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Abstract. A limitation of the Met Office operational data
assimilation scheme is that surface-sensitive infrared satel-
lite sounding channels cannot be used during daytime peri-
ods where numerical weather prediction (NWP) model back-
ground land surface temperature (LST) biases are greater
than 2 K in magnitude. The Met Office Unified Model
(UM) has a significant cold LST bias in semi-arid regions
when compared with satellite observations; a range of UM
configurations were assessed with different model resolu-
tions, land surface cover datasets and bare soil parameter-
isations. UM LST biases were evaluated at global resolu-
tion and in a limited area model (LAM) at a 2.2 km reso-
lution over the SALSTICE (Semi-Arid Land Surface Tem-
perature and IASI Calibration Experiment) experimental do-
main in south-eastern Arizona. This validation is in conjunc-
tion with eddy-covariance flux tower measurements. LST
biases in the Global Atmosphere/Land 3.1 (GA/L3.1) con-
figuration were largest in the mid-morning with respect to
Moderate Resolution Imaging Spectroradiometer (MODIS)
Terra (−13.6±2.8 K at the Kendall Grassland site). The diur-
nal cycle of LST in Global Atmosphere/Land 6.1 (GA/L6.1)
showed a significant improvement relative to GA/L3.1 with
the cold LST biases reduced to−1.4±2.7 K and−3.6±3.0 K
for Terra and Aqua overpasses, respectively. The higher-
resolution LAM showed added value over the global con-
figurations.

The spatial distribution of the LST biases relative to
MODIS and the modelled bare soil cover fraction were found
to be moderately correlated (0.61±0.08) during the daytime,
which suggests that regions of cold LST bias are associated

with low bare soil cover fraction. Coefficients of correlation
with the shrub surface fractions followed the same trend as
the bare soil cover fraction, although with a less significant
correlation (0.36± 0.09), and indicated that the sparse veg-
etation canopies in south-eastern Arizona are not well rep-
resented in UM ancillary datasets. The x component of the
orographic slope was positively correlated with the LST bias
(0.41±0.05 for MODIS Aqua) and identified that regions of
cold model LST bias are found on easterly slopes, and re-
gions of warm model LST bias are found on westerly slopes.
An overestimate in the modelled turbulent heat and moisture
fluxes at the eddy-covariance flux sites was found to be coin-
cident with an underestimate in the ground heat flux.

1 Introduction

Infrared radiance data from hyperspectral satellite sound-
ing spectrometers make up the largest proportion of assim-
ilated data at the Met Office and over the last 2 decades
have had the greatest forecast impact of any type of ob-
servation currently assimilated (English et al., 2000; Cardi-
nali, 2009). The assimilation of a small selection of hyper-
spectral channels has been shown to improve estimates of
temperature and humidity profiles for the initial state of nu-
merical weather prediction (NWP) forecasts (Hilton et al.,
2012). However, a significant limitation of the assimilation
scheme is that surface-sensitive hyperspectral channels can-
not be used during daytime periods due to biases in the NWP
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model background land surface temperature (LST) and emis-
sivity. The model background refers to a short-range model
forecast; each data assimilation cycle uses newly received
observations to update the model background in order to
produce a model analysis (Rabier et al., 2005). At the Met
Office, IASI (Infrared Atmospheric Sounding Interferome-
ter) surface-sensitive channels, including window channels
and lower-tropospheric (below 400 hPa) sounding channels,
are rejected during assimilation windows for observations
over land surfaces and during daytime periods (Pavelin and
Candy, 2014).

Land surface temperature is the radiative skin temperature
of the land, and knowledge of the LST provides information
on the temporal and spatial variations of the surface equilib-
rium state (Kerr et al., 2000). Recently, research trials have
been completed at the Met Office which use night-time LST
from the European Space Agency GlobTemperature LSTs
project (Ghent et al., 2016) in the land data assimilation sys-
tem; the study demonstrated improvements in near-surface
air temperature forecasts and soil temperatures (Candy et al.,
2017). The required LST uncertainty for assimilation within
the Met Office operational assimilation scheme is less than
2 K in magnitude, and Candy et al. (2017) highlights the large
errors in daytime LST which must be overcome in order to
further advance NWP data assimilation. Currently, as LSTs
are not assimilated into the operational Unified Model (UM),
they provide an independent source of data for assessing the
performance of the land surface model’s surface exchange
and the boundary layer schemes (Edwards, 2010).

There are large systematic biases in the UM background
land surface temperature which vary both spatially and tem-
porally, and they occur most strongly in semi-arid regions
such as the south-west US, the Sahel, and south-central
Asia. Land surface temperature biases in semi-arid regions
are not limited to the UM and have been recognised as a
source of model error in other land surface models (Guedj
et al., 2011; Trigo et al., 2015; Zheng et al., 2012). Zheng
et al. (2012) identified a 10 K cold bias over the western
continental US in the Noah land model, and were able to
successfully minimise the bias via a new formulation of the
momentum and thermal roughness lengths, whereas Chen
and Zhang (2009) found that the coupling strength in this
model was too strong over short vegetated surfaces. Trigo
et al. (2015) showed that the European Centre for Medium-
Range Weather Forecasts (ECMWF) land surface scheme,
HTESSEL (Hydrology Tiles ECMWF Scheme for Surface
Exchanges over Land) underestimated the daily amplitude
of surface temperature in semi-arid areas. This has resulted
in an overestimate of the night-time LST (warm bias) and
an underestimate in daytime temperatures (cold bias). Trigo
et al. (2015) found that reducing the magnitude of the skin
conductivity, which parameterises the thermal connection be-
tween the surface and the soil by controlling the heat transfer
to the ground by diffusion, led to a strengthening of the am-
plitude of the simulated diurnal cycle of surface temperature.

Near-surface air temperatures and LST are controlled by
the surface energy balance (e.g. Prince et al., 1998). The
warming of the land surface is forced by solar heating, and
the dissipation of heat is partitioned between the sensible
heat flux (H ), the latent heat flux (LE), the ground heat
flux (G) and the outgoing longwave radiation. The surface
albedo describes the fraction of incident solar radiation re-
flected by a surface and is an important surface property con-
trolling the available energy. The correct partitioning of the
surface net radiation between the latent heat fluxes and sensi-
ble heat fluxes is critical (Oke, 1987; Rowntree, 1991; Dick-
inson, 1991) as this drives the diurnal development of the
atmospheric boundary layer (Henderson-Sellers and Brown,
1993). The moisture content of the soil has a strong control
over the partitioning of available energy between the heat
fluxes (Castelli et al., 1999). In coupled models, land surface
models (LSMs) provide the surface boundary conditions for
atmospheric models; therefore, it is an important challenge
in the development of LSMs to represent these processes that
control the exchange of water and energy fluxes at the soil–
atmosphere interface. The Joint UK Land Environment Sim-
ulator (JULES) (Best et al., 2011; Clark et al., 2011) is the
land surface model that is coupled to the Met Office Unified
Model (UM). Global scientific configurations of the land are
identified as “Global Land” (GL), whereas the atmosphere is
identified as “Global Atmosphere” (GA).

The Semi-Arid Land Surface Temperature and IASI Cal-
ibration Experiment (SALSTICE) was carried out during
May 2013 in south-eastern Arizona in order to investigate
the biases in the land surface temperatures (LST) forecast by
the Met Office Unified Model (UM) in this region. Our study
focuses on a small semi-arid region in south-eastern Arizona
for a domain of 31.25–32.25◦ N and 69–71.5◦W. In this re-
gion collocated airborne observations and eddy-covariance
flux tower measurements at sites based in the Walnut Gulch
Experimental Watershed and the Santa Rita Experimental
Range have been made. The SALSTICE airborne campaign
took place from 12 to 21 May 2013 with the timing of the
airborne campaign designed to occur at the time of maxi-
mum LST biases in the UM. The campaign involved the UK
Facility for Airborne Atmospheric Measurements (FAAM)
BAe-146 aircraft which carried out five flights with the ob-
jective of diagnosing the surface temperature errors within
the UM. The outcomes of the airborne measurements will be
presented in a future paper.

In this study, we consider the term “model bias” to be a
model error which is systematic rather than random, and refer
to the bias as being the “model background-minus-observed”
(B-O), i.e. where a model, on average, underestimates or
overestimates a quantity relative to an observed state. The
study evaluates statistics of the model background-minus-
observed (B-O) residuals for a range of UM model config-
urations. This study will characterise the spatial distribution
and the magnitude of the UM land surface temperature biases
in this region in order to understand the mechanisms which
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give rise to the spatial distributions. We diagnose sources of
model error using coincident MODIS retrievals and eddy-
covariance flux tower measurements. This paper will evalu-
ate changes to the magnitude of the LST bias for the month of
May (the month of the maximum LST bias) for a 6-year anal-
ysis period from 2013 to 2018, and will attribute observed
trends to changes in a range of UM model configurations.

This article is arranged as follows: Sect. 2 provides a de-
scription of the eddy-covariance sites and the instrumentation
deployed, in addition to the MODIS retrievals utilised. The
UM configurations used in this evaluation are summarised.
Results are presented in Sect. 3, including an assessment of
the diurnal cycle of the LST, an evaluation of the LST bi-
ases for the UM configurations for different land classifica-
tion types, and an examination of correlations between the
spatial distribution of LST biases with modelled orography
and surface fractional cover. An evaluation of the surface en-
ergy balance for the coupled UM configurations is presented.
Section 4 then presents the conclusions.

2 Methodology

2.1 Eddy-covariance flux tower measurements

Eddy-covariance measurements offer model verification of
the surface exchange processes and provide an opportunity
to examine sources of model error by investigating compo-
nents of the surface energy balance (SEB) in the Unified
Model. The model is evaluated at four eddy-covariance flux
tower sites: Lucky Hills and Kendall Grassland, located in
the USDA-ARS’s (US Department of Agriculture – Agricul-
tural Research Service) Walnut Gulch Experimental Water-
shed, and the Santa Rita Grassland and Santa Rita Mesquite
sites, located in the Santa Rita Experimental Range (Scott et
al., 2015) – all four sites are located in south-eastern Ari-
zona. The SEB and LST were investigated during the period
from 12 to 21 May 2013, coincident with the SALSTICE
campaign. In situ measurements of LST from an infrared ra-
diometer at the flux tower sites were further evaluated for the
period from 1 to 31 May 2014–2018. The study will evaluate
surface temperatures for a 6-year analysis period.

Lucky Hills Shrubland (AmeriFlux site ID: US-Whs) is a
site dominated by Chihuahuan Desert shrubs and is defined
as open shrubland according to the International Geosphere-
Biosphere Programme’s (IGBP) land cover classification.
The Kendall Grassland (US-Wkg) and the Santa Rita Grass-
land (US-SRG) sites both have perennial bunch grasses as
their dominant vegetation and are classified as a semi-arid
warm season desert grassland according to IGBP, whereas
the Santa Rita Mesquite (US-SRM) is a woody savannah site
(IGBP), predominantly vegetated by small mesquite trees
and grasses. These semi-arid ecosystems have bare soil cover
in the range of 45 % (Santa Rita Grassland) to 63 % (Lucky
Hills Shrubland) (Scott et al., 2015).

The data collected at these sites include screen-level
air temperature, humidity, winds, longwave and shortwave
broadband hemispherical irradiances, sensible and latent heat
fluxes, ground heat fluxes, soil temperature, rainfall and land
surface temperature (at Lucky Hills and Kendall Grassland).
Details regarding the instrumentation and a full description
of the eddy-covariance flux tower sites can be found in Scott
et al. (2015). Section 2.2.1–2.2.2 will briefly describe the cor-
rections applied to the observational datasets pertinent to the
evaluation presented in this study.

2.1.1 Corrections applied to the eddy-covariance
measurements

Eddy-covariance techniques use measurements of vertical
velocity fluctuations and scalar concentration fluctuations to
produce a direct estimate of the vertical flux of sensible heat
(Hmeas) and latent heat (LEmeas). It is well established in the
literature that there is difficulty in closing the SEB with eddy-
covariance measurements associated with underestimates in
measured turbulent heat fluxes (Twine et al., 2000; Wilson et
al., 2002; Foken et al., 2008). Wilson et al. (2002) showed
that these errors can account for 10 % to 30 % of the net radi-
ation, and Scott et al. (2010) found that the energy balance er-
rors for the 30 min time averaging window account for 17 %–
27 % of the net radiation for the eddy-covariance flux tower
sites used in this study. It is not expected to be able achieve an
instantaneous energy balance closure at every time step due
to the vegetation canopy heat storage. However, the canopy
storage in the sparse canopies of south-eastern Arizona is
generally neglected, as has been done in the methodology
applied here.

The near-surface ground heat flux measurements are at a
depth of 5 cm from the surface soil layer, and subsequently
a fraction of the surface soil heat flux is not measured. The
correction methodology of Scott et al. (2009) has been ap-
plied to the ground heat flux data to account for the missing
proportion of the soil heat flux. Additionally, soil heat flux
plates buried in the soil can introduce measurement biases
due to difference in conductivity between the measurement
plates and the surrounding soil (Gentine et al., 2012). Finally,
the ground heat fluxes are point measurements and as such do
not represent the variability of fluxes across the fetch/sensing
area in the same manner as the eddy-covariance measure-
ments.

The use of SEB measurements in order to attribute model
biases requires the conservation of energy to be achieved. In
our study, we assume the sole error is due to under-sampling
of the turbulent fluxes by the eddy-covariance measurements,
and that it forces closure of the SEB whilst maintaining the
Bowen ratio (BR) (Twine et al., 2000). The BR is the ratio of
the sensible heat flux to the latent heat flux. In this method
it is assumed that the measured ground heat flux (Gmeas) is
well measured, and the corrected turbulent heat fluxes (Hcorr
and LEcorr) represent closure of the surface energy balance.
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2.1.2 Corrections applied to the IRT surface
temperature measurements

An Apogee infrared radiometer (Bugbee et al., 1998), or IRT,
such as those installed at Lucky Hills and Kendall Grassland,
measures the upwelling longwave radiance across a spectral
range of 8–14 µm. An estimate of the surface temperature can
be made via a conversion of the measured upwelling long-
wave radiance using the Stefan–Boltzmann law and using an
assumed surface emissivity of 1.0 (Fiebrich et al., 2003). The
broadband emissivity of bare soil can vary substantially with
values in the range of 0.81–0.99 (Ogawa et al., 2003). A cor-
rection is made to the measured upwelling longwave radi-
ance in order to account for such uncertainty in the surface
emissivity, as described below.

The National Land Cover Database (NLCD) 2006 (Fry et
al., 2011) has been used to identify shrubland and grassland
regions of the SALSTICE airborne flight tracks (described
in a future paper). The NLCD 2006 dataset is a 16 class
land cover classification scheme that has been applied consis-
tently across the US at a spatial resolution of 30 m. Emissiv-
ity retrievals from the airborne ARIES (Airborne Research
Interferometer Evaluation System) instrument (Newman et
al., 2005) were performed during the SALSTICE campaign
(not shown). An 8–14 µm broadband emissivity was calcu-
lated for the surface types (shrubland and grassland) found
at Kendall Grassland and Lucky Hills. The 8–14 µm broad-
band emissivity was found to be 0.97± 0.02. The variability
in emissivity obtained from the ARIES measurements was
found to have a ±1.1 K uncertainty on the land surface tem-
perature from the daytime IRT measurements.

A further correction is applied which accounts for the
downwelling longwave radiation according to Eq. (1):

BTsurf, 8−14 µm =

1
ε

(
LW↑surf, 8−14 µm− (1− ε)LW↓surf, 8−14 µm

)
, (1)

where BTsurf, 8−14 µm is the surface blackbody radiance, ε is
the emissivity in the range of 0.97± 0.02, LW↑surf, 8−14 µm is
the upwelling radiance at the surface in the IRT field of view
and LW↓surf, 8−14 µm is the downwelling radiance at the surface
that is reflected into the IRT field of view.

The 8–14 µm downwelling longwave radiance(
LW↓surf, 8−14 µm

)
is modelled using the Havemann–Taylor

Fast Radiative Transfer Code (HT-FRTC) (Havemann,
2006) for each of the ground sites, Lucky Hills and Kendall
Grassland, which have an IRT installed. Hourly downwelling
longwave radiation is calculated using the HT-FRTC based
on the ECMWF ERA-Interim (Dee et al., 2011) atmo-
spheric profiles of temperature, specific humidity and ozone
mass mixing ratio which are available every 6 h (00:00,
06:00, 12:00 and 18:00). For the other times, the ECMWF
ERA-Interim atmospheric profiles have been interpolated

in time. The downwelling calculation does not account for
aerosol loading and uses the 8–14 µm spectral emissivity for
sandy soil from Arizona from UCSB (University of Cali-
fornia, Santa Barbara) Emissivity Library (UCSB Library)
(https://icess.eri.ucsb.edu/modis/EMIS/html/em.html, last
access: 11 February 2019). The IRT measurements were
found to be on average (of the 6 years) −0.51 K colder
when accounting for the reflected downwelling average for
the 6 years; the smallest impact was found for the 2014
measurements (−0.43 K), and the largest impact was found
in 2015 (−0.59 K).

Cloud screening of the IRT data was performed using co-
incident observations of downwelling shortwave radiation,
as no direct measurement of cloud cover is made at the
two AmeriFlux sites. The theoretical clear-sky downwelling
shortwave radiation for each site was calculated and com-
pared with the measured downwelling shortwave radiation;
times where there was a suppression in the observed down-
welling shortwave radiation compared with the theoretical
calculation were attributed to the presence of cloud. It was
found that on average (for both sites and for the 6 anal-
ysis years) the IRT data were 0.45 K warmer when apply-
ing cloud screening which equates to a −0.45 K larger cold
model bias. Cloud screening of the IRT data had a smaller
impact in May 2013 and 2018 with a −0.2 K colder model
bias compared with not accounting for cloud, and the largest
impact was found for May 2015 and 2016 contributing to a
−0.7 K colder model bias.

The IRT measurements are only presented for daylight
hours from 06:00 to 18:00 local solar time. The IRT measure-
ments outside of this time frame were anomalously warm and
were identified as being unreliable. The advantage of these
measurements is that they give greater diurnal variation at
each site recorded at 30 min intervals, and they compliment
MODIS LST retrievals which only have four overpasses per
diurnal cycle.

2.2 MODIS LST retrievals

The MOD11_L2 and MYD11_L2 LST products are gener-
ated using Moderate Resolution Imaging Spectroradiome-
ter (MODIS) radiances at a 1 km spatial resolution and are
comparable with respect to resolution with the 2.2 km LAM.
Retrievals from both Terra (10:00–11:00/22:00–23:00 LT
overpass time, MOD11_L2) and Aqua (01:00–02:00/13:00–
14:00 LT overpass time, MYD11_L2) of LST for the months
of May 2013–2018 are utilised. The LST retrieval from the
Aqua platform is likely to be closer to the maximum daily
LST than that acquired from the Terra platform (Coops et al.,
2007).

The MODIS LST retrieval algorithm is described in the
MODIS Land-Surface Temperature Algorithm Theoretical
Basis Document (Wan and Dozier, 1996; Wan, 1999). In the
literature it is found that the Collection 5 (C5) LST product
has an accuracy of within 1–2 K (Coll et al., 2005; Wang et
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al., 2007; Wan et al., 2004). More recent studies have shown
that the C5 retrievals underestimate LST by more than 3 K
for particular bare soil/sand sites; the MODIS Collection 6
(C6) retrieval was developed to address these biases (Wan,
2014). For this reason we use both C5 and C6 products in
our land surface temperature evaluation.

In order to produce an LST retrieval for each eddy-
covariance flux site, boundaries of constant latitude and lon-
gitude were chosen such that the boundaries have tangent
points 1 km away from each ground site. Thus, 2 km by 2 km
boxes are formed about each site. MODIS pixels whose cen-
tres fall within these boxes are selected and averaged to give
site-specific LSTs. Therefore, the number of MODIS pixels
contributing to one of these site specific values can range
from one to five dependent on where the site is within the
swath of the instrument. Cloud screening of the MODIS data
has been applied; data which were flagged by the MODIS
quality algorithm as contaminated by cloud were removed
from the analysis.

Li et al. (2013) found that the difference in the LST mea-
sured by nadir and off-nadir satellite observations can be
as large as 5 K for bare soils, and Hu et al. (2014) found
that LST measurements with smaller view angles tend to be
warmer. Our results support this finding; we find a larger
model cold LST biases when considering smaller view an-
gles. Our analysis finds that the average LST bias with re-
spect to Terra (Aqua) was 0.2 K (0.3 K) warmer at 40◦ rel-
ative to 30◦, 0.6 K (0.8 K) at 45◦ relative to 30◦ and 1.2 K
(0.88 K) at 50◦ relative to 30◦. The angular dependence de-
scribed arises due to different viewing and illumination ge-
ometry of the surface; studies have shown that factors in-
cluding slope orientation relative to sun and properties of the
soil and vegetation, such as the heterogeneity and the struc-
ture of the vegetation canopy, all contribute to the directional
anisotropy (Duffour et al., 2016; Ermida et al., 2014; Ras-
mussen et al., 2010). Hence, overpasses were only included
in the analysis if the incidence angle over the mid-point of
the study area was less than 30◦.

2.3 Unified Model configurations

The relevant configurations of the UM assessed in this paper
are summarised in Table 1, which describes model changes
between configurations including dynamics, resolution, data
assimilation (DA) bias correction, initialisation, land cover
and bare soil parameterisations. The operational models at
the Met Office are continually monitored and developed in
order to minimise systematic model biases and improve fore-
casts. The changes in all model configurations evaluated in
this study are part of the operational model development cy-
cle. Understanding how the model configuration changes im-
pact on surface temperatures in the development cycle, for
the purpose of assessing where any advances in the assimi-
lation of greater volumes of hyperspectral satellite sounding
data are needed, is an important evaluation. The UM con-

figurations referred to in this study are a coupled configu-
ration consisting of specific configurations the UM atmo-
spheric model (GAx.y) and the JULES land surface model
(GLx.y).

The global configuration, GA/L3.1, was run at a 25 km res-
olution with 70 vertical levels and used the New Dynamics
dynamical core to solve the atmosphere’s equations of mo-
tion (Davies et al., 2005; Walters et al., 2011). The opera-
tional GA/L6.1 configuration, introduced in 2015, used the
ENDGame dynamical core to solve the atmosphere’s equa-
tions of motion and used an increased horizontal resolution
of 17 km, hereafter referred to as GA/L6.1_17km (Walters et
al., 2017). The horizontal resolution of GA/L6.1 was further
increased to 10 km (hereafter referred to as GA/L6.1_10km)
which applies to the analysis of May 2018. The vertical
resolution remained unchanged for all configurations. The
GA/L3.1 configuration outputs 3-hourly diagnostics, and all
GA/L6.1 configurations output diagnostics on an hourly ba-
sis. The analysis presented in this paper does not use of the
first 7 h of each forecast for all model configurations, as the
first 3–6 h of a forecast are generally regarded as unreliable
due to the model spin-up time (Kasahara et al., 1992).

Bias correcting actively assimilated sounding radiance ob-
servations is necessary in order to generate an unbiased fore-
cast analysis (Zhu et al., 2014). The global model used a
static bias correction scheme (Harris and Kelly, 2001) in
2013–2015, whereas variational bias correction (VarBC) was
introduced from 2016 onwards (Cameron and Bell, 2018).
Global model configurations with the _static and _VarBC
suffixes indicate the bias correction scheme used. The two
schemes treat radiance observations differently, for example,
in the static scheme bias corrections are pre-computed for all
available sensors and the bias correction is typically updated
at 6–12 month intervals. The bias corrections are based on an
observation corrected to the model background (background
field from previous model run). VarBC, in contrast, is an
adaptive bias correction scheme, and the bias for each radi-
ance channel is computed using a linear predictor model. The
observations are corrected to the model analysis (rather than
the background) given from the 4D-Var assimilation system.
ASCAT (Advanced SCATterometer) volumetric surface soil
moisture data are assimilated into all global configurations
(Dharssi et al., 2011).

The nesting of high-resolution LAMs provide useful in-
formation at scales that cannot be provided by lower-
resolution global-scale models (Davies, 2014), for exam-
ple from surface properties, such as orography and vegeta-
tion cover, and by better resolving moist physical processes
(e.g. clouds, precipitation and visibility). Two operational
nested LAMs were run for the contiguous US as part of
the National Oceanographic and Atmospheric Administra-
tion’s Hazardous Weather Testbed at 4.4 and 2.2 km reso-
lutions (hereafter referred to as US4.4 and US2.2, respec-
tively) (Hanley et al., 2016). The US4.4 was based on the
European 4 km model (EURO4), and the US2.2 was based

www.geosci-model-dev.net/12/1703/2019/ Geosci. Model Dev., 12, 1703–1724, 2019



1708 J. K. Brooke et al.: Evaluating the Met Office Unified Model LST

Table 1. Summary of UM configurations from 2013 to 2018. The ratio of the thermal to the momentum roughness lengths is abbreviated to
zOH/zOM, zOM is the roughness length of momentum and ε is the bare soil emissivity.

Global US2.2

x GA/L3.1 US2.2_ConfigA

(i) Dynamics New Dynamics (Walters et al., 2011) New Dynamics (Walters et al., 2011)
(ii) Resolution 25 km horizontal resolution 2.2 km horizontal resolution

2013 (iii) DA bias correction Static bias correction No data assimilation
(iv) Initialisation – US4.4, T+3
(v) Land cover IGBP land cover IGBP land cover
(vi) Bare soil parameters ε = 0.97, zOM = 0.0032 m, zOH/zOM = 0.10 ε = 0.97, zOM = 0.001 m, zOH/zOM = 0.02

x GA/L3.1 US2.2_ConfigB

(i) Dynamics New Dynamics (Walters et al., 2011) New Dynamics (Walters et al., 2011)
(ii) Resolution 25 km horizontal resolution 2.2 km horizontal resolution

2014 (iii) DA bias correction Static bias correction No data assimilation
(iv) Initialisation – US4.4, T+3
(v) Land cover IGBP land cover IGBP land cover
(vi) Bare soil parameters ε = 0.97, zOM = 0.0032 m, zOH/zOM = 0.10 ε = 0.90, zOM = 0.001 m, zOH/zOM = 0.02

x GA/L6.1_17km_static US2.2_ConfigC

(i) Dynamics ENDGame (Walters et al., 2017) ENDGame (Walters et al., 2017)
(ii) Resolution 17 km horizontal resolution 2.2 km horizontal resolution

2015 (iii) DA bias correction Static bias correction No data assimilation
(iv) Initialisation IGBP land cover GA/L6.1_17km_static, T+0
(v) Land cover – IGBP land cover
(vi) Bare soil parameters ε = 0.90, zOM = 0.001 m, zOH/zOM = 0.02 ε = 0.90, zOM = 0.001 m, zOH/zOM = 0.02

x GA/L6.1_17km_VarBC US2.2_ConfigD

(i) Dynamics ENDGame (Walters et al., 2017) ENDGame (Walters et al., 2017)
(ii) Resolution 17 km horizontal resolution 2.2 km horizontal resolution

2016 (iii) DA bias correction Variational bias correction (VarBC) No data assimilation
(iv) Initialisation – GA/L6.1_17km_VarBC, T+0
(v) Land cover IGBP land cover IGBP land cover
(vi) Bare soil parameters ε = 0.90, zOM = 0.001 m, zOH/zOM = 0.02 ε = 0.90, zOM = 0.001 m, zOH/zOM = 0.02

x GA/L6.1_17km_VarBC US2.2_ConfigD

(i) Dynamics ENDGame (Walters et al., 2017) ENDGame (Walters et al., 2017)
(ii) Resolution 17 km horizontal resolution 2.2 km horizontal resolution

2017 (iii) DA bias correction Variational bias correction (VarBC) No data assimilation
(iv) Initialisation – GA/L6.1_17km_VarBC, T+0
(v) Land cover IGBP land cover IGBP land cover
(vi) Bare soil parameters ε = 0.90, zOM = 0.001 m, zOH/zOM = 0.02 ε = 0.90, zOM = 0.001 m, zOH/zOM = 0.02

x GA/L6.1_10km_VarBC US2.2_ConfigE

(i) Dynamics ENDGame (Walters et al., 2017) ENDGame (Walters et al., 2017)
(ii) Resolution 10 km horizontal resolution 2.2 km horizontal resolution

2018 (iii) DA bias correction Variational bias correction (VarBC) No data assimilation
(iv) Initialisation – GA/L6.1_10km_VarBC, T+0
(v) Land cover IGBP land cover ESA Land Cover CCI
(vi) Bare soil parameters ε = 0.90, zOM = 0.001 m, zOH/zOM = 0.02 ε = 0.90, zOM = 0.001 m, zOH/zOM = 0.02
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on the UKV (variable resolution UK model for kilometre-
scale forecasting) operational model. The US4.4 was ini-
tialised from the GA/L3.1 T+0 analyses and driven by hourly
GA/L3.1 lateral boundary conditions. US2.2_ConfigA–B
were nested within the US4.4, initialised from the US4.4
T+3 forecast conditions and driven by hourly US4.4 lateral
boundary conditions. There was no additional data assimi-
lation in the LAMs. No further configurations of the US4.4
were run beyond 2014, and for this reason the US4.4 is not
fully evaluated in this study. The US2.2 (ConfigC–E, 2015–
2018) was initialised directly from the GA/L6.1 T+0 anal-
yses and driven by hourly GA/L6.1 lateral boundary con-
ditions. Specifically, US2.2_ConfigC was initialised from
GA/L6.1_17km_static T+0; US2.2_ConfigD was initialised
from GA/L6.1_17km_VarBC T+0; US2.2_ConfigE was ini-
tialised from GA/L6.1_10km_VarBC T+0.

All global configurations and US2.2_ConfigA–D use
the International Geosphere-Biosphere Programme’s (IGBP)
land cover classification dataset for the surface fractional
cover mapped to JULES’ five plant functional types (PFTs).
US2.2_ConfigE uses the surface fractional cover based
on the European Space Agency’s Land Cover Climate
Change Initiative (ESA LC_CCI) global vegetation distribu-
tion (Poulter et al., 2015; Harper et al., 2016), mapped to
JULES’ five PFTs.

A tiled approach is used to represent sub-grid scale het-
erogeneity (Essery et al., 2003); the surface of each land
point is subdivided into five types of vegetation, known as
PFTs (broadleaf trees, needleleaf trees, temperate C3 grass,
tropical C4 grass and shrubs) and four non-vegetated surface
types (urban areas, inland water, bare soil and land ice). Sur-
face exchange on these nine surface tiles can be calculated in
two ways: on each tile separately or by aggregating the sur-
face properties on a single tile representing a grid-box mean.
The global configurations amalgamate the properties of each
surface tile, weighted by their grid-box fraction, into a single
representative parameter value. As such there was no repre-
sentation of sub-grid heterogeneity (Walters et al., 2011). In
contrast to this, the fluxes between the land surface and the
atmosphere were calculated on each of the nine surface tiles
independently for the US2.2.

A series of land surface parameters were varied between
UM configurations as part of the operational implementa-
tion in order to improve the representation of near-surface
temperature gradients and surface fluxes. These land sur-
face parameters are summarised in Table 1. In GA/L3.1 and
US2.2_ConfigA the surface emissivity was set to 0.97 over
all land surface tiles; however, this was seen to cool the sur-
face too strongly in desert regions (Walters et al., 2017). In
all GA/L6.1 configurations and US2.2_ConfigB–E individ-
ual surface tiles were assigned different emissivity param-
eter values: bare soil uses an emissivity of 0.90, and C3
grasses, C4 grasses and shrubs use an emissivity of 0.98. To
summarise the emissivity changes, an emissivity map of the
study region for each configuration is presented in Fig. S1 in

the Supplement. The emissivity changes relative to GA/L3.1
(Fig. S1a) and US2.2_ConfigA (Fig. S1d) result in regional
decreases for GA/L6.1 (Fig. S1b, c) and US2.2ConfigA–D
(Fig. S1e) associated with regions of larger bare soil frac-
tions. US2.2ConfigE (Fig. S1f), in contrast, shows an in-
crease in emissivity for the study domain related to a reduc-
tion in the bare soil cover fraction. Section 3.3 provides a
more thorough discussion of the surface heterogeneity and
land cover in each model configuration.

Surface exchange is treated using the Monin and
Obukhov (1954) mean similarity theory. The roughness
length of heat (zOH) is required to estimate the sensible heat
flux and can be considered relative to that of momentum
(zOM) via the simple ratio of zOM/zOH. GA/L3.1 uses a bare
soil roughness length (zOM) of 0.0032 m, and the ratio of
roughness lengths for heat and momentum, zOH/zOM, was
set to 0.1 for all land surface types. In all GA/L6.1 con-
figurations (17km_static, 17km_VarBC and 10km_VarBC)
and all configurations of the US2.2, the bare soil rough-
ness length was reduced to 0.001 m and the ratio zOH/zOM
was treated independently for each surface type; the bare
soil zOH/zOM was decreased to 0.02 (Walters et al., 2014,
2017). The zOH/zOM ratio was revised between GA/L3.1
and GA/L6.1 in order to improve both land surface tem-
perature and near-surface air temperatures in desert regions.
The revised zOH/zOM ratio was adopted in US2.2 (and other
LAMs) from 2013, whereas GA/L6.1 was adopted for oper-
ational use in July 2014.

Model cloud-clearing was performed for all model config-
urations based on a threshold of total cloud fraction greater
than 0.1 for each model grid box. In cases where the combi-
nation of model and MODIS cloud clearing resulted in a frac-
tion of the domain containing less than 10 % of the data, the
comparison was excluded from the analysis as this was taken
to indicate cloud in the region that could affect the measure-
ments.

The surface temperature biases (observed-minus-model
background, O-B) for the southern part of the North
American continent are presented in Fig. 1 for IASI 1D-
VAR retrievals compared with two UM global configu-
rations, GA/L3.1 (May 2013) and GA/L6.1_17km_static
(May 2015). Please note that Fig. 1 presents the surface
temperature bias as O-B, whereas the paper is presented for
the model-background-minus-observed (B-O) hereafter. The
IASI 1D-Var retrievals have a spatial resolution of 11 km and
have been re-gridded to a half degree global resolution. In
terms of model background-minus-observed surface temper-
ature biases, it can be seen that GA/L3.1-IASI 1D-VAR gives
rise to an east–west spatial divide in the magnitude of LST
biases with LST cold biases in excess of −10 K in the south-
west US, western Mexico and extending east into the Great
Plains. Moderate cold LST biases extend into the northern
US with biases in the range of−4 to−6 K. The North Ameri-
can mean bias is reduced in GA/L6.1_17km_static-IASI 1D-
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VAR compared with GA/L3.1-IASI 1D-VAR, although re-
gional biases such as the south-west US are still prominent.

3 Results and discussion

3.1 Representation of the diurnal cycles of LST

The model diurnal cycles in surface temperature for Kendall
Grassland are compared in Fig. 2 against observations. The
GA/L3.1 diurnal cycle (Fig. 2a) highlights a cold model pre-
diction when compared with MODIS retrievals; daytime bi-
ases are in the ranges of −13.6±2.8 K and −8.8±2.5 K for
Terra and Aqua overpasses, respectively. Biases in modelled
LST are larger in the mid-morning associated with the Terra
overpass which indicates that the model struggles to cap-
ture the magnitude of the warming from the morning tran-
sition to the late morning period. Observations from Aqua
are made around the time of the maximum LST when sur-
face temperatures are changing less rapidly than during Terra
observations. The biases seen with MODIS are consistent
when compared with measurements from the IRT (bias of
−7.5± 3.2 K).

The US2.2_ConfigA diurnal cycle (Fig. 2b) shows that
the phase of the surface temperature is improved relative to
GA/L3.1. The US2.2_ConfigA configuration improves the
timing of the initial warming during the morning transition,
and the bias relative to Terra (7.6± 2.4 K) is improved as a
consequence. The underestimate at the time of the diurnal
maximum remains in the US2.2_ConfigA and the magnitude
of the cold bias is approximately equal to GA/L3.1.

The diurnal cycle of surface temperature in
GA/L6.1_17km_static (Fig. 2c) shows a significant im-
provement relative to GA/L3.1. The cold LST biases are
reduced to −1.4± 2.7 K and −3.6± 3.0 K for Terra and
Aqua overpasses, respectively. Additionally, there is an
improved overlap of the 1σ confidence intervals for the
daytime LST measured by the ground-based IRT and for
GA/L6.1_17km_static. The US2.2_ConfigC (Fig. 2d) shows
a further small improvement of the LST bias relative to
the GA/L6.1_17km_static configuration, although not to
the same extent as was seen between GA/L3.1 and the
US2.2_ConfigA. Biases in US2.2_ConfigA are reduced to
−1.3± 2.1 K (with respect to Terra) and −2.5± 1.6 K (with
respect to Aqua).

The LSTs measured at the ground sites are from Apogee
IRT radiometers installed at 4 m and have a field of view
which covers approximately 9 m2. The model grid squares
that contain these sites are large and in the case of the
GA/L3.1 and GA/L6.1_17km_static cover large elevation
ranges within one grid square. As the model configurations
have grid squares that are many orders of magnitude larger
than this, the IRT-measured LSTs greatly under-sample the
variability within the model grid square; however, despite

this, Fig. 2c and d demonstrate good agreement in the rep-
resentation of the daytime diurnal cycle.

3.2 Evaluation of UM surface temperatures at
eddy-covariance sites

This section extends the analysis to the four eddy-covariance
sites, evaluates surface temperatures for different land clas-
sification types and attributes observed trends to changes in
a range of UM model configurations. Figure 3 presents the
daytime LST biases for the UM configurations relative to
MODIS C6 Terra and Aqua retrievals for the 6 years in the
analysis (2013–2018, row 1–6).

The US2.2_ConfigA–D have a smaller cold surface tem-
perature biases compared with the corresponding global con-
figuration from 2013 to 2017. The higher-resolution US2.2
generally has a smaller daytime bias than the US4.4 (approx-
imately 1 K smaller, data not shown). The US2.2 configu-
rations have higher-resolution ancillary datasets which bet-
ter resolve surface properties (such as orography and surface
fractional cover), and subsequently improve the model repre-
sentation of the surface heterogeneity, than the GA/L3.1 and
GA/L6.1 configurations. In addition, there is a reduction in
the bare soil roughness length parameterisation (Table 1) in
the US2.2_ConfigA (zOM = 0.0010 m and zOH/zOM = 0.02)
compared with GA/L3.1 (zOM = 0.0032 m and zOH/zOM =

0.10) which is required to estimate the sensible heat flux. A
smaller roughness length for heat results in a smaller sensible
heat flux, and hence a smaller heat flux from the land surface
to the atmosphere.

Improvements in LST biases in the US2.2 configurations,
compared with GA/L3.1, are greater at the shrubland sites,
Lucky Hills and Santa Rita Mesquite, compared with the
grassland sites, Kendall Grassland and Santa Rita Grassland.
At Lucky Hills, for example, biases with respect to Aqua
are reduced from −8.2± 2.5 K (GA/L3.1, 2013) to −3.8±
1.9 K (US2.2_ConfigA). In contrast, at Santa Rita Grass-
land, the biases are reduced to a lesser extent from −10.7±
3.4 K (GA/L3.1, 2013) to −7.3± 1.7 K (US2.2_ConfigA),
and at Kendall Grassland the bias with respect to Aqua
is unchanged between GA/L3.1 and US2.2_ConfigA. The
IRT measurements support this trend: at Lucky Hills the
bias is reduced from −9.0± 3.7 K (GA/L3.1) to −3.3±
2.3 K (US2.2_ConfigA), whereas the IRT measurements at
Kendall Grassland only show a 2.2 K improvement in the
US2.2_ConfigA compared with GA/L3.1.

The higher-resolution ancillaries in the US2.2 configura-
tions improve the surface fractions for the two shrubland
sites; the US2.2 increases the bare soil fractional cover which
acts to increase the sparsity of the vegetation cover, and
improves the model representation of the surface hetero-
geneity. At the Lucky Hills shrubland site, for example, the
bare soil fraction is increased from 0.26 (GA/L3.1) to 0.48
(US2.2_ConfigA–D), and at Santa Rita Mesquite a similar
increase from 0.22 (GA/L3.1) to 0.37 (US2.2_ConfigA–D)
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Figure 1. UM surface temperature biases (O-B) compared to IASI 1D-VAR retrievals for the North American continent during (a) GA/L3.1,
May 2013, and (b) GA/L6.1_17km_static, May 2015.

is reflected. This brings the modelled bare soil cover frac-
tions closer to the observed fractions of 63 % for Lucky Hills
Shrubland and 50 % for Santa Rita Mesquite (Scott et al.,
2015). However, at the two grassland sites, Kendall Grass-
land and Santa Rita Grassland, there was a reduction in bare
soil fractional cover between GA/L3.1 and US2.2_ConfigA.
The lower cover fraction at the grassland sites is maintained
in all GA/L6.1_17km configurations. At the Kendall Grass-
land site, for example, the bare soil fraction is decreased from
0.26 (GA/L3.1) to 0.20 (US2.2_ConfigA–D), and at Santa
Rita Grassland a similar decrease from 0.16 (GA/L3.1) to
0.10 (US2.2_ConfigA–D) is reflected. This is in contrast with
the observed fractions of 60 % for Kendall Grassland and
45 % for Santa Rita Grassland (Scott et al., 2015).

The trend observed suggests that land surface warming can
be attributed to both the revised bare soil roughness lengths
and increased fraction of bare soil for the shrubland sites,
whereas at the grassland sites a decrease in bare soil frac-
tional cover appears to have a cooling affect that offsets the
warming associated with the updated roughness length pa-
rameterisation.

In US2.2_ConfigB, the Lucky Hills site is seen to warm
too strongly compared with the three other eddy-covariance
sites. The bare soil emissivity was reduced to 0.90 in
US2.2_ConfigB, which acts to reduce the upwelling long-
wave radiation at the surface and leads to warming of sur-
face temperatures at all four sites. At Lucky Hills, a warm
surface temperature bias develops with respect to Terra C6
(4.6±4.5 K in 2014) and Aqua C6 (1.5±2.6 K in 2014). The
IRT measurements located at Lucky Hills support the devel-
opment of the warm bias (0.6± 5.4 K in 2013; 1.4± 2.6 K
in 2015). Lucky Hills has the largest bare soil fraction of the
four eddy-covariance sites; therefore, a greater change as a
result of the revised bare soil emissivity is expected at this
site. Although too much warming is seen at Lucky Hills, the

revised emissivity leads to improvements in the surface tem-
perature bias at the other three eddy-covariance sites.

The GA/L6.1 and US2.2 configurations use the same
set of bare soil parameters (same emissivity, zOH/zOM and
zOM); hence, the main difference between configurations
from the land perspective is the resolution of the config-
uration. In GA/L6.1_17km_static (2015; Fig. 3, row 3),
the warming of the land surface that was seen in the
US2.2_ConfigB is reflected in the global configuration. LST
biases in GA/L6.1_17km_static at the two shrubland sites are
reduced by 8–9 K with respect to Terra, and 3–5 K with re-
spect to Aqua compared with GA/L3.1. The IRT measure-
ments support the improved LST biases between the two
global configurations. For example, at Lucky Hills, a reduc-
tion in the model bias from−9.0±3.7 K (GA/L3.1, 2013) to
−2.7±2.46 K (GA/L6.1_17km_static, 2015) was found with
respect to the IRT. The same trend is observed for Kendall
Grassland: the bias is reduced from −7.5± 3.2 K (GA/L3.1,
2013) to 0.15± 2.4 K (GA/L6.1_17km_static, 2015). The
LST bias in all GA/L6.1 configurations is generally smaller
with respect to Terra than with respect to Aqua, whereas the
reverse was true for GA/L3.1. This trend supports the previ-
ously described improved phase of the LST diurnal cycle.

The biases are generally larger in
GA/L6.1_17km_VarBC/US2.2_ConfigD (2016, 2017)
than in GA/L6.1_17km_static /US2.2_ConfigC (2015). This
step change is coincident with a change in the bias correc-
tion scheme for satellite radiances from a static scheme to
VarBC, between 2015 (GA/L6.1_17km_static) and 2016
(GA/L6.1_17km_VarBC). It could be expected that a change
to the treatment of the bias correction could result in a
different model climatology which consequently influences
the magnitude of the surface temperature bias as was found
for the model humidity field (Cameron and Bell, 2018). The
magnitude of the biases with GA/L6.1_17km_VarBC are
still improved compared with GA/L3.1_25km_static, even
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Figure 2. Diurnal cycles of surface temperature at Kendall Grassland (red) observed from IRT measurements compared with (blue) UM con-
figurations from (a) GA/L3.1; (b) US2.2_ConfigA; (c) GA/L6.1; and (d) US2.2_ConfigC. Black triangles denote TERRA LST retrievals, and
grey triangle represent AQUA LST retrievals. Time is shown using Mountain Standard Time (MST). Please note that the IRT measurements
have only been plotted from 06:00 to 18:00 MST.

though there appears to be a degradation when compared
with GA/L6.1_17km_static.

In 2018 it can be seen that the US2.2_ConfigE has a larger
cold LST biases compared with GA/L6.1_10km_VarBC, and
it is the only year in our analysis where the global configura-
tion out-performs the higher-resolution US2.2 configuration.
The GA/L6.1_10km_VarBC global configuration has an up-
graded horizontal resolution of 10 km, and this exhibits an
increase in the resolution of the surface fractional cover land
surface ancillary. At all four eddy-covariance sites there is an
increase in the shrub and bare soil cover fractions, and an as-
sociated decrease in the total grass fraction; again, this acts
to increase the sparsity of the vegetation cover and improves
the model representation of the surface heterogeneity.

US2.2_ConfigE uses the ESA LC_CCI surface fractional
cover dataset rather than the IGBP surface fractional cover
dataset, and the trend observed suggests there is a degrada-
tion in the land surface temperature bias at all four sites rel-
ative to US2.2_ConfigA–D. The mechanism for the poorer
performance will be discussed more fully in the following
section.

Of the four eddy-covariance sites evaluated in this study,
the least improvement is seen for the Santa Rita Grassland
site across the 6-year analysis period. At Santa Rita Grass-
land the model LST biases with respect to Aqua are generally
greater than 4–5 K for all configurations. In the experimen-
tal domain in south-eastern Arizona, the dominant vegetation
type is shrubland, and for this reason it could be expected that
the land surface ancillaries for the grassland sites, despite any
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Figure 3. Daytime LST biases from the online UM configurations compared with MODIS C6 Terra and Aqua LST retrievals at the four
eddy-covariance flux sites: Lucky Hills, Santa Rita Mesquite, Kendall Grassland and Santa Rita Grassland. The GA/L3.1 configurations
(2013, 2014), the GA/L6.1 configurations (GA/L6.1_17km_static: 2015; GA/L6.1_17km_VarBC: 2016, 2017; and GA/L6.1_10km_VarBC:
2018) are shown in blue. The US2.2 configuration is shown in cyan. The LST evaluation was performed for 6 years: 2013 (row 1), 2014 (row
2), 2015 (row 3), 2016 (row 4), 2017 (row 5) and 2018 (row 6).
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differences in model resolution, are not as well represented
as for the shrubland sites. The Santa Rita Mesquite site, in
contrast, has surface temperatures biases which are below
2 K during 2015 and 2016, and could therefore be considered
small enough to be suitable for data assimilation purposes.

As discussed in the methodology, it has been shown in
the literature that MODIS C5 retrievals underestimate LST
by more than 3 K for particular bare soil/sand sites (Wan,
2014); therefore, it was important to evaluate MODIS C5 and
MODIS C6 in order to access the impact on the magnitude
of the model biases. We found the different collections have
minimal impact on the magnitude of the model biases (not
shown). For the US2.2_ConfigA, the difference in the day-
time biases is 0.9 K, and the difference is smaller for subse-
quent years: 0.4 K in 2014 (US2.2_ConfigB) and 0.1 K from
2015 (US2.2_ConfigC). It was also found that the grassland
sites, particularly Santa Rita Grassland, have a larger differ-
ence between the two collections (1.5 K smaller for the C6
retrieval) than the shrubland sites. Furthermore, the differ-
ence between the two collections was found to be of a similar
magnitude for the night-time retrievals, and is smaller than
the overall variability in the night-time bias. It is important
to recognise that the impacts of the retrieval algorithm are
minimal when compared with the magnitude of the model
biases being considered in this study.

Variability of surface temperatures could arise due to vari-
ability in cloud cover or soil moisture. In this study we con-
sider only clear-sky situations; both the model and obser-
vational datasets have been screened to remove cloud con-
tamination, which suggests that soil moisture variability be-
tween the analysis years could be a factor for investigation.
Point-scale measurements of volumetric soil moisture at the
eddy-covariance sites are made at depths of 5 and 15 cm. A 6-
year multi-year mean soil moisture for each site and at each
soil depth was calculated, and was used to calculate a soil
moisture anomaly. At both sites, the volumetric soil mois-
ture in May is less than 0.05 kg m−2 (0.10 kg m−2) at 5 cm
(15 cm) for all years in the evaluation. The in situ volumetric
soil moisture measurements suggest that the moisture levels
were almost always exhausted for each May analysis period;
therefore, it is unlikely that there was sufficient soil moisture
to impact on surface temperature variability.

In support of the eddy-covariance measurements, monthly
0.5◦× 0.5◦ soil moisture and soil moisture anomaly prod-
uct from the Climate Prediction Center (Fan et al., 2004)
were used to assess the larger-scale trends in soil moisture
in south-eastern Arizona. The soil moisture anomaly prod-
uct indicates that May 2013 and 2014 were anomalously dry
(−20 to −40 mm) for an extensive region of the western US,
May 2015 had a neutral soil moisture anomaly, May 2016
and 2017 had localised dry regions confined within Arizona,
and May 2018 was anomalously dry (−80 mm) for an exten-
sive region of the western US.

3.3 Correlation of LST biases with model orography
and surface heterogeneity

The LST biases were initially evaluated for the model diur-
nal cycle, and then extended to attribute observed trends in
LST biases to changes to model parameters for a range of
UM model configurations at four eddy-covariance flux sites.
The discussion going forward will centre on a domain of
31.25–32.25◦ N and 69.0–71.5◦W in south-eastern Arizona
in order to understand the spatial distribution of the surface
temperature biases, and the mechanisms which give rise to
the spatial distributions. The domain includes the San Pedro
Basin, Sulfur Springs Valley and San Simon Valley, consist-
ing of shrublands, grasslands and riparian surfaces, as well
as isolated, forested mountain ranges. The domain is hetero-
geneous in terms of surface cover and orographic slope and
aspect with many model grid boxes and MODIS pixels in-
cluding both craggy and forested or shrubland terrain within
them.

Figure 4a shows the US2.2_ConfigA–E orography for the
study domain. The figure demonstrates the complex terrain in
the region with low-lying ground in the north-west of the do-
main, numerous areas of mountainous terrain including both
to the east and west of the Kendall Grassland and Lucky Hills
with the highest mountain range of Chiricahua Mountains
to the east (31.8◦ N, 70.7◦W). The solar radiation reaching
the surface is not considered to be uniform, and the absorp-
tion of solar radiation is highly dependent on local orogra-
phy such as the orography slope and aspect (Manners et al.,
2012). Figure 4b and c present the respective x component
and y component of the orographic slope which shows that
the orography in this region is generally aligned in a north–
south direction.

Firstly, we will investigate the correlation between the
LST biases with the orographic slope. Our hypothesis is
that northern and western-facing slopes of mountain ranges
would have a shorter or delayed diurnal cycle due to re-
duced shortwave absorption at the surface, and that this could
contribute to the spatial distribution of the LST bias. A lin-
ear least-squares regression is performed between the LST
biases and the modelled orography (and surface fractional
cover), and a Pearson product-moment correlation coefficient
is applied to measure the strength and direction of the linear
relationship between two variables.

Figure 5a shows the spatial distribution of daytime LST
biases between MODIS Terra (1755Z) Collection 6 and the
US2.2_ConfigA on 13 May 2013. This example was cho-
sen to highlight typical LST biases seen during the daytime
in cloud-free conditions. The mean LST bias with respect
to the MODIS Collection 6 (Collection 5) is −7.9± 3.9 K
(−7.8± 3.7 K). Figure 5 highlights the advantage of using
the 1 km resolution LST from MODIS compared with the
IASI 1D-Var retrievals presented in Fig. 1 to examine the
biases. There is significant variability in the distribution of
bias with localised regions of warm and cold LST bias which
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Figure 4. (a) Model orography for the US2.2 configuration.
(b) US2.2 x component of the orographic slope, where negative
values indicate easterly facing slopes, and positive values indicate
westerly facing slopes. (c) US2.2 y component of the orographic
slope, where negative values indicate northerly facing slopes, and
positive values indicate southerly facing slopes. The red dots
represent Lucky Hills (31.75◦ N, 110.05◦W), Kendall Grassland
(31.73◦ N, 109.94◦W), Santa Rita Mesquite (31.82◦ N, 110.87◦W)
and Santa Rita Grassland (31.79◦ N, 110.83◦W).

would not be evident using a coarser retrieval. Secondly, we
will examine correlations between the surface heterogeneity
in terms of the US2.2 surface fractional cover and the spatial
distributions of the LST biases.

Figure 5b presents the spatial distribution of the combined
IGBP total grass fraction and the IGBP shrub fraction in the
study domain, and Fig. 5c shows the spatial distribution of
the IGBP bare soil cover fraction. We will investigate the
coefficients of correlation between the LST biases and the

vegetation and bare soil cover fractions represented in the
US2.2_ConfigA–D surface fractional cover ancillary dataset.

Figure 5d–f presents the equivalent for the new ESA
LC_CCI surface fractional cover introduced into the
US2.2_ConfigE in 2018. Figure 5d shows the spatial
distribution of daytime LST biases between MODIS
Terra (1825Z) Collection 6 and the US2.2_ConfigE on
30 May 2018. The mean LST bias with respect to MODIS
Collection 6 is −7.6± 3.3 K. The mean LST bias for the
domain is not significantly different to that seen in Fig. 5a,
although the spatial pattern is different, with localised cold
and warm LST bias regions in different locations. This is
predominantly due to a redistribution of the surface frac-
tional cover in IGBP and the ESA LC_CCI datasets. Fig-
ure 5e presents the ESA LC_CCI spatial distribution of the
total grass fractions and shrub fractions, and Fig. 5f shows
the ESA LC_CCI spatial distribution of the bare soil fraction.
The ESA LC_CCI reduces the total grass fractional cover and
the bare soil fractional cover, and increases the shrub fraction
across the domain. This results in a closed shrub vegetation
class. The ESA LC_CCI degrades the representation of the
semi-arid ecosystem, in particular the representation of the
bare soil cover fraction, which is reduced to 15 %–20 %, and
is significantly below the observed fractions for this region
(Scott et al., 2015).

The area average May mean surface temperature bias
for the US2.2 for the study region for the 6-year analy-
sis period has been calculated and presented in Fig. 6a.
For all configurations the night-time bias was less than
2.8 K, and suggests an improvement in the night-time bias
between 2013 and 2018. The daytime biases are largest
for 2013 and are progressively reduced between 2013
(US2.2_ConfigA) and 2015 (US2.2_ConfigC) from −8.2±
4.4 K to −5.9± 4.2 K (with respect to MODIS Collection
6). In 2016 (US2.2_ConfigD), 2017 (US2.2_ConfigD) and
2018 (US2.2_ConfigE) the bias in the model increases to
−7.2± 4.7 K, −7.4± 4.3 K and −7.6± 3.3 K, respectively.
This follows the same trend seen at the four eddy-covariance
flux sites.

All data presented in Fig. 6a have been cloud-screened
in the US2.2 configuration and for the MODIS overpasses.
The impact of model cloud-clearing of the US2.2 has been
assessed based on a threshold of total cloud cover greater
than 0.1 (as described in Sect. 2.4); model cloud-clearing in-
creases night-time biases by 0.2–0.4 K, and reduces the ab-
solute daytime biases by between 0.3 and 0.5 K. Figure 6a
presents the domain average LST bias using both MODIS
C5 and C6 retrievals. There is a marginal colder bias with
the MODIS Collection 6 which is in the order of 0.5–0.6 K in
2013–2014 and less than 0.1 K in 2015 and 2016. The impact
of the two MODIS collections on the correlation coefficients
is minimal, and only Collection 6 is presented.

The coefficients of correlation between the LST bias and
the x component and the y component of the orographic
slope have been calculated for the 6-year analysis period and
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Figure 5. (a) Spatial distribution of surface temperature biases in the US2.2_ConfigA with respect to MODIS Terra Collection 6 on
13 May 2013. (b) The IGBP total grass (C3 and C4) and shrub cover fraction for the US2.2 configuration. (c) The IGBP bare soil cover frac-
tion for the US2.2 configuration. (d) Spatial distribution of surface temperature biases in the US2.2_ConfigD with respect to MODIS Terra
Collection 6 on 30 May 2018. (e) The LC_CCI total grass (C3 and C4) and shrub cover fraction for the US2.2 configuration. (f) Bare soil
cover fraction for the US2.2 configuration. Red dots represent Lucky Hills (31.75◦ N, 110.05◦W), Kendall Grassland (31.73◦ N, 109.94◦W),
Santa Rita Mesquite (31.82◦ N, 110.87◦W) and Santa Rita Grassland (31.79◦ N, 110.83◦W).

are presented in Fig. 6b and c, respectively. The solar illu-
mination geometry of orography changes as a function of
time of day, whereas the remotely sensed LST is a direc-
tional variable with each satellite platform (Terra and Aqua)
and maintains the same angle with respect to the sun. Each
platform measures a similar illumination geometry on each
overpass; therefore, the coefficients of correlation are calcu-
lated separately for the Terra and Aqua retrievals in Fig. 6b
and c. The night-time coefficients of correlation have a value
of ±0.2 which indicates that there is a relationship between
the two variables, but it is weak and likely insignificant. For
the x component prior to 2018, the daytime coefficient of cor-
relation was positively correlated with a value of 0.41±0.05

(0.28± 0.05) for Aqua (Terra) retrievals; this identifies that
regions of cold model LST bias are found on easterly slopes,
and regions of warm model LST bias are found on westerly
slopes. We find a stronger correlation between the x com-
ponent of the orographic slope and the LST bias for Aqua
compared with Terra, whereas the difference between the
two platforms was minimal for the y component of the oro-
graphic slope.

The coefficients of correlation for the y component of
the orographic slope have weaker correlations of less than
±0.2 indicating there is no north–south difference in the bias,
which may be because the orography in this region is gener-
ally aligned in a north–south direction.
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Figure 6. (a) US2.2 daytime (red) and night-time (blue) LST bi-
ases determined from MODIS Collection 5 (solid) and Collection 6
(dashed) overpasses (the average of Terra and Aqua retrievals) ac-
quired during the May 2013–2018 period. The coefficient of corre-
lation (R) for daytime and night-time during the May 2013–2018
period between the surface temperature bias and (b) the US2.2
x component of the orographic slope, (c) the US2.2 y component
of the orographic slope, (d) the grass fractional cover, (e) the bare
soil fractional cover, and (f) the shrub fractional cover for the US2.2
configuration.

Our analysis also finds the coefficients of correlation rela-
tive to the y component of the orographic slope at the time of
the Terra overpasses are larger than at the time of the Aqua
overpasses (not shown). This is an expected outcome of the
analysis, as the Terra overpass is before noon and northern
slopes will be cooler. No significant differences were ob-

served for the x component of the orographic slope between
the respective Terra or Aqua overpasses.

The daytime and night-time correlation coefficients pre-
sented in Fig. 6d indicate that there is a null to weak re-
lationship (R less than −0.2) between the LST bias and
distribution of the dominant grass vegetation from 2013 to
2017. In 2018 (US2.2_ConfigE), with the introduction of
ESA LC_CCI surface fractional cover, the coefficient of cor-
relation becomes more significant (0.33± 0.07).

More interesting are the correlation coefficients between
the LST bias and bare soil cover fraction presented in Fig. 6e.
The LST bias is seen to have a moderate correlation in 2013–
2017, with the IGBP bare soil cover fraction, during the day-
time. The largest correlation is for 2013 with a correlation
coefficient of 0.61± 0.08; this is also associated with the
largest mean surface temperature bias of the 6-year anal-
ysis. From 2014 to 2017, in configurations also using the
IGBP surface fractional cover, the correlation coefficients re-
main statistically significant with a range of 0.49± 0.05 to
0.57±0.13. The correlation coefficients for the daytime over-
passes suggest a moderately strong relationship and that re-
gions with a cold LST bias are associated with low bare soil
cover fractions. At night the LST bias is weakly correlated
(−0.21±0.06 in 2013) with the bare soil cover fraction – the
correlation not significantly different from zero for 2014 to
2018.

The 2013–2017 coefficients of correlation with the IGBP
shrub surface fractions follow the same trend as the IGBP
bare soil fractions, although with a less significant correla-
tion (0.36± 0.09). Again, this suggests that the regions of
cold model LST bias are additionally associated with regions
with low shrub fractions (<20 %), although it is secondary
to the sensitivity of the bare soil. These results indicate that
sparse vegetation canopies across the study domain are not
well represented by the IGBP surface fractional cover. Our
findings suggest that the development of surface cover ancil-
lary datasets for sparse canopies is necessary.

In 2018, the coefficients of correlation are weaker for both
the ESA LC_CCI shrub surface fractional cover (−0.31±
0.04) and bare soil surface fractional cover (−0.30± 0.06)
and are the opposite sign to that calculated for the IGBP
surface fractional cover. As described previously, the ESA
LC_CCI degrades the representation of the semi-arid ecosys-
tem, in particular the representation of the bare soil cover
fraction, by forming a closed shrub vegetation class to repre-
sent the region. The ESA LC_CCI bare soil fractions remain
too low across the study domain, and this is a possible expla-
nation as to why the mean LST bias from the 2.2 km model
for 2018 is −7.6± 3.3 K and is effectively unchanged from
the mean LST bias for 2013 (−7.8± 4.7 K).

The coefficients of correlation with respect to the surface
heterogeneity at the time of the Terra overpasses are larger
than at the time of the Aqua overpasses (not shown). This is
despite the LST biases not reaching a maximum until closer
to the time of the Aqua overpass. This indicates that when
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the magnitude of the LST bias is at its maximum there is a
competing cause to the LST bias which cannot only be fully
explained by the representation of surface heterogeneity in
the model.

3.4 Evaluation of UM surface energy balance

The total available energy at the surface is partitioned be-
tween the turbulent heat and moisture fluxes to the atmo-
sphere, as well as the ground heat flux to the soil, all
of which ultimately control the surface temperature. Eddy-
covariance measurements offer model verification of these
surface exchange processes, and provide an opportunity to
examine sources of model error by investigating components
of the SEB simulated by the UM. Figure 7 presents scat-
terplots of observed SEB components compared with the
US2.2_ConfigA SEB components for May 2013 at Kendall
Grassland.

Figure 7a presents the net radiation (NR) for all-sky con-
ditions which represents the available energy at the surface
from radiation; when NR is positive there is greater incom-
ing radiation than outgoing radiation. At night, the NR term
is negative, as the net longwave radiation is dominated by
the outgoing terrestrial longwave flux. A night-time overes-
timate in NR of 36 W m−2 is evident in the US2.2_ConfigA.
The downwelling longwave radiation (LWD) is also under-
estimated (not shown); this suggests that the night-time NR
bias is caused by too much upwelling longwave radiation,
and potentially indicates that the surface emissivity is too
large. This result provides motivation for a revised bare soil
emissivity. Daytime biases in NR are seen to be minimal at
Kendall Grassland. Daytime biases are more significant at
Lucky Hills (not shown) with an underestimation in the or-
der of 16–25 W m−2 which arises due to an underestimation
of the downwelling shortwave radiation in the US2.2 config-
uration.

The turbulent transfer of heat and moisture towards (neg-
ative flux) or away (positive flux) from the surface within
the atmosphere is represented by the sensible and latent heat
fluxes, respectively. Figure 7b presents a scatterplot of the
observed (corrected) sensible heat flux compared with the
modelled sensible heat flux, which shows a positive model
bias in the sensible heat flux of 25 W m−2 and indicates that
the model flux is overestimated during the local solar max-
imum. During the transition period from early morning into
the late morning period there is an underestimate in the mod-
elled sensible heat flux, which suggests the US2.2_ConfigA
does not represent the rate of increase in the sensible heat
flux seen in the observations.

The equivalent scatterplot for the latent heat flux, pre-
sented in Fig. 7c, indicates that the US2.2_ConfigA latent
heat fluxes are too large. A night-time (and transition) bias
of 6 W m−2, and a daytime bias of 23 W m−2 were calcu-
lated. This result was also seen for GA/L3.1, as well as for
the Lucky Hills site (plots not shown). In general it was found

that there is a greater overestimate in the modelled turbulent
heat and moisture fluxes when compared with the measured
fluxes rather than the corrected turbulent fluxes.

Finally, Fig. 7d presents the measured ground heat
flux compared with the modelled ground heat flux. The
night-time ground heat flux is well represented by the
US2.2_ConfigA; however, the transition and daytime ground
heat flux is poorly simulated by the US2.2_ConfigA. Again,
this result was also seen for GA/L3.1. The US2.2_ConfigA
daytime maxima is underestimated by 100 W m−2 compared
with the observations, although during the transition to morn-
ing and evening periods the ground heat flux is overesti-
mated.

A delay of the onset of heating in the morning transi-
tion is evident in the observations which leads to a phase
separation between the measured ground heat fluxes and
the residual (NR–H–LE) (plot not shown), which possibly
casts doubt on the ground heat flux measurements at Kendall
Grassland. The timing of the measured ground heat flux is
poorly represented, relative to the turbulent and radiant forc-
ing, which suggests the possibility that the measurements,
taken at depth, have not been correctly extrapolated to the
surface. However, an alternative interpretation could be that
there is shading at location of the ground heat flux plates
from vegetation at the Kendall Grassland site, whereas the
net radiometers are mounted above the vegetation canopy
and not subject to the effects of shading; this could lead to
the lag in the ground heat flux relative to the radiative forc-
ing.

This helps explain the timing hysteresis in the corrected
sensible heat flux observed in Fig. 7b, which is seen to be in
the opposite direction to the ground heat flux: closure of the
surface energy balance has been forced; therefore, any lag in
the timing of the measured ground heat flux will propagate
into the corrected sensible heat flux.

Our results indicate the models’ fluxes at Kendall Grass-
land (and Lucky Hills) are inadequate for representing
ground heat fluxes, which suggests that the excess modelled
turbulent heat and moisture fluxes are compensated for by
an underestimate in the modelled ground heat flux. This re-
sult indicates the partitioning of the turbulent heat and mois-
ture fluxes to the atmosphere, and that the flux of heat to the
soil are not well represented in the US2.2 (and GA/L3.1),
and could contribute to the surface temperature biases eval-
uated in this study. A comprehensive evaluation of the sur-
face energy balance of the Unified Model and the stand-alone
JULES land surface model is necessary to understand the
model errors in greater detail, although this is outside of the
scope of this study.

4 Conclusions

A limitation of the Met Office operational data assimila-
tion scheme is that surface-sensitive infrared hyperspectral
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Figure 7. Scatterplots comparing the observed components of the surface energy balance with the modelled US2.2_ConfigA components of
the surface energy balance at Kendall Grassland for May 2013. The panels from top to bottom are (a) net radiation, (b) (corrected) sensible
heat flux, (c) (corrected) latent heat flux and (d) (measured) ground heat flux. The components of the SEB are separated into (blue) night-time
(model SWD< 5 W m−2), (green) transition (model SWD 5–200 W m−2) and (red) daytime (model SWD> 200 W m−2).

satellite sounding channels cannot be used during daytime
periods where biases in the numerical weather prediction
(NWP) model background land surface temperature (LST)
are greater than 2 K. The Met Office Unified Model (UM)
has a significant cold bias in LSTs in semi-arid regions when
compared with satellite observations. This work evaluates
UM surface temperature biases for two UM global configu-
rations, Global Atmosphere/Land 3.1 (GA/L3.1) and Global
Atmosphere/Land 6.1 (GA/L6.1) and in a limited area model
(LAM) at 2.2 km (US2.2) resolution for a study domain in
south-eastern Arizona USA which coincided with the SAL-
STICE (Semi-Arid Land Surface Temperature and IASI Cal-
ibration Experiment) campaign.

The UM surface temperature biases for the North Ameri-
can continent during May, the time of maximum LST biases,
were investigated using IASI 1D-VAR retrievals. GA/L3.1

gave rise to an east–west divide in the magnitude of LST
biases with cold biases in excess of −10 K in the south-west
US, western Mexico and extending east into the Great Plains.
Moderate LST biases, in the range of −4 to −6 K, were
shown to extend into the northern US. The LST bias was
found to be reduced in GA/L6.1 compared with GA/L3.1, al-
though regional biases such as the south-west US were still
prominent.

The UM surface temperature biases were examined at
higher resolution using MODIS surface temperature re-
trievals from the Aqua and Terra platforms for an analysis pe-
riod of the months of May in 2013–2018. The evaluation was
in conjunction with ground-based measurements from eddy-
covariance flux tower sites in the Walnut Gulch Experimen-
tal Watershed and Santa Rita Experimental Range in south-
eastern Arizona. Examining the representation of the diur-
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nal cycle of surface temperature, it was found that biases in
modelled LST were largest in the mid-morning in GA/L3.1,
which indicated that GA/L3.1 struggled to capture the mag-
nitude of the warming from the morning transition to the late
morning period. The phase of the diurnal cycle of surface
temperature in GA/L6.1 showed a significant improvement
relative to GA/L3.1, and supported the result found relative
to IASI 1D-VAR retrievals for the North American continent.
The diurnal cycle in the higher-resolution US2.2 also showed
that the phase of the surface temperature was improved rel-
ative to the GA/L3.1 configuration, and that it improved the
timing of the initial warming during the morning transition.

The surface temperature bias response for different vege-
tation biomes was investigated at four eddy-covariance flux
tower sites located in different land classification types. The
improvement in surface temperature in the US2.2 (compared
with the global configuration) was found to be greater at the
two shrubland sites, Lucky Hills and Santa Rita Mesquite,
compared with the two grassland sites, Kendall Grassland
and Santa Rita Mesquite. Improvements at all four sites in
the US2.2 configuration was attributed to changes in the bare
soil parameters including a revised bare soil emissivity and
revised thermal and momentum roughness lengths for bare
soil. The shrubland sites had an increase in the bare soil frac-
tional cover associated with the increasing model resolution,
which increased the sparsity of the vegetation cover, and sub-
sequently improved the model representation of the surface
heterogeneity. In contrast, at the grassland sites, there was a
reduction in bare soil fractional cover.

The limitation of available water for vegetation in semi-
arid regions results in a very heterogeneous natural land-
scape, which increases the scientific challenges of represent-
ing such surface heterogeneities in land surface models. Our
study examined a domain in south-eastern Arizona in order
to understand the spatial distribution of the surface tempera-
ture biases, and the mechanisms which give rise to the spatial
distributions. The study domain is heterogeneous, in terms
of surface vegetation cover and orographic slope and as-
pect, with many model grid boxes including both craggy and
forested or shrubland terrain. Our results highlight that there
was no dominant underlying cause to the distribution of LST
biases in the study domain. The LST bias was found to have
a moderate correlation with the International Geosphere-
Biosphere Programme’s (IGBP) bare soil cover fraction dur-
ing the daytime and suggested that regions of cold model
LST bias were associated with low bare soil cover fractions.
Coefficients of correlation with the IGBP shrub surface frac-
tions were found to follow the same trend as the IGBP bare
soil fractions, although with a less significant correlation, and
secondary to the sensitivity of the bare soil. The results indi-
cate that sparse vegetation canopies are not well represented
by the IGBP surface fractional cover.

Considering orography in the study domain, the daytime
coefficients of correlation were positively correlated with the
x component of the orographic slope, which indicated that

regions of cold model LST bias were found on easterly slopes
and regions of warm model LST bias were found on westerly
slopes. The coefficients of correlation for the y component of
the orographic slope were found to have weaker correlation
of less than ±0.2, as the orography in the study region is
generally aligned in a north–south direction.

For the US2.2 configuration in 2018, the surface frac-
tional cover ancillary used the European Space Agency’s
Land Cover Climate Change Initiative (ESA LC_CCI) global
vegetation distribution mapped to the JULES five PFTs. The
ESA LC_CCI ancillary degrades the representation of the
semi-arid ecosystem in the study region, in particular the rep-
resentation of the bare soil cover fraction, which was reduced
to 15 %–20 %, and is significantly below the observed frac-
tions for this region (Scott et al., 2015). The ESA LC_CCI
bare soil fractions were shown to be too low across the
study domain, even more so than the IGBP bare soil cover
fractions, and this is a possible explanation as to why the
mean LST bias in the US2.2 configuration for 2018 was
−7.6± 3.3 K and was effectively unchanged from the mean
LST bias for 2013 (−7.8± 4.7 K).

The US2.2 was found to be deficient in representing
ground heat fluxes when compared against eddy-covariance
measurements at Kendall Grassland and Lucky Hills sites.
The modelled turbulent heat and moisture fluxes were over-
estimated compared with observations. The modelled latent
heat flux was overestimated for all periods of the diurnal cy-
cle, and the modelled sensible heat flux was overestimated
during the local solar maximum. This result indicates the par-
titioning of the turbulent heat and moisture fluxes to the at-
mosphere, and that the flux of heat to the soil are not well
represented in the US2.2 (and GA/L3.1) configuration, and
could contribute to the surface temperature biases evaluated
in this study. Our results call for a comprehensive evaluation
of the SEB of the Unified Model and the stand-alone JULES
land surface model in semi-arid regions.

The validation presented in this paper used ground-based
and satellite measurements as well as, to a large degree,
the two comparisons generate comparable results consider-
ing the vast differences in the scales of the measurements.
The two methods have advantages and disadvantages that
complement each other; the MODIS comparisons gave a
high spatial resolution representation at specific snapshots in
time, whereas the eddy-covariance site measurements gave
full diurnal cycles, although with very limited areal cover-
age. The MODIS data are conducive to geostatistical analy-
sis, whereas the ground site data are suitable for time-series
analysis. A further consideration is the disparity between
the footprint size of the IRTs, radiation measurements and
the ground heat flux plates relative to those of the sonic
anemometers measuring the turbulent fluxes.

With recent advances in supercomputing power, perform-
ing high-resolution ensemble forecasting, for example within
a research LAM such as the US2.2, is becoming viable. This
will provide the opportunity to evaluate the impact of fore-
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cast uncertainty on the land surface processes, rather than
only for the deterministic forecast as has been carried out
in this study. The Met Office Global and Regional Ensem-
ble Prediction System (MOGREPS) is the ensemble system
that produces uncertainty information for the model configu-
rations.

The outcomes of SALSTICE show the difficulties in pro-
ducing land surface temperatures that match the current state-
of-the-art satellite retrievals within our current NWP system.
The unfortunate fact is that LSTs are not used to evaluate
the model during model development and much of the LST
information available from satellites is thrown away by the
data assimilation system. Therefore, it is not surprising that
the prediction of LSTs in our operational NWP suite has not
improved significantly since GA/L3.1.

Code availability. Obtaining the UM. The Met Office Unified
Model is available for use under licence. A number of research
organisations and national meteorological services use the UM in
collaboration with the Met Office to undertake basic atmospheric
process research, produce forecasts, develop the UM code and build
and evaluate Earth system models. For further information on how
to apply for a licence see https://www.metoffice.gov.uk/research/
modelling-systems/unified-model (last access: 18 April 2019).

Obtaining JULES. JULES is available under licence free of
charge. For further information on how to gain permission to use
JULES for research purposes see https://jules.jchmr.org/content/
getting-started and http://jules-lsm.github.io/access_req/JULES_
access.html (both URLs were last accessed 18 April 2019).
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