Articles | Volume 12, issue 4
https://doi.org/10.5194/gmd-12-1703-2019
https://doi.org/10.5194/gmd-12-1703-2019
Model evaluation paper
 | 
29 Apr 2019
Model evaluation paper |  | 29 Apr 2019

Evaluating the Met Office Unified Model land surface temperature in Global Atmosphere/Land 3.1 (GA/L3.1), Global Atmosphere/Land 6.1 (GA/L6.1) and limited area 2.2 km configurations

Jennifer K. Brooke, R. Chawn Harlow, Russell L. Scott, Martin J. Best, John M. Edwards, Jean-Claude Thelen, and Mark Weeks

Related authors

The Met Office Unified Model Global Atmosphere 8.0 and JULES Global Land 9.0 configurations
Martin Richard Willett, Melissa Brooks, Andrew Bushell, Paul Earnshaw, Samantha Smith, Lorenzo Tomassini, Martin Best, Ian Boutle, Jennifer Brooke, John M. Edwards, Kalli Furtado, Catherine Hardacre, Andrew J. Hartley, Alan Hewitt, Ben Johnson, Adrian Lock, Andy Malcolm, Jane Mulcahy, Eike Müller, Heather Rumbold, Gabriel G. Rooney, Alistair Sellar, Masashi Ujiie, Annelize van Niekerk, Andy Wiltshire, and Michael Whitall
EGUsphere, https://doi.org/10.5194/egusphere-2025-1829,https://doi.org/10.5194/egusphere-2025-1829, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
The third Met Office Unified Model-JULES Regional Atmosphere and Land Configuration, RAL3
Mike Bush, David L. A. Flack, Huw W. Lewis, Sylvia I. Bohnenstengel, Chris J. Short, Charmaine Franklin, Adrian P. Lock, Martin Best, Paul Field, Anne McCabe, Kwinten Van Weverberg, Segolene Berthou, Ian Boutle, Jennifer K. Brooke, Seb Cole, Shaun Cooper, Gareth Dow, John Edwards, Anke Finnenkoetter, Kalli Furtado, Kate Halladay, Kirsty Hanley, Margaret A. Hendry, Adrian Hill, Aravindakshan Jayakumar, Richard W. Jones, Humphrey Lean, Joshua C. K. Lee, Andy Malcolm, Marion Mittermaier, Saji Mohandas, Stuart Moore, Cyril Morcrette, Rachel North, Aurore Porson, Susan Rennie, Nigel Roberts, Belinda Roux, Claudio Sanchez, Chun-Hsu Su, Simon Tucker, Simon Vosper, David Walters, James Warner, Stuart Webster, Mark Weeks, Jonathan Wilkinson, Michael Whitall, Keith D. Williams, and Hugh Zhang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-201,https://doi.org/10.5194/gmd-2024-201, 2024
Revised manuscript accepted for GMD
Short summary
CALOTRITON: a convective boundary layer height estimation algorithm from ultra-high-frequency (UHF) wind profiler data
Alban Philibert, Marie Lothon, Julien Amestoy, Pierre-Yves Meslin, Solène Derrien, Yannick Bezombes, Bernard Campistron, Fabienne Lohou, Antoine Vial, Guylaine Canut-Rocafort, Joachim Reuder, and Jennifer K. Brooke
Atmos. Meas. Tech., 17, 1679–1701, https://doi.org/10.5194/amt-17-1679-2024,https://doi.org/10.5194/amt-17-1679-2024, 2024
Short summary
Unexpected vertical structure of the Saharan Air Layer and giant dust particles during AER-D
Franco Marenco, Claire Ryder, Victor Estellés, Debbie O'Sullivan, Jennifer Brooke, Luke Orgill, Gary Lloyd, and Martin Gallagher
Atmos. Chem. Phys., 18, 17655–17668, https://doi.org/10.5194/acp-18-17655-2018,https://doi.org/10.5194/acp-18-17655-2018, 2018
Short summary
Coarse-mode mineral dust size distributions, composition and optical properties from AER-D aircraft measurements over the tropical eastern Atlantic
Claire L. Ryder, Franco Marenco, Jennifer K. Brooke, Victor Estelles, Richard Cotton, Paola Formenti, James B. McQuaid, Hannah C. Price, Dantong Liu, Patrick Ausset, Phil D. Rosenberg, Jonathan W. Taylor, Tom Choularton, Keith Bower, Hugh Coe, Martin Gallagher, Jonathan Crosier, Gary Lloyd, Eleanor J. Highwood, and Benjamin J. Murray
Atmos. Chem. Phys., 18, 17225–17257, https://doi.org/10.5194/acp-18-17225-2018,https://doi.org/10.5194/acp-18-17225-2018, 2018
Short summary

Related subject area

Atmospheric sciences
ClimKern v1.2: a new Python package and kernel repository for calculating radiative feedbacks
Tyler P. Janoski, Ivan Mitevski, Ryan J. Kramer, Michael Previdi, and Lorenzo M. Polvani
Geosci. Model Dev., 18, 3065–3079, https://doi.org/10.5194/gmd-18-3065-2025,https://doi.org/10.5194/gmd-18-3065-2025, 2025
Short summary
Accounting for effects of coagulation and model uncertainties in particle number concentration estimates based on measurements from sampling lines – a Bayesian inversion approach with SLIC v1.0
Matti Niskanen, Aku Seppänen, Henri Oikarinen, Miska Olin, Panu Karjalainen, Santtu Mikkonen, and Kari Lehtinen
Geosci. Model Dev., 18, 2983–3001, https://doi.org/10.5194/gmd-18-2983-2025,https://doi.org/10.5194/gmd-18-2983-2025, 2025
Short summary
Top-down CO emission estimates using TROPOMI CO data in the TM5-4DVAR (r1258) inverse modeling suit
Johann Rasmus Nüß, Nikos Daskalakis, Fabian Günther Piwowarczyk, Angelos Gkouvousis, Oliver Schneising, Michael Buchwitz, Maria Kanakidou, Maarten C. Krol, and Mihalis Vrekoussis
Geosci. Model Dev., 18, 2861–2890, https://doi.org/10.5194/gmd-18-2861-2025,https://doi.org/10.5194/gmd-18-2861-2025, 2025
Short summary
The Multi-Compartment Hg Modeling and Analysis Project (MCHgMAP): mercury modeling to support international environmental policy
Ashu Dastoor, Hélène Angot, Johannes Bieser, Flora Brocza, Brock Edwards, Aryeh Feinberg, Xinbin Feng, Benjamin Geyman, Charikleia Gournia, Yipeng He, Ian M. Hedgecock, Ilia Ilyin, Jane Kirk, Che-Jen Lin, Igor Lehnherr, Robert Mason, David McLagan, Marilena Muntean, Peter Rafaj, Eric M. Roy, Andrei Ryjkov, Noelle E. Selin, Francesco De Simone, Anne L. Soerensen, Frits Steenhuisen, Oleg Travnikov, Shuxiao Wang, Xun Wang, Simon Wilson, Rosa Wu, Qingru Wu, Yanxu Zhang, Jun Zhou, Wei Zhu, and Scott Zolkos
Geosci. Model Dev., 18, 2747–2860, https://doi.org/10.5194/gmd-18-2747-2025,https://doi.org/10.5194/gmd-18-2747-2025, 2025
Short summary
Similarity-based analysis of atmospheric organic compounds for machine learning applications
Hilda Sandström and Patrick Rinke
Geosci. Model Dev., 18, 2701–2724, https://doi.org/10.5194/gmd-18-2701-2025,https://doi.org/10.5194/gmd-18-2701-2025, 2025
Short summary

Cited articles

AmeriFlux data repository: AmeriFlux data at half-hourly resolution, available at: http://ameriflux.lbl.gov/, last access: 17 July 2018. 
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011. 
Bugbee, B., Droter, M., Monje, O., and Tanner, B.: Evaluation and modification of commercial infrared transducers for leaf temperature measurement, Adv. Space Res., 22, 1425–1434, 1998. 
Cameron, J. and Bell, W.: The testing and implementation of variational bias correction (VarBC) in the global model at the Met Office, Weather Science Technical Report No: 63, available at: https://www.metoffice.gov.uk/research/library-and-archive/publications/science/weather-science-technical-reports/ (last access: 18 April 2019), 2018. 
Candy, B., Saunders, R. W., Ghent, D., and Bulgin, C. E.: The impact of satellite-derived land surface temperatures on numerical weather prediction analyses and forecasts, J. Geophys. Res.-Atmos., 122, https://doi.org/10.1002/2016JD026417, 2017. 
Download
Short summary
This paper evaluates a significant cold land surface temperature bias in semi-arid regions in the Met Office Unified Model when compared with satellite observations. Sparse vegetation canopies are not well represented in ancillary datasets, in particular regions of cold bias are correlated with low bare soil cover fractions. The study demonstrates the difficulties in modelling land surface temperatures that match state-of-the-art satellite retrievals required for operational data assimilation.
Share