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Abstract. Understanding phytoplankton dynamics is critical
across a range of topics, spanning from fishery management
to climate change mitigation. It is particularly interesting in
the East Australian Current (EAC) system, as the region’s
eddy field strongly conditions nutrient availability and there-
fore phytoplankton growth. Numerical models provide un-
paralleled insight into these biogeochemical dynamics. Yet,
to date, modelling efforts off southeastern Australia have ei-
ther targeted case studies (small spatial and temporal scales)
or encompassed the whole EAC system but focused on cli-
mate change effects at the mesoscale (with a spatial resolu-
tion of 1/10◦). Here we couple a model of the pelagic ni-
trogen cycle (bio_Fennel) to a 10-year high-resolution (2.5–
5 km horizontal) three-dimensional ocean model (ROMS) to
resolve both regional and finer-scale biogeochemical pro-
cesses occurring in the EAC system. We use several statis-
tical metrics to compare the simulated surface chlorophyll
to an ocean colour dataset (Copernicus-GlobColour) for the
2003–2011 period and show that the model can reproduce the
observed phytoplankton surface patterns with a domain-wide
RMSE of approximately 0.2 mg Chl a m−3 and a correlation
coefficient of 0.76. This coupled configuration will provide
a much-needed framework to examine phytoplankton vari-
ability in the EAC system providing insight into important
ecosystem dynamics such as regional nutrient supply mecha-
nisms and biogeochemical cycling occurring in EAC eddies.

1 Introduction

The basic framework for most marine biogeochemical
(BGC) models has been in use for the last few decades (e.g.
Fasham et al., 1990). These models are highly empirical by
nature and attempt to describe non-linear processes such as
photosynthesis by phytoplankton, zooplankton grazing, or
detrital remineralization through idealized formulations that
critically depend on poorly constrained parameters (Doney et
al., 2001). Even the most observable parameters, such as phy-
toplankton growth rates, include substantial uncertainty: lab-
oratory measurements produce considerable scatter around
idealized representations, field observations that loosely con-
strain model parameters are sparse, and analytical or instru-
mental errors exist. The implementation of observed param-
eters into models can also introduce error; for instance, the
extrapolation of in situ bottle samples to a model grid cell
having dimensions of kilometres poses a scalability chal-
lenge, and often measurements and models focus on related
but different types of information (e.g. measuring pigments
but modelling biomass; Matear and Jones, 2011; Jones et al.,
2016). In addition, parameter selection is further complicated
by temporal and/or spatial variability in parameter values due
to natural variability in phytoplankton species or unrepre-
sented ambient conditions. Identification of the best parame-
ters to use in the model usually requires a lengthy process of
fine-tuning often carried out manually and occasionally in an
automated fashion (e.g. Mattern et al., 2016).

Uncertainty intrinsic to BGC models does not derive from
parameter estimation alone but also extends to the choice of
equations used to describe the targeted ecosystem (Franks,
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2009). These models generally aggregate plankton popula-
tions into broadly defined trophic compartments and track
the flow of a chemical element, such as nitrogen or carbon,
among these compartments. Variations in this model struc-
ture, i.e. model complexity, include the use of additional lim-
iting nutrients (such as silicate, phosphate, and iron), the
division of the planktonic groups into multiple functional
types or size classes, and inclusion of additional state vari-
ables such as bacteria or detritus. Model complexity is usu-
ally decided based on the targeted ecosystem and/or ecosys-
tem function and has been one of the core topics in BGC
modelling; discussed in Anderson (2005) and thoroughly ex-
plored in Friedrichs et al. (2007) for example. The selec-
tion of a particular model complexity and set of parame-
ters is usually made by evaluating how well they are able
to reproduce the available observations of state variables;
due to its continuous acquisition and spatial coverage, re-
motely sensed chlorophyll is the most abundant BGC dataset
for marine ecosystem model evaluation. However, the use of
this dataset is not without uncertainty of its own. Remotely
sensed chlorophyll is not always directly comparable to the
simulated chlorophyll fields, as shown in Baird et al. (2016)
and confirmed in Jones et al. (2016).

Despite their associated uncertainty, BGC models have
proven to be exceptional tools. They are currently applied
in research or in support of decision-making. BGC models
vary widely in complexity from simple one-dimensional box
models to global physical–biogeochemical coupled simula-
tions (Doney et al., 2001). Phytoplankton is the first link in
the marine food chain and plays an integral role in marine
biogeochemical cycling. Therefore, coupled model configu-
rations that attempt to realistically resolve ocean features and
their impact on phytoplankton provide invaluable insight for
a diverse range of topics including fisheries (Blanchard et
al., 2012), water quality and ecosystem health management
(Rombouts et al., 2013), carbon sequestration (Blain et al.,
2007), and climate change (Matear et al., 2013). They pro-
vide a mechanistic understanding of the targeted ecosystem
and allow us to quantify when, where, and how changes in
phytoplankton distribution and biomass occur.

The East Australian Current (EAC) is the western bound-
ary current of the South Pacific subtropical gyre. It is formed
in the south Coral Sea (15–24◦ S – Ridgway and Dunn, 2003)
and dominates the large-scale flow along southeastern Aus-
tralia to the Tasman Sea (24–40◦ S, Fig. 1a). The EAC ad-
vects warm oligotrophic waters poleward, displacing cooler
and generally more productive waters, generates mesoscale
eddies (Everett et al., 2012), and induces coastal upwelling
(Roughan and Middleton, 2004). The EAC typically sep-
arates from the coast between 30.7 and 32.4◦ S (Cetina-
Heredia et al., 2014) meandering eastward and leaving a dy-
namic southward-moving eddy field. In the vicinity and to
the north of the separation zone, EAC dynamics strongly
condition the phytoplankton distribution; while downstream
of the separation zone, seasonal effects are more signifi-

cant drivers of chlorophyll patterns than upwelling or EAC-
derived eddies (Everett et al., 2014). The region’s ecosys-
tem is generally nitrogen limited (Hassler et al., 2011) and
seasonal increases in nitrate supply during austral winter to
spring induce phytoplankton blooms that cover a large area,
with particularly large amplitudes on the southern part of
the region and around Tasmania (41.6◦ S, 146.3◦ E). These
blooms are caused by processes that change with latitude,
including (a) the contraction of the subtropical gyre over au-
tumn and winter, with the oligotrophic EAC waters replaced
by nutrient-rich subantarctic waters, and (b) nutrient replen-
ishment to the euphotic zone caused by the winter deepening
of the mixed layer (Condie and Dunn, 2006).

Outside the annual winter-spring bloom period, phyto-
plankton variability is linked to mesoscale features (Mon-
gin et al., 2011). Pockets of high phytoplankton concentra-
tions south of the EAC separation zone are consistently ob-
served in remote sensing products and bio-physical models
of the region (Baird et al., 2006b; Macdonald et al., 2009).
These pockets are associated with persistently elevated con-
centrations of nitrate in the upper 100 m (> 4 µm, CARS –
CSIRO Atlas of Regional Seas climatology; Ridgway and
Dunn, 2003) caused by separation and upwelling events,
which have been shown to deliver 10 times more nutrients
to the shelf than river or sewage discharges (Pritchard et al.,
2003).

The region’s mesoscale eddies are also of special inter-
est. Both cyclonic and anticyclonic eddies are found in large
numbers – with an average of 17 eddies on any given day –
and affect surface chlorophyll concentrations (Everett et al.,
2012). Their contrasting (cyclonic or anticyclonic) dynam-
ical regimes create different biogeochemical environments:
cyclonic eddies present low sea-level anomalies, doming
isopycnals, and a shoaling nutricline, while anticyclonic ed-
dies are associated with high sea-level anomalies, isopyc-
nal depression, and a deepening nutricline (McGillicuddy,
1998). Cyclonic eddies are usually associated with elevated
chlorophyll, while anticyclones present chlorophyll suppres-
sion (Everett et al., 2012; Gaube et al., 2014). Eddies close
to the shelf may entrain biomass-rich shelf waters which are
then transported offshore (Tranter et al., 1986; Everett et al.,
2015; Macdonald et al., 2016).

While there have been several efforts to model phyto-
plankton variability and their mechanisms off southeastern
Australia, these have been limited to climate change sce-
narios at the mesoscale (with a spatial resolution of 1/10◦

– Matear et al., 2013) or process studies (e.g. Baird et al.,
2006a, b; Macdonald et al., 2009; Laiolo et al., 2016) that
did not attempt to analyse the dynamics at a regional scale.
Here we have coupled an N2PZD2 BGC model (explained in
Sect. 2.2; Fennel et al., 2006) to a three-dimensional regional
oceanic circulation model for the EAC system (Kerry et al.,
2016) to investigate the BGC dynamics of the region and,
for the first time, create a mechanistic understanding of the
system dynamics as a whole. The validation effort, presented
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here, focuses on objective model performance assessments
through comparison of surface chlorophyll model output
with an extensive satellite dataset (Copernicus-GlobColour
4 km 8-daily product). We also compare the simulated spatial
variability in subsurface nutrient concentration (nitrate) to a
climatological dataset (CARS – CSIRO Atlas of Regional
Seas climatology).

2 Methods

2.1 Physical ocean model

We use the Regional Ocean Modeling System (ROMS, ver-
sion 3.4) to simulate the circulation of the EAC system for
the 2002–2011 period. ROMS is a free-surface, hydrostatic,
primitive equation ocean model solved on a curvilinear grid
with a terrain-following vertical coordinate system (Shchep-
etkin and McWilliams, 2005); it has been successfully used
in many regional BGC studies (e.g. California Current Sys-
tem – Powell et al., 2006; Fiechter et al., 2018; North Pa-
cific – Kishi et al., 2007; Middle Atlantic Bight – Fennel et
al., 2006). We use the 10-year free-running ROMS simula-
tion configured for the EAC region developed by Kerry et
al. (2016). While the pertinent details are summarized here,
the reader is referred to Kerry et al. (2016) for a thorough
description and validation of the EAC hydrodynamic model.

The model domain (Fig. 1a) extends from 25.25 to
41.55◦ S and nearly 1000 km offshore. The northern bound-
ary is chosen at a latitude where the EAC is clearly de-
fined and upstream of the region of elevated eddy variability
(Cetina-Heredia et al., 2014). The model has a 5 km (1/22◦)
horizontal resolution in the alongshore direction and gradu-
ally varies from 2.5 km (1/44◦) resolution over the continen-
tal shelf and slope to 6 km (1/18◦) in the open ocean. The
model grid is rotated 20◦ clockwise, so that it is oriented pre-
dominantly alongshore in the y dimension and cross-shore
in the x dimension. We use the vertical stretching scheme of
Souza et al. (2014) for the vertical distribution of 30 terrain-
following sigma layers which have higher resolution in the
upper 500 m to resolve the wind-driven mesoscale circu-
lation and near the bottom for improved resolution of the
bottom boundary layer. The bathymetry was obtained from
the 50 m multibeam dataset for Australia from Geoscience
Australia (Whiteway, 2009), and we use the Mellor and Ya-
mada (1982) level-2.5 second-moment turbulence closure
scheme (MY2.5) to parameterize vertical turbulent mixing
of momentum and tracers.

The model obtains initial conditions and daily boundary
forcing from the Bluelink ReANalysis version 3p5 (BRAN3;
Oke et al., 2013). BRAN is a multi-year integration of
the Ocean Forecasting Australian Model (OFAM) and the
Bluelink Ocean Data Assimilation System (BODAS; Oke
et al., 2008). At the open lateral boundaries, the Chapman
condition (Chapman, 1985) is applied to the free surface

and the Flather condition (Flather, 1976) is applied to the
barotropic velocity to ensure that the barotropic energy is ef-
fectively transmitted out of the domain. Atmospheric forc-
ing fields from the National Centers for Environmental Pre-
diction (NCEP) reanalysis atmospheric model (Kistler et al.,
2001) are applied every 6 h, by computing the surface wind
stress and surface net heat and freshwater fluxes using the
bulk flux parameterization of Fairall et al. (1996). We run the
model with realistic forcing from 2002 to the end of 2011,
but allow for a year of model spin-up using the 2003–2011
period (hereafter referred to as the study period) for the anal-
yses.

2.2 Biogeochemical model

We use the BGC model of Fennel et al. (2006), which was
initially developed to assess nitrogen cycling in the Middle
Atlantic Bight (Fig. 1b; see also Fig. 1 of Fennel et al., 2006).
The model simulates two groups of nutrients (nitrate and
ammonium), one group of producers (phytoplankton), one
group of consumers (zooplankton), and two groups of dif-
ferently sized detritus in what is usually termed an N2PZD2
model. The model is based on the Fasham et al. (1990) pa-
rameterizations with the important addition of phytoplankton
chlorophyll (mg Chl m−3) as an estimate of the chlorophyll
stored in phytoplankton, considering the effects of acclima-
tion in the carbon to chlorophyll ratio (Geider et al., 1997).

In the Fennel et al. (2006) model, nitrogen available in in-
organic nutrients is incorporated into phytoplankton biomass
through phytoplankton growth; it is then moved into zoo-
plankton biomass via grazing or into the small and large
detrital pools through mortality. Zooplankton mortality also
contributes to the detrital pool. Zooplankton losses due to in-
efficient grazing and detritus are transferred via a decay rate
into the ammonium group, which is transformed into nitrate
through nitrification processes. Large and small detritus, as
well as phytoplankton, have an associated vertical sinking
rate.

The model is initialized with seeding populations of
0.01 mmol N m−3 for all state variables except nitrate (NO3),
which is derived from the CSIRO Atlas of Regional Seas
climatology (CARS, described in Sect. 2.3.2). Interpolated
seasonal values of the CARS nitrate climatology are ap-
plied daily as boundary forcing and the model is also nudged
to CARS nitrate values over the first 10 grid points (ap-
proximately 50 km) from the northern, eastern, and south-
ern boundaries. This nudging avoids spurious phytoplankton
growth caused by upwelling at the boundaries, identified in
previous model runs by a thin lateral zone of high chloro-
phyll standing stock near the boundaries. The nudging time
decreases linearly from 5 to 30 days, from the outermost grid
cell of the domain to the interior.

The main parameters used in this configuration are pre-
sented in Table 1. The values are all within the com-
mon ranges defined in the literature and are comparable to
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Figure 1. (a) Simulated surface chlorophyll (8-day average) from mid-October 2008 illustrates model domain. State capital cities are labelled,
and the 200 m isobath is highlighted by a thin black line. The EAC, a cyclonic eddy (clockwise rotation), and an anticyclonic eddy (anti-
clockwise rotation) are identified from their signature on the chlorophyll field. The Northern Zone extends from the northern model boundary
to 30.5◦ S, the Central Zone from 30.5 to 33.5◦ S, and the Southern Zone from 33.5◦ S to the southern boundary. Illustration of the latitudinal
nitrates transect (orange line; see Fig. 6) and profiles (black squares; letters A, B, and C correspond to Fig. 7a, b, and c, respectively).
(b) Schematic of the biogeochemical model (adapted from Fennel et al., 2006).

other model configurations in the region (Macdonald, 2013;
Matear et al., 2013). Most values are identical to those used
by Fennel et al. (2006), with the exceptions of the initial
slope of the photosynthesis–irradiance (P–I) curve and half-
saturation constants for the uptake of nitrate and ammonium
(values in bold in Table 1). These have been modified by
fine-tuning the model to best fit the offshore chlorophyll con-
centrations available through remote sensing (described in
Sect. 2.3.1).

Shelf phytoplankton species and community structure are
expected to be different from the phytoplankton community
found offshore (Armbrecht et al., 2013). For this study, we
chose to apply an established, relatively simple, biogeochem-
ical model with only one phytoplankton functional type. In
part, this decision reflected the overall emphasis of the physi-
cal model on the EAC and vast offshore region; the model has
limited ability to resolve critical physical dynamics on the
shelf due to model and forcing resolution and omitted fresh-
water inflow. Our overall focus is on the larger-scale BGC
dynamics, their seasonal variability, and local impacts of off-
shore mesoscale processes. Future modelling efforts will ad-
dress shelf processes and more complex biogeochemical in-
teractions.

2.3 Observational datasets

2.3.1 Remotely sensed surface chlorophyll

Remotely sensed surface chlorophyll estimates were ob-
tained from the Copernicus Marine Environment Monitor-
ing Service (CMEMS) GlobColour product. This product
has a 4 km spatial resolution and is generated by fitting a
bio-optical model to the merged set of observed normal-
ized water-leaving radiances from the SeaWiFS, MERIS,
MODIS-A, and VIIRS-N sensors (Maritorena and Siegel,
2005). We use 8-daily composite data in order to mini-
mize the data gaps without substantially compromising the
time resolution. These data are re-gridded to our model
grid through linear interpolation and gap-filled using the DI-
NEOF package (http://modb.oce.ulg.ac.be/mediawiki/index.
php/DINEOF, last access: 8 May 2018). DINEOF gap-fills
by iteratively decomposing the data field via singular value
decomposition (SVD) until a best solution is found. This so-
lution is achieved by comparison with the subset of refer-
ence values (non-gaps) and by progressively including more
empirical orthogonal functions (EOFs) in the reconstruction
of missing values until the minimization of error converges
(Alvera-Azcarate et al., 2010).

2.3.2 Climatological nitrate observations

We used the CSIRO Atlas of Regional Seas climatology
(CARS; Ridgway and Dunn, 2003) as our source for three-
dimensional nitrate fields for initial conditions, boundary
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Table 1. Main biogeochemical model parameters and their range in the literature (Fennel et al., 2006). The values that differ from Fennel et
al. (2006) are presented in bold and the original value is presented in brackets.

Parameter Range Value Unit

phytoplankton growth rate at 0 ◦C 0.65a–3.0b,c 0.69 d−1

half-saturation concentration for uptake of NO3 0.007–1.5d 1.0 (0.5) mmol N m−3

half-saturation concentration for uptake of NH4 0.007–1.5d 1.0 (0.5) mmol N m−3

initial slope of the P–I curve 0.007–0.13e 0.025 (0.125) molC gChl−1 (W m−2)−1 d−1

maximum grazing rate 0.5f–1.0g 0.6 (mmol N m−3)−1 d−1

half-saturation concentration of phytoplankton ingestion 0.56–0.2d,h 2.0 (mmol N m−3)2

phytoplankton mortality 0.05–0.2i 0.15 d−1

aggregation parameter 0.1d 0.005 (mmol N m−3)−1 d−1

maximum chlorophyll to phytoplankton ratio 0.005–0.072e 0.053 mgChl mgC−1

assimilation efficiency see j and k 0.75 dimensionless
excretion rate due to basal metabolism see j 0.1 d−1

maximum rate of assimilation-related excretion see j 0.1 d−1

zooplankton mortality 0.05l–0.25d 0.025 (mmol N m−3)−1 d−1

remineralization rate of suspended detritus 0.01–0.25j 0.03 d−1

remineralization rate of large detritus 0.01–0.25j 0.01 d−1

maximum nitrification rate 0.1d 0.05 d−1

light intensity at which the inhibition of nitrification is half saturated see m and n 0.1 W m−2

threshold for light inhibition of nitrification see m and n 0.0095 W m−2

sinking velocity of phytoplankton 0.009o–25d 0.1 m d−1

sinking velocity of suspended detritus 0.009o–25d 0.1 m d−1

sinking velocity of larger particles 0.009o–25d 1.0 m d−1

a Taylor (1988). b Andersen et al. (1987). c Note that owing to the temperature dependence for a temperature range from 0 to 20 ◦C the maximum growth rate in our model varies
from 0.69 to 2.49 d−1. d Lima and Doney (2004). e Geider et al. (1997). f Wroblewski (1989). g Fasham (1995). h Note that the values were squared to be consistent with the
notation of our model. i Taylor et al. (1991). jLeonard et al. (1999). kOschlies and Garcon (1999). lFennel et al. (2001). m Olson (1981). n Note that Olson differentiates between
the oxidation of ammonium to nitrite and between nitrite to nitrate. o Moskilde (1996).

forcing, and to assess the model’s ability to reproduce the
vertical nitrate distribution in the model domain. CARS is
a gridded atlas of mean and seasonal ocean water proper-
ties obtained from a quality-controlled archive of all avail-
able historical subsurface measurements of ocean properties,
which covers the full global ocean on a 0.5◦ grid. The nitrate
fields, created in June 2011, include the World Ocean Circu-
lation Experiment (WOCE) and World Ocean Database 2009
(WOD09) datasets.

2.4 Model evaluation metrics

We use six quantitative metrics to assess model skill (adapted
from Stow et al., 2009), where n is the number of satellite
chlorophyll observations, Oi is the ith of n observations, Pi

is the ith of n model chlorophyll predictions, and O and P

are the satellite observation and model prediction averages,
respectively. We calculate these for each surface grid cell of
the model in order to generate spatial maps of model skill.

RMSE – the root-mean-squared error:

RMSE=

√√√√√ n∑
i=1

(Pi −Oi)
2

n
. (1)

AE – the average error (bias):

AE=

n∑
i=1

(Pi −Oi)
2

n
= P −O. (2)

AAE – the average absolute error:

AAE=

n∑
i=1
|Pi −Oi |

n
. (3)

The root-mean-squared error (RMSE), average error (AE),
and average absolute error (AAE) measure the size of the dis-
crepancies between model predictions and the observations.
So, the closer their value is to zero, the better the match and
hence the model accuracy. The AAE is presented to mitigate
the fact that values of AE near zero may be created by posi-
tive and negative discrepancies cancelling each other.

BAMEF – the bias-adjusted modelling efficiency:

BAMEF=

(
n∑

i=1

(
Oi −O

)2
−

n∑
i=1

(
Pi −P −

(
Oi −O

))2)
n∑

i=1

(
Oi −O

)2 . (4)

The BAMEF quantifies how well a model simulates the ob-
servation compared to the average of the observations (Nash
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Figure 2. Time series of area-averaged surface chlorophyll concentrations for 8-daily data from the model (blue) and satellite observations
(green): (a) Full domain; (b) Northern Zone; (c) Central Zone; and (d) Southern Zone. The correlation coefficients of the two time series, r ,
are shown on the top-left corner of each panel.

and Sutcliffe, 1970; Loague and Green, 1991), considering
the overall bias for each point. Values less than 0 indicate that
the observation average would be a better predictor than the
model results, 0 indicates that the model predicts individual
observations no better than the average of the observations,
and a value near 1 indicates a close match between observa-
tions and model.

RI – the reliability index:

RI= exp

√√√√1
n

n∑
i=1

(
log

Oi

Pi

)2

. (5)

Pr – the Pearson correlation coefficient:

Pr =

n∑
i=1

(
Oi −O

)(
Pi −P

)
√

n∑
i=1

(
Oi −O

)2 n∑
i=1

(
Pi −P

)2 . (6)

The RI measures the average factor by which model predic-
tions differ from observations (Leggett and Williams, 1981).
Ideally, the RI should be close to 1. An RI of 2.0, for exam-
ple, indicates that a model predicts the observations within
a multiplicative factor of 2. Lastly, the Pearson correlation
coefficient (Pr) is a measure of the strength of the linear as-
sociation between model and observations. It varies between

−1 and 1, with negative values indicating that observations
and model vary inversely, a value of 0 indicates the model
and observation variability is not related, and positive values
showing that the model varies with the observations (Stow et
al., 2008).

To assess how well the model is able to represent the main
chlorophyll distribution patterns, we determined the domi-
nant orthogonal spatial and temporal signals in the model
output and compared them with those of the satellite es-
timates through an EOF analysis (Bjornsson and Venegas,
1997). We used detrended 8-daily data over the full study
period and excluded the points between the coast and shelf
break (identified as the 200 m isobath). This exclusion was
created because a small number of outliers on the narrow
shelf were dominating the first EOF modes in the satellite es-
timates. Our model is not expected to reproduce these shelf
estimates (as discussed in Sect. 2.2), some of which could be
spurious data (Sect. 2.3.1).

3 Model evaluation

Here we characterize the model’s ability to reproduce the ob-
served surface chlorophyll concentrations for the study pe-
riod. We focus on temporal and spatial variability, specif-
ically consecutive seasonal cycles and the typical latitudi-
nal gradient. An objective evaluation of model performance
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Figure 3. Surface chlorophyll mean (a, b) and variance (c, d) for the full study period. Satellite observations (a, c) and model data (b, d).

is achieved by comparison with satellite-derived surface
chlorophyll data using the statistical metrics described in the
previous section, and we identify the main spatial and tem-
poral patterns of chlorophyll variability off-shelf. Finally, the
vertical distribution of nitrate is validated against CARS cli-
matological values along a latitudinal transect through the
model domain and at three different locations.

3.1 Variability of surface chlorophyll concentrations

The time series in Fig. 2a illustrates the domain-averaged
surface chlorophyll concentrations of both model (blue) and
satellite estimates (green). In addition, we investigate the re-
sults for three latitudinal zones based on chlorophyll regimes
described by Everett et al. (2014) and identified in Fig. 1a:
Northern Zone (NZ) – upstream of the EAC separation zone,
from the northern boundary to 30.5◦ S; Central Zone (CZ)
– EAC separation zone, 30.5 to 33.5◦ S; and Southern Zone
(SZ) – downstream of the separation, 33.5◦ S to the southern
boundary. The area-averaged time series for each zone are
presented in Fig. 2b, c, and d, respectively. All the spatially
averaged chlorophyll concentrations reveal a distinct annual

cycle and low interannual variability (Fig. 2). Seasonal vari-
ations are largest in SZ, and concentrations are highest in all
three zones during spring (spring bloom). The spring bloom
signature is emphasized in our area-averaged time series due
to the broad spatial coverage of this event.

All three zones have a minimum concentration of
0.1 mg Chl m−3 occurring around the end of the austral sum-
mer. Both maximum and minimum chlorophyll values are
within the bounds of observed concentrations in this region
(e.g. Everett et al., 2014; Matear et al., 2013). The model is
able to competently reproduce the timing of the main chloro-
phyll fluctuations, as denoted by the high correlation coef-
ficients between simulated and satellite-derived chlorophyll
time series (r of 0.76 for the domain-wide average, 0.73 for
NZ and CZ, and 0.75 for SZ). However, the model overesti-
mates chlorophyll by about 0.2 mg Chl m−3 in both NZ and
CZ (discussed in Sect. 3.2).

Latitudinal gradients in chlorophyll concentration are evi-
dent in the temporal mean (Fig. 3). Of special interest is the
signature created by the nutrient-poorer EAC waters, which
extends from the edge of the continental shelf to about 2◦

of longitude offshore and is characterized by lower-than-
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Figure 4. Monthly anomalies of chlorophyll concentration from model (a) and from satellite observations (b).

average chlorophyll concentrations. Generally, larger mean
values and variances are found on the shelf in observations
and to a lesser extent in the model. Overall, the patterns
shown by model and observations are similar, with the model
slightly overestimating surface chlorophyll offshore and un-
derestimating concentrations near the coast.

Monthly observed chlorophyll anomalies reveal a preva-
lent seasonal cycle which is well represented in the model
(Fig. 4). Over the 10-year period, the months of August and
September reveal a slight overestimation of the onset of the
spring bloom, as well as a slight northward shift of its pat-
tern when compared to the observations. Nutrient-poor EAC
water impacts phytoplankton growth, and associated chloro-
phyll fields, as visible by negative anomaly values along the
northern and central portions of the coast, relative to offshore
values at those longitudes, especially throughout the months
of October and November. Finally, we note the signature of
warm-core eddies, smaller negative anomalies downstream
of the EAC separation latitude (near 35◦ S), present in both
observed and simulated chlorophyll fields (particularly visi-
ble in July and August).

3.2 Skill metrics

To further assess model skill, we solve Eqs. (1)–(6) at each
model surface grid cell. The resulting spatial maps are shown
in Fig. 5. On average, the model overestimates chlorophyll

concentrations offshore, and more so in the north than in the
south of the domain (RMSE and AE of ∼ 0.2 mg chl m−3;
Fig. 5a and b). The AAE shows fairly constant errors of about
0.25 mg chl m−3 (Fig. 5c). The fact that the AE near the south
is near zero and the AAE is non-zero implies that the er-
ror fluctuates about zero, sometimes positive and sometimes
negative. This conclusion is supported by the SZ time series
(Fig. 2d), which reveals that January and February model
overestimation is compensated by short periods of larger-
amplitude underestimation at times around the spring bloom.

The high AAE values on the shelf indicate that the model
represents phytoplankton less well near the coast, generally
underestimating chlorophyll concentrations here, except for
the shelf region between 29 and 31◦ S (Fig. 5b). As dis-
cussed in Sect. 2.2, our model calibration focused on simu-
lating the chlorophyll concentrations observed offshore; with
only one phytoplankton group represented, the model struc-
ture itself limits the ability to simultaneously simulate shelf
and offshore communities. Moreover, it is known that remote
sensing products tend to underestimate open-ocean chloro-
phyll in the study region due to a weak relationship between
the large-sized phytoplankton and remote sensing reflectance
(Clementson et al., 1998; Laiolo et al., 2018) and overesti-
mate concentrations near the coast due to the presence of sus-
pended sediments and dissolved organic matter (Moore et al.,
2007). Since our model generally underestimates chlorophyll
concentrations on the shelf and overestimates them offshore,
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Figure 5. Maps of (a) root-mean-square error; (b) average error; (c) absolute average error; (d) bias-adjusted modelling efficiency; (e) reli-
ability index; and (f) Pearson correlation coefficient generated by comparison of simulated 8-daily surface chlorophyll concentrations with
8-daily satellite observations.

these remote sensing biases can partly explain the inconsis-
tencies between simulated and observed chlorophyll.

The area usually occupied by EAC waters is character-
ized by low chlorophyll concentrations and low chlorophyll
variability. The model tendency to overestimate chlorophyll
concentrations offshore and its variability leads to a nega-

tive BAMEF in the EAC-dominated region (Fig. 5d). More-
over, this is the area where the largest average factor by
which model chlorophyll differs from satellite observations
is found, with an RI of 2.5 to 3 (Fig. 5e). Model data are well
correlated with observations, as demonstrated by the correla-
tion coefficient map (Fig. 5f), with higher correlations in the
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Figure 6. Maps of (a) reliability index and (b) bias-adjusted modelling efficiency, generated by comparison of simulated monthly surface
chlorophyll concentrations with monthly satellite observations.

northern zone (∼ 0.75) and decreasing towards the south (to
∼ 0.6). The overall higher error variability and lower correla-
tions found in the Southern Zone are likely to stem from the
higher eddy activity in the area, in conjunction with generally
higher background concentrations (Figs. 2 and 3).

The lower model skill within the EAC revealed by large
negative BAMEF and positive RI values results from limited
model accuracy capturing high-frequency temporal variabil-
ity in this region. Inconsistencies at high frequencies likely
derive from a combination of physical and biological pro-
cesses. In a free run such as this, dynamical features like
the EAC physical position, mesoscale eddies, and small-scale
fronts are generally offset in space and/or time from those in
nature. In addition, the modelled N2PZD2 system, with only
one phytoplankton and one zooplankton compartments, is an
oversimplification of reality. By not capturing the complex-
ity of the natural biological community, it is unable to fully
reproduce the observed variability.

Assessment using these particular metrics reveals the chal-
lenge: balancing precision (i.e. how well the model fits each
satellite value) with overall accuracy. Even when the main
trends and general patterns are well reproduced, small tem-
poral or spatial lags between events registered by satellite
and model can lead to large errors in precision. Matching
variability on an 8-day timescale is a high bar for a non-
data assimilative ocean model. Indeed, when calculated us-
ing monthly-averaged information, the BAMEF is consider-
ably more positive overall and particularly in the EAC re-
gion, and the RI is much smaller over the entire domain; both
metrics reveal considerable model skill on monthly-averaged
timescales (Fig. 6). Our model tuning and evaluation empha-
sized the model’s ability to generate average spatial and tem-
poral patterns of chlorophyll, rather than on the absolute val-
ues of chlorophyll concentration.

3.3 Dominant spatial and temporal patterns

One way to explore the dominant spatial and temporal pat-
terns of phytoplankton variability is through EOF analysis.
The spatial EOF fields describe each component in terms of
its dominant spatial structures (Fig. 7 – middle and bottom
rows), whereas the principal component’s time series give the
corresponding temporal weightings for each time step (Fig. 7
– top row). Because this model has been developed to repro-
duce the general chlorophyll patterns offshore, we exclude
shelf (< 200 m isobath) variability. The first four EOF modes
explain up to 99.8 % and 99.7 % of the variance in satellite
and model data, respectively.

EOF analysis provides a concise, statistical reduction in
the data. As such, there is no guarantee that the statistical
modes obtained correspond to dynamical processes or par-
ticular features of interest. However, often the modes re-
late to understandable patterns and forcing timescales that
help identify significant underlying dynamics or features,
and comparisons between observed and modelled modes are
often revealing. That is the case for this analysis, with both
model and satellite data showing comparable patterns. Mode
1 captures the spring bloom, peaking to its annual maximum
around the beginning of October of each year. The discrep-
ancies on the spatial structures of this mode are better in-
terpreted with the help of Fig. 4, specifically the anomalies
for the months of August and September. As mentioned be-
fore, these show a northward displacement and slight over-
estimation of the onset of the spring bloom in the model,
which leads to the same differences in the patterns captured
by Mode 1. Mode 2 represents meridional variations across
the domain and includes the effect of the seasonal propaga-
tion and recession of EAC nutrient-depleted waters in lati-
tude. Oligotrophic EAC waters expansively replace nutrient-
richer Tasman Sea waters during the austral summer and then
recede during the autumn to winter period.
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Figure 7. Principal components (a: model in blue, satellite observations in green) and spatial structures (b: model; c: satellite observations)
of the first four EOF modes of surface chlorophyll variance (left to right). The original units of chlorophyll concentration (mg Chla m−3)

are obtained by multiplying the principal components to the corresponding spatial structure. The correlation coefficients of the two principal
components, r , are shown on the top-right corner of each top-row panel.

Figure 8. Seasonal nitrate transects (mmol N m−3) along a transect through the middle of the domain, South to North (orange line in Fig. 1).
(a) CARS climatological values; (b) model.

Mode 3 captures diverse mesoscale activity, such as in-
creased productivity along the southern edge of the EAC af-
ter it separates from the coast – especially noticeable in the
satellite-derived dataset around 35◦ S. Mode 4 contains most
of the chlorophyll surface response to smaller scale eddy ac-
tivity. Model and satellite estimates show a similar distribu-
tion in both positive and negative signatures, suggesting that
the overall geographic effect of productivity enhancement by
cyclonic structures and hindrance by anticyclones is well re-
solved in the model even though the specific time and loca-

tion of eddies is not expected to be. As previously mentioned,
eddies are more prolific in the southern area, hence the higher
density of their signatures there. Of note is an apparent larger
(smaller) area occupied by the negative (positive) signatures,
which is on par with the difference in the average radius of
anticyclones (larger) versus cyclones (smaller).

The principal components of model chlorophyll co-vary
with those of satellite estimates with correlation coefficients
of 0.79 for Mode 1 and 0.64 for Mode 2. As these modes
contain around 90 % of the variance in both model and satel-
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Figure 9. Monthly nitrate profiles (mmol N m−3) at three different locations (A, B, and C in Fig. 1). In the top and middle rows, the solid
line and the shaded area represent the mean value and the first standard deviation, respectively. These were calculated over the study period
(for model data in blue) and climatology (for CARS in red). Bottom row illustrates the difference (ROMS-CARS) for each average month
(coloured) and average difference (thick black line).

lite estimates offshore, these correlations show that the model
reproduces the timing of the dominant fluctuations in chloro-
phyll concentrations over the domain quite well, in agree-
ment with the high correlation coefficients already found for
the area-averaged chlorophyll concentration time series. We
note that for reasons described above, the small correlation
of principal components for the two mesoscale-dominated
modes is not surprising for this non-data assimilative model.

3.4 Vertical distribution of nitrate

As a last step in the model validation effort, we investigate
how the model represents the vertical distribution of nutri-
ents by comparing the simulated nitrate with climatologi-
cal values derived from in situ subsurface data (defined in
Sect. 2.3.1). Specifically, we extract data along a seasonal
transect in the south–north direction across the middle of the
domain (Figs. 1a, 9). We have chosen a transect across lat-
itude because of the observed latitudinal gradient in chloro-
phyll concentrations.
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The model represents the distinctive latitudinal gradient
in nitrate concentration, showing a poleward shoaling of the
nitracline (Fig. 8). In addition, the model reproduces the sea-
sonal cycle well, with the nitracline depth varying ∼ 50 m
upwards (downwards) between winter (summer). The larger
variability in the simulated nitrate fields reflects processes
that are averaged over in the climatology. Therefore, this
high-resolution model allows one to examine the impacts
of mesoscale phenomena in the regional ecosystem, which
would not be possible using climatological fields alone.

The vertical profiles in Fig. 9 (top) represent the monthly-
averaged nitrate values over the full study period for the
model, in blue, and from the climatological values of CARS,
in red. The shaded areas represent the first standard devi-
ation. The general agreement between the model and data
at these locations is remarkably good (never exceeding
2.8 mmol N m−3), indicating that ecosystem processes in the
model are not causing substantial drift from initial condi-
tions over the 10-year model run. The southernmost profile
(Fig. 9a) shows highest concentrations and greatest variabil-
ity closer to the surface (larger shaded area), resulting from
the combined effect of the established latitudinal gradient
and the increased mesoscale activity in this area.

The bottom row of Fig. 9 illustrates the difference in
monthly averages (coloured lines) and average difference
(black line) between model and observations. This is ob-
tained by subtracting CARS nitrate concentrations to the sim-
ulated nitrate fields at the same three locations (A, B, and C)
as depicted above. It is worth noting that at these locations
the model generally overestimates nitrate concentrations in
the upper 800 m, except for the austral winter months (June,
July, and August) of the central profile, when it underesti-
mates concentrations by approximately −1.5 mmol N m−3.
The central and southernmost profiles are characterized by
an inversion from average overestimation to average under-
estimation at around 1000 m, with the central profile show-
ing the highest average difference of −2.2 mmol N m−3 at
1600 m. The northernmost profile presents the highest over-
estimation of the upper 250 m, due to a difference of ap-
proximately +2.5 mmol N m−3 during the spring months of
September, October, and November. This is of particular sig-
nificance as an overestimation of the nitrate concentrations
within the model’s euphotic layer, albeit low, may contribute
to the slight northern shift of the simulated spring bloom pat-
tern (observed in Sects. 3.1 and 3.3). Further exploring the
nutrient dynamics of the region and how these are condi-
tioned by the variability in mixed layer depths, for instance,
would be of great interest. However, such a topic is out of the
scope of this paper and will be investigated in future work.
From a model evaluation approach, the fact that both transect
and vertical profiles are comparable to the climatological val-
ues allows us to be confident in the model’s ability to solve
nutrient dynamics with depth.

4 Conclusions

We have developed a high-resolution (2.5–5 km horizontal)
N2PZD2 model of the EAC system and evaluated its perfor-
mance against satellite-derived estimates of surface chloro-
phyll and subsurface nutrient data using several skill metrics.
The model is able to reproduce the timing and the spatial
structure of the dominant patterns of chlorophyll variability
and the vertical distribution of nitrate. The validation effort
is robust and highlights the high skill of this model in repro-
ducing the observed chlorophyll patterns in the EAC system,
deeming it suitable for further dynamical studies. We antici-
pate this coupled configuration will be an often used frame-
work for exploring how regional oceanic features, and as-
sociated biogeochemical dynamics, condition ecosystem re-
sponse. Such an understanding is critical to a diverse range
of research areas, spanning from marine ecology to climate
change. It is of particular interest in the EAC system due to
the high mesoscale eddy activity observed in the region and
because BGC dynamics in the western boundary currents re-
main an understudied topic.

Code and data availability. Model initial conditions and bound-
ary forcing come from the Bluelink ReANalysis version
3p5 (BRAN3; Oke et al., 2013) for all the physical vari-
ables and from CSIRO Atlas of Regional Seas climatology
(CARS2009: http://www.marine.csiro.au/~dunn/cars2009/,
last access: 12 March 2018) for nitrate. Atmospheric forc-
ing is from the National Centers for Environmental Pre-
diction (NCEP) reanalysis atmospheric model (Kistler et
al., 2001). Remotely sensed chlorophyll is the Copernicus-
GlobColour 8-daily product generated by ACRI-ST, which
can be downloaded from the Copernicus Marine Environment
Monitoring Service (CMEMS) catalogue. It is available at
http://marine.copernicus.eu/services-portfolio/access-to-products/
(last access: 12 March 2018) with ID OCEAN-
COLOUR_GLO_CHL_L4_REP_OBSERVATIONS_009_082.
ROMS is a community open-source model. The most current offi-
cial versions of the code, including bio_Fennel, are made available
at http://www.myroms.org (last access: 10 November 2017). Both
physical and BGC model output are saved as daily snapshots
and daily averages of three-dimensional fields of ocean physical
and biogeochemical properties (sea level, temperature, salinity,
velocities, nitrates, ammonium, phytoplankton, chlorophyll,
zooplankton, and large and small detritus) for every day over the
10-year simulation period (2002–2011). These data are archived at
UNSW Sydney and can be made available for research purposes.
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