, https://doi.org/10.3390/ijerph15030558, 2018.

Edwards, J. K. and Keil, A. P.: Measurement Error and Environ-
mental Epidemiology: A Policy Perspective, Current environ-
mental health reports, 4, 79–88, https://doi.org/10.1007/s40572-
017-0125-4, 2017.

EEA: Air quality in Europe – 2019, Tech. Rep. 10/2019,
available at: https://www.eea.europa.eu//publications/
air-quality-in-europe-2019, last access: 4 November 2019.

EGT: Enquête Globale Transport 2010-STIF-OMNIL-DRIEA,
Tech. rep., 2010.

Franklin, M., Vora, H., Avol, E., McConnell, R., Lurmann,
F., Liu, F., Penfold, B., Berhane, K., Gilliland, F., and
Gauderman, W. J.: Predictors of intra-community variation
in air quality, J. Expo. Sci. Env. Epid., 22, 135–147,
https://doi.org/10.1038/jes.2011.45, 2012.

Georgopoulos, P. G., Wang, S.-W., Vyas, V. M., Sun, Q., Burke,
J., Vedantham, R., McCurdy, T., and Ozkaynak, H.: A source-to-
dose assessment of population exposures to fine PM and ozone in
Philadelphia, PA, during a summer 1999 episode, J. Expo. Anal.

Geosci. Model Dev., 13, 1075–1094, 2020 www.geosci-model-dev.net/13/1075/2020/

https://www.airparif.asso.fr/_pdf/publications/synthese_expovoituredomtra.pdf
https://www.airparif.asso.fr/_pdf/publications/synthese_expovoituredomtra.pdf
https://apps.who.int/iris/handle/10665/107557
https://apps.who.int/iris/handle/10665/107557
https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NERL&dirEntryId=288280
https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NERL&dirEntryId=288280
https://doi.org/10.1038/jes.2014.63
https://doi.org/10.3141/2452-13
https://doi.org/10.1016/j.atmosenv.2015.03.062
https://doi.org/10.1016/j.atmosenv.2013.02.037
https://doi.org/10.1038/jes.2013.6
https://doi.org/10.1016/j.atmosenv.2017.03.030
https://doi.org/10.1002/ajim.20281
https://doi.org/10.3109/08958378.2013.850127
https://doi.org/10.1016/j.atmosenv.2017.02.028
https://doi.org/10.1016/j.atmosenv.2010.09.048
https://doi.org/10.1016/j.buildenv.2012.05.002
https://doi.org/10.1038/sj.jea.7500317
https://doi.org/10.1056/NEJMoa1702747
https://doi.org/10.3390/ijerph15030558
https://doi.org/10.1007/s40572-017-0125-4
https://doi.org/10.1007/s40572-017-0125-4
https://www.eea.europa.eu//publications/air-quality-in-europe-2019
https://www.eea.europa.eu//publications/air-quality-in-europe-2019
https://doi.org/10.1038/jes.2011.45


M. Valari et al.: EXPLUME v1.0 1093

Env. Epid., 15, 439–457, https://doi.org/10.1038/sj.jea.7500422,
2005.

HEI: Traffic-Related Air Pollution: A Critical Review of the Lit-
erature on Emissions, Exposure, and Health Effects, Tech. Rep.
Special Report 17, Health Effects Institute, Boston, MA, avail-
able at: https://www.healtheffects.org/publication/traffic-related-
air-pollution-critical-review-literature-emissions-exposure-and-
health ()last access: 28 July 2019, 2010.

Hodas, N., Meng, Q., Lunden, M. M., Rich, D. Q., Özkaynak, H.,
Baxter, L. K., Zhang, Q., and Turpin, B. J.: Variability in the
fraction of ambient fine particulate matter found indoors and ob-
served heterogeneity in health effect estimates, J. Expo. Sci. Env.
Epid., 22, 448–454, https://doi.org/10.1038/jes.2012.34, 2012.

Hwang, Y. and Lee, K.: Contribution of microenviron-
ments to personal exposures to PM10 and PM2.5 in
summer and winter, Atmos. Environ., 175, 192–198,
https://doi.org/10.1016/j.atmosenv.2017.12.009, 2018.

IAURIF: Les déplacements pour achats, Analyse des comporte-
ments des franciliens en matière de déplacements pour achats,
Tech. Rep., edited by: Delaporte, C. and Courel, J., Les cahiers
de l’Enquête Globale de Transport. No 7, 2006.

INSEE: Tableaux de l’économie francaise, Tech. rep., Institut Na-
tionale de la statistique et des études économiques, Editions IN-
SEE, 2014.

Klepeis, N. E.: Modeling Human Exposure to Air Pollution, Human
Exposure Analysis, CRC Press, Stanford, CA, 1–18, 2006.

Korek, M. J., Bellander, T. D., Lind, T., Bottai, M., Eneroth,
K. M., Caracciolo, B., Faire, U. H. d., Fratiglioni, L., Hild-
ing, A., Leander, K., Magnusson, P. K. E., Pedersen, N. L.,
Östenson, C.-G., Pershagen, G., and Penell, J. C.: Traffic-related
air pollution exposure and incidence of stroke in four co-
horts from Stockholm, J. Expo. Sci. Env. Epid., 25, 517–523,
https://doi.org/10.1038/jes.2015.22, 2015.

Morawska, L. and He, C.: Relationship between indoor/outdoor
concentrations of particles: a critical review, in: Proceedings of
the 7th International Conference Healthy Buildings, National
University of Singapore, Singapore, 7–11, 2003.

Lim, S., Kim, J., Kim, T., Lee, K., Yang, W., Jun, S., and Yu, S.:
Personal exposures to PM2.5 and their relationships with mi-
croenvironmental concentrations, Atmos. Environ., 47, 407–412,
https://doi.org/10.1016/j.atmosenv.2011.10.043, 2012.

Lipfert, F. W. and Wyzga, R. E.: On exposure and response
relationships for health effects associated with exposure to
vehicular traffic, J. Expo. Sci. Env. Epid., 18, 588–599,
https://doi.org/10.1038/jes.2008.4, 2008.

Mailler, S., Menut, L., Khvorostyanov, D., Valari, M., Couvidat,
F., Siour, G., Turquety, S., Briant, R., Tuccella, P., Bessag-
net, B., Colette, A., Létinois, L., Markakis, K., and Meleux,
F.: CHIMERE-2017: from urban to hemispheric chemistry-
transport modeling, Geosci. Model Dev., 10, 2397–2423,
https://doi.org/10.5194/gmd-10-2397-2017, 2017.

Matson, U.: Indoor and outdoor concentrations of ultrafine particles
in some Scandinavian rural and urban areas, Sci. Total Environ.,
343, 169–176, https://doi.org/10.1016/j.scitotenv.2004.10.002,
2005.

McBride, S. J., Williams, R. W., and Creason, J.: Bayesian
hierarchical modeling of personal exposure to par-
ticulate matter, Atmos. Environ., 41, 6143–6155,
https://doi.org/10.1016/j.atmosenv.2007.04.005, 2007.

Miranda, M. L., Edwards, S. E., Chang, H. H., and Auten, R. L.:
Proximity to roadways and pregnancy outcomes, J. Expo. Sci.
Env. Epid., 23, 32–38, https://doi.org/10.1038/jes.2012.78, 2013.

Monn, C.: Exposure assessment of air pollutants: a review
on spatial heterogeneity and indoor/outdoor/personal exposure
to suspended particulate matter, nitrogen dioxide and ozone,
Atmos. Environ., 35, 1–32, https://doi.org/10.1016/S1352-
2310(00)00330-7, 2001.

Morales Betancourt, R., Galvis, B., Rincón-Riveros, J. M., Rincón-
Caro, M. A., Rodriguez-Valencia, A., and Sarmiento, O. L.: Per-
sonal exposure to air pollutants in a Bus Rapid Transit System:
Impact of fleet age and emission standard, Atmos. Environ., 202,
117–127, https://doi.org/10.1016/j.atmosenv.2019.01.026, 2019.

Olsson, D., Bråbäck, L., and Forsberg, B.: Air pollution exposure
during pregnancy and infancy and childhood asthma, Eur. Respir.
J., 44, p. 4237, 2014.

Olstrup, H., Johansson, C., Forsberg, B., Tornevi, A., Ekebom,
A., and Meister, K.: A Multi-Pollutant Air Quality Health
Index (AQHI) Based on Short-Term Respiratory Effects in
Stockholm, Sweden, Int. J. Env. Res. Pub. He., 16, 105,
https://doi.org/10.3390/ijerph16010105, 2019a.

Olstrup, H., Johansson, C., Forsberg, B., and Åström, C.: Associ-
ation between Mortality and Short-Term Exposure to Particles,
Ozone and Nitrogen Dioxide in Stockholm, Sweden, Int. J. Env.
Res. Pub. He., 16, 1028, https://doi.org/10.3390/ijerph16061028,
2019b.

OQAI: Campagne nationale Logements Etat de la qualité de l’air
dans les gogements francais Rapport final, Tech. Rep. DDD/SB
– 2006-57, Observatoire de la qualité de l’air interieur, edited by:
Kirchner, S., Arenes, J.-F., Cochet, C., Derbez, M., Duboudin,
C., Elias, P., Gregoire, A., Jédor, B., Lucas, J.-P., Pasquier, N.,
Pigneret, M., and Ramalho, O., 2006.

Orru, H., Lövenheim, B., Johansson, C., and Forsberg, B.: Potential
health impacts of changes in air pollution exposure associated
with moving traffic into a road tunnel, J. Expo. Sci. Environ. Epi-
demiol., 25, 524–531, https://doi.org/10.1038/jes.2015.24, 2015.

Pascal, M., Corso, M., Chanel, O., Declercq, C., Badaloni, C.,
Cesaroni, G., Henschel, S., Meister, K., Haluza, D., Martin-
Olmedo, P., and Medina, S.: Assessing the public health im-
pacts of urban air pollution in 25 European cities: Results
of the Aphekom project, Sci. Total Environ., 449, 390–400,
https://doi.org/10.1016/j.scitotenv.2013.01.077, 2013.

Pascal, M., de Crouy Chanel, P., Wagner, V., Corso, M., Tillier,
C., Bentayeb, M., Blanchard, M., Cochet, A., Pascal, L.,
Host, S., Goria, S., Le Tertre, A., Chatignoux, E., Ung,
A., Beaudeau, P., and Medina, S.: The mortality impacts of
fine particles in France, Sci. Total Environ., 571, 416–425,
https://doi.org/10.1016/j.scitotenv.2016.06.213, 2016.

Ryan, P. H. and LeMasters, G. K.: A review of land-
use regression models for characterizing intraurban
air pollution exposure, Inhal. Toxicol., 19, 127–133,
https://doi.org/10.1080/08958370701495998, 2007.

Sarnat, J. A., Wilson, W. E., Strand, M., Brook, J., Wyzga,
R., and Lumley, T.: Panel discussion review: session 1–
exposure assessment and related errors in air pollution epi-
demiologic studies, J. Expo. Sci. Env. Epid., 17, S75–82,
https://doi.org/10.1038/sj.jes.7500621, 2007.

Shekarrizfard, M., Faghih-Imani, A., and Hatzopoulou, M.: An ex-
amination of population exposure to traffic related air pollution:

www.geosci-model-dev.net/13/1075/2020/ Geosci. Model Dev., 13, 1075–1094, 2020

https://doi.org/10.1038/sj.jea.7500422
https://www.healtheffects.org/publication/traffic-related-air-pollution-critical-review-literature-emissions-exposure-and-health
https://www.healtheffects.org/publication/traffic-related-air-pollution-critical-review-literature-emissions-exposure-and-health
https://www.healtheffects.org/publication/traffic-related-air-pollution-critical-review-literature-emissions-exposure-and-health
https://doi.org/10.1038/jes.2012.34
https://doi.org/10.1016/j.atmosenv.2017.12.009
https://doi.org/10.1038/jes.2015.22
https://doi.org/10.1016/j.atmosenv.2011.10.043
https://doi.org/10.1038/jes.2008.4
https://doi.org/10.5194/gmd-10-2397-2017
https://doi.org/10.1016/j.scitotenv.2004.10.002
https://doi.org/10.1016/j.atmosenv.2007.04.005
https://doi.org/10.1038/jes.2012.78
https://doi.org/10.1016/S1352-2310(00)00330-7
https://doi.org/10.1016/S1352-2310(00)00330-7
https://doi.org/10.1016/j.atmosenv.2019.01.026
https://doi.org/10.3390/ijerph16010105
https://doi.org/10.3390/ijerph16061028
https://doi.org/10.1038/jes.2015.24
https://doi.org/10.1016/j.scitotenv.2013.01.077
https://doi.org/10.1016/j.scitotenv.2016.06.213
https://doi.org/10.1080/08958370701495998
https://doi.org/10.1038/sj.jes.7500621


1094 M. Valari et al.: EXPLUME v1.0

Comparing spatially and temporally resolved estimates against
long-term average exposures at the home location, Environ. Res.,
147, 435–444, https://doi.org/10.1016/j.envres.2016.02.039,
2016.

Skamarock, C., Klemp, B., Dudhia, J., Gill, O., Barker, D.,
Duda, G., Huang, X.-y., Wang, W., and Powers, G.: A
Description of the Advanced Research WRF Version 3,
https://doi.org/10.5065/D68S4MVH, 2008.

Smith, J. D., Mitsakou, C., Kitwiroon, N., Barratt, B. M., Wal-
ton, H. A., Taylor, J. G., Anderson, H. R., Kelly, F. J.,
and Beevers, S. D.: London Hybrid Exposure Model: Im-
proving Human Exposure Estimates to NO2 and PM2.5 in
an Urban Setting, Environ. Sci. Technol., 50, 11760–11768,
https://doi.org/10.1021/acs.est.6b01817, 2016.

Soares, J., Kousa, A., Kukkonen, J., Matilainen, L., Kangas, L.,
Kauhaniemi, M., Riikonen, K., Jalkanen, J.-P., Rasila, T., Hän-
ninen, O., Koskentalo, T., Aarnio, M., Hendriks, C., and Karp-
pinen, A.: Refinement of a model for evaluating the population
exposure in an urban area, Geosci. Model Dev., 7, 1855–1872,
https://doi.org/10.5194/gmd-7-1855-2014, 2014.

Stephens, B., Gall, E. T., and Siegel, J. A.: Measuring the pene-
tration of ambient ozone into residential buildings, Environ. Sci.
Technol., 46, 929–936, https://doi.org/10.1021/es2028795, 2012.

Sun, Q., Wang, W., Chen, C., Ban, J., Xu, D., Zhu, P., He, M. Z.,
and Li, T.: Acute effect of multiple ozone metrics on mortality
by season in 34 Chinese counties in 2013–2015, J. Intern. Med.,
283, 481–488, https://doi.org/10.1111/joim.12724, 2018.

Thatcher, T. L., Lunden, M. M., Revzan, K. L., Sextro, R. G.,
and Brown, N. J.: A Concentration Rebound Method
for Measuring Particle Penetration and Deposition in the
Indoor Environment, Aerosol Sci. Tech., 37, 847–864,
https://doi.org/10.1080/02786820300940, 2003.

Valari, M. and Menut, L.: Transferring the heterogeneity of sur-
face emissions to variability in pollutant concentrations over ur-
ban areas through a chemistry-transport model, Atmos. Environ.,
44, 3229–3238, https://doi.org/10.1016/j.atmosenv.2010.06.001,
2010.

Valari, M. and Markakis, K.: mvalari/EXPLUME: First
release of EXPLUME (Version v1.0.0), Zenodo,
https://doi.org/10.5281/zenodo.3352714, 2019.

Valari, M., Menut, L., and Chatignoux, E.: Using a chemistry trans-
port model to account for the spatial variability of exposure con-
centrations in epidemiologic air pollution studies, J. Air Waste
Manage., 61, 164–179, 2011.

Vizcaino, P. and Lavalle, C.: Development of European NO2 Land
Use Regression Model for present and future exposure assess-
ment: Implications for policy analysis, Environ. Pollut., 240,
140–154, https://doi.org/10.1016/j.envpol.2018.03.075, 2018.

Walker, I., Sherman, M., and Nazaroff, W.: Ozone Reductions Us-
ing Residential Building Envelopes, Tech. Rep. LBNL-1563E,
Lawrence Berkeley National Laboratory, california Institute for
Energy and Environment, 2009.

Walker, I. S. and Sherman, M. H.: Effect of ventilation strate-
gies on residential ozone levels, Build. Environ., 59, 456–465,
https://doi.org/10.1016/j.buildenv.2012.09.013, 2013.

Weschler, C. J.: Ozone in Indoor Environments: Con-
centration and Chemistry, Indoor Air, 10, 269–288,
https://doi.org/10.1034/j.1600-0668.2000.010004269.x, 2000.

WHO: Review of evidence on health aspects of air pollution
– REVIHAAP project: final technical report, available at:
http://www.euro.who.int/en/health-topics/environment-and-
health/air-quality/publications/2013/review-of-evidence-on-
health-aspects-of-air-pollution-revihaap-project-final-technical-
report (last access: 28 February 2020), 2013.

Willers, S. M., Eriksson, C., Gidhagen, L., Nilsson, M. E., Persha-
gen, G., and Bellander, T.: Fine and coarse particulate air pol-
lution in relation to respiratory health in Sweden, Eur. Respir. J.,
42, 924–934, https://doi.org/10.1183/09031936.00088212, 2013.

Williams, R. D. and Knibbs, L. D.: Daily personal exposure to
black carbon: A pilot study, Atmos. Environ., 132, 296–299,
https://doi.org/10.1016/j.atmosenv.2016.03.023, 2016.

Xie, X., Semanjski, I., Gautama, S., Tsiligianni, E., Deligiannis, N.,
Rajan, R. T., Pasveer, F., and Philips, W.: A Review of Urban Air
Pollution Monitoring and Exposure Assessment Methods, ISPRS
Int. Geo-Inf., 6, 389, https://doi.org/10.3390/ijgi6120389, 2017.

Xu, H., Bechle, M. J., Wang, M., Szpiro, A. A., Vedal, S., Bai, Y.,
and Marshall, J. D.: National PM2.5 and NO2 exposure mod-
els for China based on land use regression, satellite measure-
ments, and universal kriging, Sci. Total Environ., 655, 423–433,
https://doi.org/10.1016/j.scitotenv.2018.11.125, 2019a.

Xu, H., Léon, J.-F., Liousse, C., Guinot, B., Yoboué, V., Akpo, A.
B., Adon, J., Ho, K. F., Ho, S. S. H., Li, L., Gardrat, E., Shen,
Z., and Cao, J.: Personal exposure to PM2.5 emitted from typical
anthropogenic sources in southern West Africa: chemical char-
acteristics and associated health risks, Atmos. Chem. Phys., 19,
6637–6657, https://doi.org/10.5194/acp-19-6637-2019, 2019b.

Yu, X., Stuart, A. L., Liu, Y., Ivey, C. E., Russell, A. G., Kan,
H., Henneman, L. R. F., Sarnat, S. E., Hasan, S., Sadmani, A.,
Yang, X., and Yu, H.: On the accuracy and potential of Google
Maps location history data to characterize individual mobility
for air pollution health studies, Environ. Pollut., 252, 924–930,
https://doi.org/10.1016/j.envpol.2019.05.081, 2019.

Geosci. Model Dev., 13, 1075–1094, 2020 www.geosci-model-dev.net/13/1075/2020/

https://doi.org/10.1016/j.envres.2016.02.039
https://doi.org/10.5065/D68S4MVH
https://doi.org/10.1021/acs.est.6b01817
https://doi.org/10.5194/gmd-7-1855-2014
https://doi.org/10.1021/es2028795
https://doi.org/10.1111/joim.12724
https://doi.org/10.1080/02786820300940
https://doi.org/10.1016/j.atmosenv.2010.06.001
https://doi.org/10.5281/zenodo.3352714
https://doi.org/10.1016/j.envpol.2018.03.075
https://doi.org/10.1016/j.buildenv.2012.09.013
https://doi.org/10.1034/j.1600-0668.2000.010004269.x
http://www.euro.who.int/en/health-topics/environment-and-health/air-quality/publications/2013/review-of-evidence-on-health-aspects-of-air-pollution-revihaap-project-final-technical-report
http://www.euro.who.int/en/health-topics/environment-and-health/air-quality/publications/2013/review-of-evidence-on-health-aspects-of-air-pollution-revihaap-project-final-technical-report
http://www.euro.who.int/en/health-topics/environment-and-health/air-quality/publications/2013/review-of-evidence-on-health-aspects-of-air-pollution-revihaap-project-final-technical-report
http://www.euro.who.int/en/health-topics/environment-and-health/air-quality/publications/2013/review-of-evidence-on-health-aspects-of-air-pollution-revihaap-project-final-technical-report
https://doi.org/10.1183/09031936.00088212
https://doi.org/10.1016/j.atmosenv.2016.03.023
https://doi.org/10.3390/ijgi6120389
https://doi.org/10.1016/j.scitotenv.2018.11.125
https://doi.org/10.5194/acp-19-6637-2019
https://doi.org/10.1016/j.envpol.2019.05.081

	Abstract
	Introduction
	Personal exposure calculation
	Pollutant concentrations
	Outdoor O3 and PM2.5 concentration predictions
	Infiltration of outdoor O3 and PM2.5 indoors
	Dwellings, offices, and schools
	Transportation
	Other indoors


	Population data
	Generation of the sample population
	Modelling the activity sequences

	Results
	Exposure maps
	Exposure in different microenvironments
	Exposure of subpopulation groups
	Model sensitivity to population mobility and exposure indoors
	2050 horizon projection of the building stock

	Conclusions
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Acknowledgement
	Financial support
	Review statement
	References

