Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.240
IF5.240
IF 5-year value: 5.768
IF 5-year
5.768
CiteScore value: 8.9
CiteScore
8.9
SNIP value: 1.713
SNIP1.713
IPP value: 5.53
IPP5.53
SJR value: 3.18
SJR3.18
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 51
h5-index51
GMD | Articles | Volume 12, issue 1
Geosci. Model Dev., 12, 441–456, 2019
https://doi.org/10.5194/gmd-12-441-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Geosci. Model Dev., 12, 441–456, 2019
https://doi.org/10.5194/gmd-12-441-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Model evaluation paper 25 Jan 2019

Model evaluation paper | 25 Jan 2019

A high-resolution biogeochemical model (ROMS 3.4 + bio_Fennel) of the East Australian Current system

Carlos Rocha et al.

Related authors

Weak constraint four-dimensional variational data assimilation in a model of the California Current System
William J. Crawford, Polly J. Smith, Ralph F. Milliff, Jerome Fiechter, Christopher K. Wikle, Christopher A. Edwards, and Andrew M. Moore
Adv. Stat. Clim. Meteorol. Oceanogr., 2, 171–192, https://doi.org/10.5194/ascmo-2-171-2016,https://doi.org/10.5194/ascmo-2-171-2016, 2016
Short summary
Development and evaluation of a high-resolution reanalysis of the East Australian Current region using the Regional Ocean Modelling System (ROMS 3.4) and Incremental Strong-Constraint 4-Dimensional Variational (IS4D-Var) data assimilation
Colette Kerry, Brian Powell, Moninya Roughan, and Peter Oke
Geosci. Model Dev., 9, 3779–3801, https://doi.org/10.5194/gmd-9-3779-2016,https://doi.org/10.5194/gmd-9-3779-2016, 2016
Short summary
The Marine Virtual Laboratory (version 2.1): enabling efficient ocean model configuration
Peter R. Oke, Roger Proctor, Uwe Rosebrock, Richard Brinkman, Madeleine L. Cahill, Ian Coghlan, Prasanth Divakaran, Justin Freeman, Charitha Pattiaratchi, Moninya Roughan, Paul A. Sandery, Amandine Schaeffer, and Sarath Wijeratne
Geosci. Model Dev., 9, 3297–3307, https://doi.org/10.5194/gmd-9-3297-2016,https://doi.org/10.5194/gmd-9-3297-2016, 2016
Short summary
Physical and biogeochemical spatial scales of variability in the East Australian Current separation from shelf glider measurements
Amandine Schaeffer, Moninya Roughan, Emlyn M. Jones, and Dana White
Biogeosciences, 13, 1967–1975, https://doi.org/10.5194/bg-13-1967-2016,https://doi.org/10.5194/bg-13-1967-2016, 2016
Short summary
Lagrangian characterization of nitrate supply and episodes of extreme phytoplankton blooms in the Great Australian Bight
Paulina Cetina-Heredia, Erik van Sebille, Richard Matear, and Moninya Roughan
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-53,https://doi.org/10.5194/bg-2016-53, 2016
Revised manuscript not accepted
Short summary

Related subject area

Oceanography
Tracking water masses using passive-tracer transport in NEMO v3.4 with NEMOTAM: application to North Atlantic Deep Water and North Atlantic Subtropical Mode Water
Dafydd Stephenson, Simon A. Müller, and Florian Sévellec
Geosci. Model Dev., 13, 2031–2050, https://doi.org/10.5194/gmd-13-2031-2020,https://doi.org/10.5194/gmd-13-2031-2020, 2020
Short summary
Sensitivity study on the main tidal constituents of the Gulf of Tonkin by using the frequency-domain tidal solver in T-UGOm
Violaine Piton, Marine Herrmann, Florent Lyard, Patrick Marsaleix, Thomas Duhaut, Damien Allain, and Sylvain Ouillon
Geosci. Model Dev., 13, 1583–1607, https://doi.org/10.5194/gmd-13-1583-2020,https://doi.org/10.5194/gmd-13-1583-2020, 2020
Short summary
DINCAE 1.0: a convolutional neural network with error estimates to reconstruct sea surface temperature satellite observations
Alexander Barth, Aida Alvera-Azcárate, Matjaz Licer, and Jean-Marie Beckers
Geosci. Model Dev., 13, 1609–1622, https://doi.org/10.5194/gmd-13-1609-2020,https://doi.org/10.5194/gmd-13-1609-2020, 2020
Short summary
Mitigation of model bias influences on wave data assimilation with multiple assimilation systems using WaveWatch III v5.16 and SWAN v41.20
Jiangyu Li and Shaoqing Zhang
Geosci. Model Dev., 13, 1035–1054, https://doi.org/10.5194/gmd-13-1035-2020,https://doi.org/10.5194/gmd-13-1035-2020, 2020
Short summary
A global eddying hindcast ocean simulation with OFES2
Hideharu Sasaki, Shinichiro Kida, Ryo Furue, Hidenori Aiki, Nobumasa Komori, Yukio Masumoto, Toru Miyama, Masami Nonaka, Yoshikazu Sasai, and Bunmei Taguchi
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-351,https://doi.org/10.5194/gmd-2019-351, 2020
Revised manuscript accepted for GMD
Short summary

Cited articles

Alvera-Azcárate, A., Barth, A., Sirjacobs, D., Lenartz, F., and Beckers, J. M.: Data Interpolating Empirical Orthogonal Functions (DINEOF): a tool for geophysical data analyses, Mediterr. Mar. Sci., 12, 5–11, https://doi.org/10.12681/mms.64, 2010. 
Andersen, V., Nival, P., and Harris, R. P.: Modelling of a planktonic ecosystem in an enclosed water column, J. Mar. Biol. Assoc. UK., 67, 407–430, 1987. 
Anderson, T. R.: Plankton functional type modelling: running before we can walk?, J. Plankton Res., 27, 1073–1081, https://doi.org/10.1093/plankt/fbi076, 2005. 
Armbrecht, L. H., Roughan, M., Rossi, V., Schaeffer, A., Davies, P. L., Waite, A. M., and Armand, L. K.: Phytoplankton composition under contrasting oceanographic conditions: Upwelling and downwelling (Eastern Australia), Cont. Shelf Res., 75, 54–67, https://doi.org/10.1016/j.csr.2013.11.024, 2013. 
Baird, M. E., Timko, P. G., Suthers, I. M., and Middleton, J. H.: Coupled physical-biological modelling study of the East Australian Current with idealised wind forcing, Part I: Biological model intercomparison, J. Mar. Syst., 59, 249–270, 2006a. 
Publications Copernicus
Download
Short summary
Off southeast Australia, the East Australian Current (EAC) moves warm nutrient-poor waters towards the pole. In this region, the EAC and a large number of vortices pinching off it strongly affect phytoplankton’s access to nutrients and light. To study these dynamics, we created a numerical model that is able to solve the ocean conditions and how they modulate the foundation of the region’s ecosystem. We validated model results against available data and this showed that the model performs well.
Off southeast Australia, the East Australian Current (EAC) moves warm nutrient-poor waters...
Citation