Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.240
IF5.240
IF 5-year value: 5.768
IF 5-year
5.768
CiteScore value: 8.9
CiteScore
8.9
SNIP value: 1.713
SNIP1.713
IPP value: 5.53
IPP5.53
SJR value: 3.18
SJR3.18
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 51
h5-index51
GMD | Articles | Volume 12, issue 4
Geosci. Model Dev., 12, 1491–1523, 2019
https://doi.org/10.5194/gmd-12-1491-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: The CSIRO Mk3L climate system model

Geosci. Model Dev., 12, 1491–1523, 2019
https://doi.org/10.5194/gmd-12-1491-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Model description paper 16 Apr 2019

Model description paper | 16 Apr 2019

Ocean carbon and nitrogen isotopes in CSIRO Mk3L-COAL version 1.0: a tool for palaeoceanographic research

Pearse J. Buchanan et al.

Related authors

The simulated climate of the Last Glacial Maximum and insights into the global marine carbon cycle
Pearse J. Buchanan, Richard J. Matear, Andrew Lenton, Steven J. Phipps, Zanna Chase, and David M. Etheridge
Clim. Past, 12, 2271–2295, https://doi.org/10.5194/cp-12-2271-2016,https://doi.org/10.5194/cp-12-2271-2016, 2016
Short summary

Related subject area

Oceanography
Doppio – a ROMS (v3.6)-based circulation model for the Mid-Atlantic Bight and Gulf of Maine: configuration and comparison to integrated coastal observing network observations
Alexander G. López, John L. Wilkin, and Julia C. Levin
Geosci. Model Dev., 13, 3709–3729, https://doi.org/10.5194/gmd-13-3709-2020,https://doi.org/10.5194/gmd-13-3709-2020, 2020
Short summary
Evaluation of global ocean–sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2)
Hiroyuki Tsujino, L. Shogo Urakawa, Stephen M. Griffies, Gokhan Danabasoglu, Alistair J. Adcroft, Arthur E. Amaral, Thomas Arsouze, Mats Bentsen, Raffaele Bernardello, Claus W. Böning, Alexandra Bozec, Eric P. Chassignet, Sergey Danilov, Raphael Dussin, Eleftheria Exarchou, Pier Giuseppe Fogli, Baylor Fox-Kemper, Chuncheng Guo, Mehmet Ilicak, Doroteaciro Iovino, Who M. Kim, Nikolay Koldunov, Vladimir Lapin, Yiwen Li, Pengfei Lin, Keith Lindsay, Hailong Liu, Matthew C. Long, Yoshiki Komuro, Simon J. Marsland, Simona Masina, Aleksi Nummelin, Jan Klaus Rieck, Yohan Ruprich-Robert, Markus Scheinert, Valentina Sicardi, Dmitry Sidorenko, Tatsuo Suzuki, Hiroaki Tatebe, Qiang Wang, Stephen G. Yeager, and Zipeng Yu
Geosci. Model Dev., 13, 3643–3708, https://doi.org/10.5194/gmd-13-3643-2020,https://doi.org/10.5194/gmd-13-3643-2020, 2020
Short summary
Representation of the Denmark Strait overflow in a z-coordinate eddying configuration of the NEMO (v3.6) ocean model: resolution and parameter impacts
Pedro Colombo, Bernard Barnier, Thierry Penduff, Jérôme Chanut, Julie Deshayes, Jean-Marc Molines, Julien Le Sommer, Polina Verezemskaya, Sergey Gulev, and Anne-Marie Treguier
Geosci. Model Dev., 13, 3347–3371, https://doi.org/10.5194/gmd-13-3347-2020,https://doi.org/10.5194/gmd-13-3347-2020, 2020
Short summary
A global eddying hindcast ocean simulation with OFES2
Hideharu Sasaki, Shinichiro Kida, Ryo Furue, Hidenori Aiki, Nobumasa Komori, Yukio Masumoto, Toru Miyama, Masami Nonaka, Yoshikazu Sasai, and Bunmei Taguchi
Geosci. Model Dev., 13, 3319–3336, https://doi.org/10.5194/gmd-13-3319-2020,https://doi.org/10.5194/gmd-13-3319-2020, 2020
Short summary
Tracking water masses using passive-tracer transport in NEMO v3.4 with NEMOTAM: application to North Atlantic Deep Water and North Atlantic Subtropical Mode Water
Dafydd Stephenson, Simon A. Müller, and Florian Sévellec
Geosci. Model Dev., 13, 2031–2050, https://doi.org/10.5194/gmd-13-2031-2020,https://doi.org/10.5194/gmd-13-2031-2020, 2020
Short summary

Cited articles

Altabet, M. A. and Francois, R.: Nitrogen isotope biogeochemistry of the Antarctic Polar Frontal Zone at 170 degrees W, Deep-Sea Res. Pt. II, 48, 4247–4273, https://doi.org/10.1016/S0967-0645(01)00088-1, 2001. a, b
Bohlen, L., Dale, A. W., and Wallmann, K.: Simple transfer functions for calculating benthic fixed nitrogen losses and C:N:P regeneration ratios in global biogeochemical models, Global Biogeochem. Cy., 26, GB3029, https://doi.org/10.1029/2011GB004198, 2012. a, b
Boudreau, B. P.: Carbonate dissolution rates at the deep ocean floor, Geophys. Res. Lett., 40, 744–748, https://doi.org/10.1029/2012GL054231, 2013. a
Boyd, P. W., Strzepek, R. F., Ellwood, M. J., Hutchins, D. A., Nodder, S. D., Twining, B. S., and Wilhelm, S. W.: Why are biotic iron pools uniform across high- and low-iron pelagic ecosystems?, Global Biogeochem. Cy., 29, 1028–1043, https://doi.org/10.1002/2014GB005014, 2015. a
Brandes, J. A. and Devol, A. H.: A global marine-fixed nitrogen isotopic budget: Implications for Holocene nitrogen cycling, Global Biogeochem. Cy., 16, 67–1–67–14, https://doi.org/10.1029/2001GB001856, 2002. a, b, c
Publications Copernicus
Download
Short summary
Oceanic sediment cores are commonly used to understand past climates. The composition of the sediments changes with the ocean above it. An understanding of oceanographic conditions that existed many thousands of years ago, in some cases many millions of years ago, can therefore be extracted from sediment cores. We simulate two chemical signatures (13C and 15N) of sediment cores in a model. This study assesses the model before it is applied to reinterpret the sedimentary record.
Oceanic sediment cores are commonly used to understand past climates. The composition of the...
Citation