Articles | Volume 12, issue 7
https://doi.org/10.5194/gmd-12-3085-2019
https://doi.org/10.5194/gmd-12-3085-2019
Model description paper
 | 
19 Jul 2019
Model description paper |  | 19 Jul 2019

CLIMADA v1: a global weather and climate risk assessment platform

Gabriela Aznar-Siguan and David N. Bresch

Related authors

Preface
Christophe Lienert, Andreas Paul Zischg, Horst Kremers, Jamie McCaughey, Lara Zinkl, and David N. Bresch
Abstr. Int. Cartogr. Assoc., 9, 1, https://doi.org/10.5194/ica-abs-9-1-2025,https://doi.org/10.5194/ica-abs-9-1-2025, 2025
Modelling crop hail damage footprints with single-polarization radar: the roles of spatial resolution, hail intensity, and cropland density
Raphael Portmann, Timo Schmid, Leonie Villiger, David N. Bresch, and Pierluigi Calanca
Nat. Hazards Earth Syst. Sci., 24, 2541–2558, https://doi.org/10.5194/nhess-24-2541-2024,https://doi.org/10.5194/nhess-24-2541-2024, 2024
Short summary
Fluvial flood inundation and socio-economic impact model based on open data
Lukas Riedel, Thomas Röösli, Thomas Vogt, and David N. Bresch
Geosci. Model Dev., 17, 5291–5308, https://doi.org/10.5194/gmd-17-5291-2024,https://doi.org/10.5194/gmd-17-5291-2024, 2024
Short summary
How relevant are frequency changes of weather regimes for understanding climate change signals in surface precipitation in the North Atlantic-European sector? – a conceptual analysis with CESM1 large ensemble simulations
Luise J. Fischer, David N. Bresch, Dominik Büeler, Christian M. Grams, Matthias Röthlisberger, and Heini Wernli
EGUsphere, https://doi.org/10.5194/egusphere-2024-1253,https://doi.org/10.5194/egusphere-2024-1253, 2024
Short summary
Projections and uncertainties of winter windstorm damage in Europe in a changing climate
Luca G. Severino, Chahan M. Kropf, Hilla Afargan-Gerstman, Christopher Fairless, Andries Jan de Vries, Daniela I. V. Domeisen, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 1555–1578, https://doi.org/10.5194/nhess-24-1555-2024,https://doi.org/10.5194/nhess-24-1555-2024, 2024
Short summary

Related subject area

Climate and Earth system modeling
FLAME 1.0: a novel approach for modelling burned area in the Brazilian biomes using the maximum entropy concept
Maria Lucia Ferreira Barbosa, Douglas I. Kelley, Chantelle A. Burton, Igor J. M. Ferreira, Renata Moura da Veiga, Anna Bradley, Paulo Guilherme Molin, and Liana O. Anderson
Geosci. Model Dev., 18, 3533–3557, https://doi.org/10.5194/gmd-18-3533-2025,https://doi.org/10.5194/gmd-18-3533-2025, 2025
Short summary
SURFER v3.0: a fast model with ice sheet tipping points and carbon cycle feedbacks for short- and long-term climate scenarios
Victor Couplet, Marina Martínez Montero, and Michel Crucifix
Geosci. Model Dev., 18, 3081–3129, https://doi.org/10.5194/gmd-18-3081-2025,https://doi.org/10.5194/gmd-18-3081-2025, 2025
Short summary
NMH-CS 3.0: a C# programming language and Windows-system-based ecohydrological model derived from Noah-MP
Yong-He Liu and Zong-Liang Yang
Geosci. Model Dev., 18, 3157–3174, https://doi.org/10.5194/gmd-18-3157-2025,https://doi.org/10.5194/gmd-18-3157-2025, 2025
Short summary
A method for quantifying uncertainty in spatially interpolated meteorological data with application to daily maximum air temperature
Conor T. Doherty, Weile Wang, Hirofumi Hashimoto, and Ian G. Brosnan
Geosci. Model Dev., 18, 3003–3016, https://doi.org/10.5194/gmd-18-3003-2025,https://doi.org/10.5194/gmd-18-3003-2025, 2025
Short summary
Baseline Climate Variables for Earth System Modelling
Martin Juckes, Karl E. Taylor, Fabrizio Antonio, David Brayshaw, Carlo Buontempo, Jian Cao, Paul J. Durack, Michio Kawamiya, Hyungjun Kim, Tomas Lovato, Chloe Mackallah, Matthew Mizielinski, Alessandra Nuzzo, Martina Stockhause, Daniele Visioni, Jeremy Walton, Briony Turner, Eleanor O'Rourke, and Beth Dingley
Geosci. Model Dev., 18, 2639–2663, https://doi.org/10.5194/gmd-18-2639-2025,https://doi.org/10.5194/gmd-18-2639-2025, 2025
Short summary

Cited articles

Aballain, O.: Hurricane Irma and Hurricane Maria in the media: France vs America, a Contrastive Analysis, Utrecht University, 2018. 
Aznar-Siguan, G. and Bresch, D. N.: CLIMADA_python documentation, available at: https://climada-python.readthedocs.io/en/stable/, last access: 17 July 2019. 
Bertinelli, L., Mohan, P., and Strobl, E.: Hurricane damage risk assessment in the Caribbean: An analysis using synthetic hurricane events and nightlight imagery, Ecol. Econ., 108, 8589–8594, https://doi.org/10.1016/j.ecolecon.2016.02.004, 2016. 
Bevere, L., Schwartz, M., Sharan, R., and Zimmerli, P.: Natural catastrophes and man-made disasters in 2017: a year of record-breaking losses, available at: http://media.swissre.com/documents/sigma1_2018_en.pdf (last access: 17 July 2019), 2018. 
Bickenbach, F., Bode, E., Nunnenkamp, P., and Söder, M.: Night lights and regional GDP, Rev. World Econ., 152, 425–447, https://doi.org/10.1007/s10290-016-0246-0, 2016. 
Download
Short summary
The need for assessing the risk of weather events is ever increasing. In addition to quantification of risk today, the role of aggravating factors such as population growth and changing climate conditions matter too. We present the open-source software CLIMADA, which integrates hazard, exposure, and vulnerability to compute metrics to assess risk and to quantify socio-economic impact, and use it to estimate and contextualize the damage of hurricane Irma through the Caribbean in 2017.
Share