Articles | Volume 11, issue 12
https://doi.org/10.5194/gmd-11-4817-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-11-4817-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluation of the atmosphere–land–ocean–sea ice interface processes in the Regional Arctic System Model version 1 (RASM1) using local and globally gridded observations
Michael A. Brunke
CORRESPONDING AUTHOR
Department of Hydrology and Atmospheric Sciences, The University of
Arizona, Tucson, AZ 85719, USA
John J. Cassano
Cooperative Institute for Research in Environmental Sciences and
Department of Atmospheric and Oceanic Sciences, University of Colorado,
Boulder, CO 80309, USA
Nicholas Dawson
Idaho Power, Boise, ID 83702, USA
Alice K. DuVivier
National Center for Atmospheric Research, Boulder, CO 80305, USA
William J. Gutowski Jr.
Department of Geological and Atmospheric Sciences, Iowa State
University, Ames, IA 50011, USA
Joseph Hamman
National Center for Atmospheric Research, Boulder, CO 80305, USA
Wieslaw Maslowski
Department of Oceanography, Naval Postgraduate School, Monterey, CA
93943, USA
Bart Nijssen
Department of Civil and Environmental Engineering, University of
Washington, Seattle, WA 98195, USA
J. E. Jack Reeves Eyre
Department of Hydrology and Atmospheric Sciences, The University of
Arizona, Tucson, AZ 85719, USA
José C. Renteria
U.S. Department of Defense, High Performance Computing Modernization
Program, Lorton, VA 22079, USA
Andrew Roberts
Department of Oceanography, Naval Postgraduate School, Monterey, CA
93943, USA
Xubin Zeng
Department of Hydrology and Atmospheric Sciences, The University of
Arizona, Tucson, AZ 85719, USA
Related authors
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
Hossein Dadashazar, Ewan Crosbie, Mohammad S. Majdi, Milad Panahi, Mohammad A. Moghaddam, Ali Behrangi, Michael Brunke, Xubin Zeng, Haflidi H. Jonsson, and Armin Sorooshian
Atmos. Chem. Phys., 20, 4637–4665, https://doi.org/10.5194/acp-20-4637-2020, https://doi.org/10.5194/acp-20-4637-2020, 2020
Short summary
Short summary
Clearings in the marine-boundary-layer (MBL) cloud deck of the Pacific Ocean were studied. Remote sensing, reanalysis, and airborne data were used along with machine-learning modeling to characterize the spatiotemporal nature of clearings and factors governing their growth. The most significant implications of our results are linked to modeling of fog and MBL clouds, with implications for societal and environmental issues like climate, military operations, transportation, and coastal ecology.
Hordur Bragi Helgason and Bart Nijssen
Earth Syst. Sci. Data, 16, 2741–2771, https://doi.org/10.5194/essd-16-2741-2024, https://doi.org/10.5194/essd-16-2741-2024, 2024
Short summary
Short summary
LamaH-Ice is a large-sample hydrology (LSH) dataset for Iceland. The dataset includes daily and hourly hydro-meteorological time series, including observed streamflow and basin characteristics, for 107 basins. LamaH-Ice offers most variables that are included in existing LSH datasets and additional information relevant to cold-region hydrology such as annual time series of glacier extent and mass balance. A large majority of the basins in LamaH-Ice are unaffected by human activities.
Mckenzie J. Dice, John J. Cassano, and Gina C. Jozef
Weather Clim. Dynam., 5, 369–394, https://doi.org/10.5194/wcd-5-369-2024, https://doi.org/10.5194/wcd-5-369-2024, 2024
Short summary
Short summary
This study aims to identify the main reasonings for changes in boundary layer stability, namely changes in radiative forcing or mechanical mixing (wind shear). Across the continent of Antarctica, varying stability in the boundary layer is affected by many different forces, and this study seeks to characterize the main forcing mechanisms for these variations in stability across Antarctica, annually and seasonally.
Chen Zhang, John J. Cassano, Mark Seefeldt, Hailong Wang, Weiming Ma, and Wen-wen Tung
EGUsphere, https://doi.org/10.5194/egusphere-2024-320, https://doi.org/10.5194/egusphere-2024-320, 2024
Short summary
Short summary
An atmospheric river (AR) is a long, narrow corridor of moisture transport in the atmosphere. ARs are crucial for moisture and heat transport into the polar regions. Our study examines the role of ARs on the surface energy budget (SEB) in the Arctic. The results reveal distinct seasonality and land-sea-sea ice contrasts due to the impacts of ARs on the SEB. The conclusions provide greater insights into the current and future role of ARs on the Arctic climate system.
Gina C. Jozef, John J. Cassano, Sandro Dahlke, Mckenzie Dice, Christopher J. Cox, and Gijs de Boer
Atmos. Chem. Phys., 24, 1429–1450, https://doi.org/10.5194/acp-24-1429-2024, https://doi.org/10.5194/acp-24-1429-2024, 2024
Short summary
Short summary
Observations collected during MOSAiC were used to identify the range in vertical structure and stability of the central Arctic lower atmosphere through a self-organizing map analysis. Characteristics of wind features (such as low-level jets) and atmospheric moisture features (such as clouds) were analyzed in the context of the varying vertical structure and stability. Thus, the results of this paper give an overview of the thermodynamic and kinematic features of the central Arctic atmosphere.
Mckenzie J. Dice, John J. Cassano, Gina C. Jozef, and Mark Seefeldt
Weather Clim. Dynam., 4, 1045–1069, https://doi.org/10.5194/wcd-4-1045-2023, https://doi.org/10.5194/wcd-4-1045-2023, 2023
Short summary
Short summary
This study documents boundary layer stability profiles, from the surface to 500 m above ground level, present in radiosonde observations across the Antarctic continent. A boundary layer stability definition method is developed and applied to the radiosonde observations to determine the frequency and seasonality of stability regimes. It is found that, in the continental interior, strong stability is dominant throughout most of the year, while stability is more varied at coastal locations.
Gina C. Jozef, Robert Klingel, John J. Cassano, Björn Maronga, Gijs de Boer, Sandro Dahlke, and Christopher J. Cox
Earth Syst. Sci. Data, 15, 4983–4995, https://doi.org/10.5194/essd-15-4983-2023, https://doi.org/10.5194/essd-15-4983-2023, 2023
Short summary
Short summary
Observations from the MOSAiC expedition relating to lower-atmospheric temperature, wind, stability, moisture, and surface radiation budget from radiosondes, a meteorological tower, radiation station, and ceilometer were compiled to create a dataset which describes the thermodynamic and kinematic state of the central Arctic lower atmosphere between October 2019 and September 2020. This paper describes the methods used to develop this lower-atmospheric properties dataset.
Gina C. Jozef, John J. Cassano, Sandro Dahlke, Mckenzie Dice, Christopher J. Cox, and Gijs de Boer
Atmos. Chem. Phys., 23, 13087–13106, https://doi.org/10.5194/acp-23-13087-2023, https://doi.org/10.5194/acp-23-13087-2023, 2023
Short summary
Short summary
Observations from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) were used to determine the frequency of occurrence of various central Arctic lower atmospheric stability regimes and how the stability regimes transition between each other. Wind and radiation observations were analyzed in the context of stability regime and season to reveal the relationships between Arctic atmospheric stability and mechanically and radiatively driven turbulent forcings.
Qi Tang, Jean-Christophe Golaz, Luke P. Van Roekel, Mark A. Taylor, Wuyin Lin, Benjamin R. Hillman, Paul A. Ullrich, Andrew M. Bradley, Oksana Guba, Jonathan D. Wolfe, Tian Zhou, Kai Zhang, Xue Zheng, Yunyan Zhang, Meng Zhang, Mingxuan Wu, Hailong Wang, Cheng Tao, Balwinder Singh, Alan M. Rhoades, Yi Qin, Hong-Yi Li, Yan Feng, Yuying Zhang, Chengzhu Zhang, Charles S. Zender, Shaocheng Xie, Erika L. Roesler, Andrew F. Roberts, Azamat Mametjanov, Mathew E. Maltrud, Noel D. Keen, Robert L. Jacob, Christiane Jablonowski, Owen K. Hughes, Ryan M. Forsyth, Alan V. Di Vittorio, Peter M. Caldwell, Gautam Bisht, Renata B. McCoy, L. Ruby Leung, and David C. Bader
Geosci. Model Dev., 16, 3953–3995, https://doi.org/10.5194/gmd-16-3953-2023, https://doi.org/10.5194/gmd-16-3953-2023, 2023
Short summary
Short summary
High-resolution simulations are superior to low-resolution ones in capturing regional climate changes and climate extremes. However, uniformly reducing the grid size of a global Earth system model is too computationally expensive. We provide an overview of the fully coupled regionally refined model (RRM) of E3SMv2 and document a first-of-its-kind set of climate production simulations using RRM at an economic cost. The key to this success is our innovative hybrid time step method.
Hyein Jeong, Adrian K. Turner, Andrew F. Roberts, Milena Veneziani, Stephen F. Price, Xylar S. Asay-Davis, Luke P. Van Roekel, Wuyin Lin, Peter M. Caldwell, Hyo-Seok Park, Jonathan D. Wolfe, and Azamat Mametjanov
The Cryosphere, 17, 2681–2700, https://doi.org/10.5194/tc-17-2681-2023, https://doi.org/10.5194/tc-17-2681-2023, 2023
Short summary
Short summary
We find that E3SM-HR reproduces the main features of the Antarctic coastal polynyas. Despite the high amount of coastal sea ice production, the densest water masses are formed in the open ocean. Biases related to the lack of dense water formation are associated with overly strong atmospheric polar easterlies. Our results indicate that the large-scale polar atmospheric circulation must be accurately simulated in models to properly reproduce Antarctic dense water formation.
Koichi Sakaguchi, L. Ruby Leung, Colin M. Zarzycki, Jihyeon Jang, Seth McGinnis, Bryce E. Harrop, William C. Skamarock, Andrew Gettelman, Chun Zhao, William J. Gutowski, Stephen Leak, and Linda Mearns
Geosci. Model Dev., 16, 3029–3081, https://doi.org/10.5194/gmd-16-3029-2023, https://doi.org/10.5194/gmd-16-3029-2023, 2023
Short summary
Short summary
We document details of the regional climate downscaling dataset produced by a global variable-resolution model. The experiment is unique in that it follows a standard protocol designed for coordinated experiments of regional models. We found negligible influence of post-processing on statistical analysis, importance of simulation quality outside of the target region, and computational challenges that our model code faced due to rapidly changing super computer systems.
Sisi Chen, Lulin Xue, Sarah Tessendorf, Kyoko Ikeda, Courtney Weeks, Roy Rasmussen, Melvin Kunkel, Derek Blestrud, Shaun Parkinson, Melinda Meadows, and Nick Dawson
Atmos. Chem. Phys., 23, 5217–5231, https://doi.org/10.5194/acp-23-5217-2023, https://doi.org/10.5194/acp-23-5217-2023, 2023
Short summary
Short summary
The possible mechanism of effective ice growth in the cloud-top generating cells in winter orographic clouds is explored using a newly developed ultra-high-resolution cloud microphysics model. Simulations demonstrate that a high availability of moisture and liquid water is critical for producing large ice particles. Fluctuations in temperature and moisture down to millimeter scales due to cloud turbulence can substantially affect the growth history of the individual cloud particles.
Ulrike Egerer, John J. Cassano, Matthew D. Shupe, Gijs de Boer, Dale Lawrence, Abhiram Doddi, Holger Siebert, Gina Jozef, Radiance Calmer, Jonathan Hamilton, Christian Pilz, and Michael Lonardi
Atmos. Meas. Tech., 16, 2297–2317, https://doi.org/10.5194/amt-16-2297-2023, https://doi.org/10.5194/amt-16-2297-2023, 2023
Short summary
Short summary
This paper describes how measurements from a small uncrewed aircraft system can be used to estimate the vertical turbulent heat energy exchange between different layers in the atmosphere. This is particularly important for the atmosphere in the Arctic, as turbulent exchange in this region is often suppressed but is still important to understand how the atmosphere interacts with sea ice. We present three case studies from the MOSAiC field campaign in Arctic sea ice in 2020.
Nairita Pal, Kristin N. Barton, Mark R. Petersen, Steven R. Brus, Darren Engwirda, Brian K. Arbic, Andrew F. Roberts, Joannes J. Westerink, and Damrongsak Wirasaet
Geosci. Model Dev., 16, 1297–1314, https://doi.org/10.5194/gmd-16-1297-2023, https://doi.org/10.5194/gmd-16-1297-2023, 2023
Short summary
Short summary
Understanding tides is essential to accurately predict ocean currents. Over the next several decades coastal processes such as flooding and erosion will be severely impacted due to climate change. Tides affect currents along the coastal regions the most. In this paper we show the results of implementing tides in a global ocean model known as MPAS–Ocean. We also show how Antarctic ice shelf cavities affect global tides. Our work points towards future research with tide–ice interactions.
Elina Valkonen, John Cassano, Elizabeth Cassano, and Mark Seefeldt
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2023-2, https://doi.org/10.5194/wcd-2023-2, 2023
Publication in WCD not foreseen
Short summary
Short summary
Arctic sea ice is melting fast. This rapid change in the Arctic climate system can also affect the storms in the region. The strong connection between Arctic storms and sea ice makes it an important research subject in warming climate. In this study we compared the results of multiple climate models and ERA5 reanalysis data to each other, with a focus on Arctic storms and declining sea ice.
Younjoo J. Lee, Wieslaw Maslowski, John J. Cassano, Jaclyn Clement Kinney, Anthony P. Craig, Samy Kamal, Robert Osinski, Mark W. Seefeldt, Julienne Stroeve, and Hailong Wang
The Cryosphere, 17, 233–253, https://doi.org/10.5194/tc-17-233-2023, https://doi.org/10.5194/tc-17-233-2023, 2023
Short summary
Short summary
During 1979–2020, four winter polynyas occurred in December 1986 and February 2011, 2017, and 2018 north of Greenland. Instead of ice melting due to the anomalous warm air intrusion, the extreme wind forcing resulted in greater ice transport offshore. Based on the two ensemble runs, representing a 1980s thicker ice vs. a 2010s thinner ice, a dominant cause of these winter polynyas stems from internal variability of atmospheric forcing rather than from the forced response to a warming climate.
Xavier Crosta, Karen E. Kohfeld, Helen C. Bostock, Matthew Chadwick, Alice Du Vivier, Oliver Esper, Johan Etourneau, Jacob Jones, Amy Leventer, Juliane Müller, Rachael H. Rhodes, Claire S. Allen, Pooja Ghadi, Nele Lamping, Carina B. Lange, Kelly-Anne Lawler, David Lund, Alice Marzocchi, Katrin J. Meissner, Laurie Menviel, Abhilash Nair, Molly Patterson, Jennifer Pike, Joseph G. Prebble, Christina Riesselman, Henrik Sadatzki, Louise C. Sime, Sunil K. Shukla, Lena Thöle, Maria-Elena Vorrath, Wenshen Xiao, and Jiao Yang
Clim. Past, 18, 1729–1756, https://doi.org/10.5194/cp-18-1729-2022, https://doi.org/10.5194/cp-18-1729-2022, 2022
Short summary
Short summary
Despite its importance in the global climate, our knowledge of Antarctic sea-ice changes throughout the last glacial–interglacial cycle is extremely limited. As part of the Cycles of Sea Ice Dynamics in the Earth system (C-SIDE) Working Group, we review marine- and ice-core-based sea-ice proxies to provide insights into their applicability and limitations. By compiling published records, we provide information on Antarctic sea-ice dynamics over the past 130 000 years.
Gina Jozef, John Cassano, Sandro Dahlke, and Gijs de Boer
Atmos. Meas. Tech., 15, 4001–4022, https://doi.org/10.5194/amt-15-4001-2022, https://doi.org/10.5194/amt-15-4001-2022, 2022
Short summary
Short summary
During the MOSAiC expedition, meteorological conditions over the lowest 1 km of the atmosphere were sampled with the DataHawk2 uncrewed aircraft system. These data were used to identify the best method for atmospheric boundary layer height detection by comparing visually identified subjective boundary layer height to that identified by several objective automated detection methods. The results show a bulk Richardson number-based approach gives the best estimate of boundary layer height.
Milena Veneziani, Wieslaw Maslowski, Younjoo J. Lee, Gennaro D'Angelo, Robert Osinski, Mark R. Petersen, Wilbert Weijer, Anthony P. Craig, John D. Wolfe, Darin Comeau, and Adrian K. Turner
Geosci. Model Dev., 15, 3133–3160, https://doi.org/10.5194/gmd-15-3133-2022, https://doi.org/10.5194/gmd-15-3133-2022, 2022
Short summary
Short summary
We present an Earth system model (ESM) simulation, E3SM-Arctic-OSI, with a refined grid to better resolve the Arctic ocean and sea-ice system and low spatial resolution elsewhere. The configuration satisfactorily represents many aspects of the Arctic system and its interactions with the sub-Arctic, while keeping computational costs at a fraction of those necessary for global high-resolution ESMs. E3SM-Arctic can thus be an efficient tool to study Arctic processes on climate-relevant timescales.
Klaus Dethloff, Wieslaw Maslowski, Stefan Hendricks, Younjoo J. Lee, Helge F. Goessling, Thomas Krumpen, Christian Haas, Dörthe Handorf, Robert Ricker, Vladimir Bessonov, John J. Cassano, Jaclyn Clement Kinney, Robert Osinski, Markus Rex, Annette Rinke, Julia Sokolova, and Anja Sommerfeld
The Cryosphere, 16, 981–1005, https://doi.org/10.5194/tc-16-981-2022, https://doi.org/10.5194/tc-16-981-2022, 2022
Short summary
Short summary
Sea ice thickness anomalies during the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) winter in January, February and March 2020 were simulated with the coupled Regional Arctic climate System Model (RASM) and compared with CryoSat-2/SMOS satellite data. Hindcast and ensemble simulations indicate that the sea ice anomalies are driven by nonlinear interactions between ice growth processes and wind-driven sea-ice transports, with dynamics playing a dominant role.
Jaclyn Clement Kinney, Karen M. Assmann, Wieslaw Maslowski, Göran Björk, Martin Jakobsson, Sara Jutterström, Younjoo J. Lee, Robert Osinski, Igor Semiletov, Adam Ulfsbo, Irene Wåhlström, and Leif G. Anderson
Ocean Sci., 18, 29–49, https://doi.org/10.5194/os-18-29-2022, https://doi.org/10.5194/os-18-29-2022, 2022
Short summary
Short summary
We use data crossing Herald Canyon in the Chukchi Sea collected in 2008 and 2014 together with numerical modelling to investigate the circulation in the western Chukchi Sea. A large fraction of water from the Chukchi Sea enters the East Siberian Sea south of Wrangel Island and circulates in an anticyclonic direction around the island. To assess the differences between years, we use numerical modelling results, which show that high-frequency variability dominates the flow in Herald Canyon.
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
John J. Cassano, Melissa A. Nigro, Mark W. Seefeldt, Marwan Katurji, Kelly Guinn, Guy Williams, and Alice DuVivier
Earth Syst. Sci. Data, 13, 969–982, https://doi.org/10.5194/essd-13-969-2021, https://doi.org/10.5194/essd-13-969-2021, 2021
Short summary
Short summary
Between January 2012 and June 2017, a small unmanned aerial system (sUAS), or drone, known as the Small Unmanned Meteorological Observer (SUMO), was used to observe the lowest 1000 m of the Antarctic atmosphere. During six Antarctic field campaigns, 116 SUMO flights were completed. These flights took place during all seasons over both permanent ice and ice-free locations on the Antarctic continent and over sea ice in the western Ross Sea providing unique observations of the Antarctic atmosphere.
Laura E. Queen, Philip W. Mote, David E. Rupp, Oriana Chegwidden, and Bart Nijssen
Hydrol. Earth Syst. Sci., 25, 257–272, https://doi.org/10.5194/hess-25-257-2021, https://doi.org/10.5194/hess-25-257-2021, 2021
Short summary
Short summary
Using a large ensemble of simulated flows throughout the northwestern USA, we compare daily flood statistics in the past (1950–1999) and future (2050–1999) periods and find that nearly all locations will experience an increase in flood magnitudes. The flood season expands significantly in many currently snow-dominant rivers, moving from only spring to both winter and spring. These results, properly extended, may help inform flood risk management and negotiations of the Columbia River Treaty.
Bram Droppers, Wietse H. P. Franssen, Michelle T. H. van Vliet, Bart Nijssen, and Fulco Ludwig
Geosci. Model Dev., 13, 5029–5052, https://doi.org/10.5194/gmd-13-5029-2020, https://doi.org/10.5194/gmd-13-5029-2020, 2020
Short summary
Short summary
Our study aims to include both both societal and natural water requirements and uses into a hydrological model in order to enable worldwide assessments of sustainable water use. The model was extended to include irrigation, domestic, industrial, energy, and livestock water uses as well as minimum flow requirements for natural systems. Initial results showed competition for water resources between society and nature, especially with respect to groundwater withdrawals.
Peter Kuma, Adrian J. McDonald, Olaf Morgenstern, Simon P. Alexander, John J. Cassano, Sally Garrett, Jamie Halla, Sean Hartery, Mike J. Harvey, Simon Parsons, Graeme Plank, Vidya Varma, and Jonny Williams
Atmos. Chem. Phys., 20, 6607–6630, https://doi.org/10.5194/acp-20-6607-2020, https://doi.org/10.5194/acp-20-6607-2020, 2020
Short summary
Short summary
We evaluate clouds over the Southern Ocean in the climate model HadGEM3 and reanalysis MERRA-2 using ship-based ceilometer and radiosonde observations. We find the models underestimate cloud cover by 18–25 %, with clouds below 2 km dominant in reality but lacking in the models. We find a strong link between clouds, atmospheric stability and sea surface temperature in observations but not in the models, implying that sub-grid processes do not generate enough cloud in response to these conditions.
David Dziubanski, Kristie J. Franz, and William Gutowski
Hydrol. Earth Syst. Sci., 24, 2873–2894, https://doi.org/10.5194/hess-24-2873-2020, https://doi.org/10.5194/hess-24-2873-2020, 2020
Short summary
Short summary
We describe a socio-hydrologic model that couples an agent-based model (ABM) of human decision-making with a hydrologic model. We establish this model for a typical agricultural watershed in Iowa, USA, and simulate the evolution of large discharge events over a 47-year period under changing land use. Using this modeling approach, relationships between seemingly unrelated variables such as crop markets or crop yields and local peak flow trends are quantified.
Hossein Dadashazar, Ewan Crosbie, Mohammad S. Majdi, Milad Panahi, Mohammad A. Moghaddam, Ali Behrangi, Michael Brunke, Xubin Zeng, Haflidi H. Jonsson, and Armin Sorooshian
Atmos. Chem. Phys., 20, 4637–4665, https://doi.org/10.5194/acp-20-4637-2020, https://doi.org/10.5194/acp-20-4637-2020, 2020
Short summary
Short summary
Clearings in the marine-boundary-layer (MBL) cloud deck of the Pacific Ocean were studied. Remote sensing, reanalysis, and airborne data were used along with machine-learning modeling to characterize the spatiotemporal nature of clearings and factors governing their growth. The most significant implications of our results are linked to modeling of fog and MBL clouds, with implications for societal and environmental issues like climate, military operations, transportation, and coastal ecology.
Alice K. DuVivier, Patricia DeRepentigny, Marika M. Holland, Melinda Webster, Jennifer E. Kay, and Donald Perovich
The Cryosphere, 14, 1259–1271, https://doi.org/10.5194/tc-14-1259-2020, https://doi.org/10.5194/tc-14-1259-2020, 2020
Short summary
Short summary
In autumn 2019, a ship will be frozen into the Arctic sea ice for a year to study system changes. We analyze climate model data from a group of experiments and follow virtual sea ice floes throughout a year. The modeled sea ice conditions along possible tracks are highly variable. Observations that sample a wide range of sea ice conditions and represent the variety and diversity in possible conditions are necessary for improving climate model parameterizations over all types of sea ice.
Yixin Mao, Wade T. Crow, and Bart Nijssen
Hydrol. Earth Syst. Sci., 24, 615–631, https://doi.org/10.5194/hess-24-615-2020, https://doi.org/10.5194/hess-24-615-2020, 2020
Short summary
Short summary
The new generation of satellite soil moisture observations are used to correct the streamflow in a regional-scale river basin simulated by a mathematical model. The correction is done via both the direct updating of soil moisture and correction of rainfall input. Results show some streamflow improvement, but the magnitude is small. A larger improvement will need future generations of even higher-quality satellite soil moisture data and better process representation in the mathematical model.
John R. Yearsley, Ning Sun, Marisa Baptiste, and Bart Nijssen
Hydrol. Earth Syst. Sci., 23, 4491–4508, https://doi.org/10.5194/hess-23-4491-2019, https://doi.org/10.5194/hess-23-4491-2019, 2019
Short summary
Short summary
This study investigates the impact of dam-induced hydrologic alterations and modification of riparian buffers on stream temperatures and thermal habitat for aquatic species. We enhanced and applied a model system (DHSVM-RBM) that couples a distributed hydrologic model, DHSVM, with the distributed stream temperature model, RBM, in the Farmington River basin in the Connecticut River system, which includes varying types of watershed development (e.g., deforestation and reservoirs).
Andrew R. Bennett, Joseph J. Hamman, and Bart Nijssen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-179, https://doi.org/10.5194/gmd-2019-179, 2019
Preprint withdrawn
Short summary
Short summary
MetSim is a software package for simulating meteorologic processes, and aims to be applied in the environmental and Earth sciences. It can simulate processes such as solar and thermal radiation, specific humidity, and vapor pressure across large spatial areas in an efficient manner. This paper describes the software and analyzes it's ability to be used in large simulations. We describe how MetSim can be used and provide details on the various options that are available.
Joseph J. Hamman, Bart Nijssen, Theodore J. Bohn, Diana R. Gergel, and Yixin Mao
Geosci. Model Dev., 11, 3481–3496, https://doi.org/10.5194/gmd-11-3481-2018, https://doi.org/10.5194/gmd-11-3481-2018, 2018
Short summary
Short summary
Variable Infiltration Capacity (VIC) is a widely used hydrologic model. This paper documents the development of VIC version 5, which includes a reconfiguration of the model source code to support a wider range of modeling applications. It also represents a significant step forward for the VIC user community in terms of support for a range of modeling applications, reproducibility, and scientific robustness.
Abraham Endalamaw, W. Robert Bolton, Jessica M. Young-Robertson, Don Morton, Larry Hinzman, and Bart Nijssen
Hydrol. Earth Syst. Sci., 21, 4663–4680, https://doi.org/10.5194/hess-21-4663-2017, https://doi.org/10.5194/hess-21-4663-2017, 2017
Short summary
Short summary
This study applies plot-scale and hill-slope knowledge to a process-based mesoscale model to improve the skill of distributed hydrological models to simulate the spatially and basin-integrated hydrological processes of complex ecosystems in the sub-arctic boreal forest. We developed a sub-grid parameterization method to parameterize the surface heterogeneity of interior Alaskan discontinuous permafrost watersheds.
Pablo A. Mendoza, Andrew W. Wood, Elizabeth Clark, Eric Rothwell, Martyn P. Clark, Bart Nijssen, Levi D. Brekke, and Jeffrey R. Arnold
Hydrol. Earth Syst. Sci., 21, 3915–3935, https://doi.org/10.5194/hess-21-3915-2017, https://doi.org/10.5194/hess-21-3915-2017, 2017
Short summary
Short summary
Water supply forecasts are critical to support water resources operations and planning. The skill of such forecasts depends on our knowledge of (i) future meteorological conditions and (ii) the amount of water stored in a basin. We address this problem by testing several approaches that make use of these sources of predictability, either separately or in a combined fashion. The main goal is to understand the marginal benefits of both information and methodological complexity in forecast skill.
J. E. Jack Reeves Eyre and Xubin Zeng
The Cryosphere, 11, 1591–1605, https://doi.org/10.5194/tc-11-1591-2017, https://doi.org/10.5194/tc-11-1591-2017, 2017
Short summary
Short summary
We have used extensive air temperature measurements (~ 1400 station-years) to assess more than 10 gridded datasets over the Greenland ice sheet. We recommend the best datasets for estimating past melting of the ice sheet and show that choice of dataset is important for evaluating 31 earth system models. Most, but not all, of the datasets show similar history of temperature changes over the 20th century, and the earth system models generally capture long-term warming but not decadal variations.
William J. Gutowski Jr., Filippo Giorgi, Bertrand Timbal, Anne Frigon, Daniela Jacob, Hyun-Suk Kang, Krishnan Raghavan, Boram Lee, Christopher Lennard, Grigory Nikulin, Eleanor O'Rourke, Michel Rixen, Silvina Solman, Tannecia Stephenson, and Fredolin Tangang
Geosci. Model Dev., 9, 4087–4095, https://doi.org/10.5194/gmd-9-4087-2016, https://doi.org/10.5194/gmd-9-4087-2016, 2016
Short summary
Short summary
The Coordinated Regional Downscaling Experiment (CORDEX) is a diagnostic MIP in CMIP6. CORDEX builds on a foundation of previous downscaling intercomparison projects to provide a common framework for downscaling activities around the world. The CORDEX Regional Challenges provide a focus for downscaling research and a basis for making use of CMIP6 global output to produce downscaled projected changes in regional climates, and assess sources of uncertainties in the projections.
Naoki Mizukami, Martyn P. Clark, Kevin Sampson, Bart Nijssen, Yixin Mao, Hilary McMillan, Roland J. Viger, Steve L. Markstrom, Lauren E. Hay, Ross Woods, Jeffrey R. Arnold, and Levi D. Brekke
Geosci. Model Dev., 9, 2223–2238, https://doi.org/10.5194/gmd-9-2223-2016, https://doi.org/10.5194/gmd-9-2223-2016, 2016
Short summary
Short summary
mizuRoute version 1 is a stand-alone runoff routing tool that post-processes runoff outputs from any distributed hydrologic models to produce streamflow estimates in large-scale river network. mizuRoute is flexible to river network representation and includes two different river routing schemes. This paper demonstrates mizuRoute's capability of multi-decadal streamflow estimations in the river networks over the entire contiguous Unites States, which contains over 54 000 river segments.
John J. Cassano, Mark W. Seefeldt, Scott Palo, Shelley L. Knuth, Alice C. Bradley, Paul D. Herrman, Peter A. Kernebone, and Nick J. Logan
Earth Syst. Sci. Data, 8, 115–126, https://doi.org/10.5194/essd-8-115-2016, https://doi.org/10.5194/essd-8-115-2016, 2016
Short summary
Short summary
In September 2012 five Aerosonde unmanned aircraft were used to observe the atmosphere and ocean over the Terra Nova Bay polynya, Antarctica to explore the details of interactions between the ocean, sea ice, and atmosphere. A total of 14 flights and nearly 168 flight hours were completed as part of this project. A data set containing the atmospheric and surface data as well as operational aircraft data have been submitted to the United States Antarctic Program Data Coordination Center.
R. Rosolem, T. Hoar, A. Arellano, J. L. Anderson, W. J. Shuttleworth, X. Zeng, and T. E. Franz
Hydrol. Earth Syst. Sci., 18, 4363–4379, https://doi.org/10.5194/hess-18-4363-2014, https://doi.org/10.5194/hess-18-4363-2014, 2014
A. I. Gevaert, A. J. Teuling, R. Uijlenhoet, S. B. DeLong, T. E. Huxman, L. A. Pangle, D. D. Breshears, J. Chorover, J. D. Pelletier, S. R. Saleska, X. Zeng, and P. A. Troch
Hydrol. Earth Syst. Sci., 18, 3681–3692, https://doi.org/10.5194/hess-18-3681-2014, https://doi.org/10.5194/hess-18-3681-2014, 2014
P. Shao, X. Zeng, and X. Zeng
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esdd-5-991-2014, https://doi.org/10.5194/esdd-5-991-2014, 2014
Revised manuscript not accepted
S. L. Knuth, J. J. Cassano, J. A. Maslanik, P. D. Herrmann, P. A. Kernebone, R. I. Crocker, and N. J. Logan
Earth Syst. Sci. Data, 5, 57–69, https://doi.org/10.5194/essd-5-57-2013, https://doi.org/10.5194/essd-5-57-2013, 2013
Related subject area
Climate and Earth system modeling
A protocol for model intercomparison of impacts of marine cloud brightening climate intervention
An extensible perturbed parameter ensemble for the Community Atmosphere Model version 6
Coupling the regional climate model ICON-CLM v2.6.6 to the Earth system model GCOAST-AHOI v2.0 using OASIS3-MCT v4.0
A fully coupled solid-particle microphysics scheme for stratospheric aerosol injections within the aerosol–chemistry–climate model SOCOL-AERv2
An improved representation of aerosol in the ECMWF IFS-COMPO 49R1 through the integration of EQSAM4Climv12 – a first attempt at simulating aerosol acidity
At-scale Model Output Statistics in mountain environments (AtsMOS v1.0)
Impact of ocean vertical-mixing parameterization on Arctic sea ice and upper-ocean properties using the NEMO-SI3 model
Bridging the gap: a new module for human water use in the Community Earth System Model version 2.2.1
A new lightning scheme in the Canadian Atmospheric Model (CanAM5.1): implementation, evaluation, and projections of lightning and fire in future climates
Methane dynamics in the Baltic Sea: investigating concentration, flux, and isotopic composition patterns using the coupled physical–biogeochemical model BALTSEM-CH4 v1.0
Split-explicit external mode solver in the finite volume sea ice–ocean model FESOM2
Applying double cropping and interactive irrigation in the North China Plain using WRF4.5
The sea ice component of GC5: coupling SI3 to HadGEM3 using conductive fluxes
CICE on a C-grid: new momentum, stress, and transport schemes for CICEv6.5
HyPhAICC v1.0: a hybrid physics–AI approach for probability fields advection shown through an application to cloud cover nowcasting
CICERO Simple Climate Model (CICERO-SCM v1.1.1) – an improved simple climate model with a parameter calibration tool
Development of a plant carbon–nitrogen interface coupling framework in a coupled biophysical-ecosystem–biogeochemical model (SSiB5/TRIFFID/DayCent-SOM v1.0)
Dynamical Madden–Julian Oscillation forecasts using an ensemble subseasonal-to-seasonal forecast system of the IAP-CAS model
Implementation of a brittle sea ice rheology in an Eulerian, finite-difference, C-grid modeling framework: impact on the simulated deformation of sea ice in the Arctic
HSW-V v1.0: localized injections of interactive volcanic aerosols and their climate impacts in a simple general circulation model
A 3D-Var assimilation scheme for vertical velocity with CMA-MESO v5.0
Updating the radiation infrastructure in MESSy (based on MESSy version 2.55)
An urban module coupled with the Variable Infiltration Capacity model to improve hydrothermal simulations in urban systems
Bayesian hierarchical model for bias-correcting climate models
Evaluation of the coupling of EMACv2.55 to the land surface and vegetation model JSBACHv4
Reduced floating-point precision in regional climate simulations: an ensemble-based statistical verification
TorchClim v1.0: a deep-learning plugin for climate model physics
Linking global terrestrial and ocean biogeochemistry with process-based, coupled freshwater algae–nutrient–solid dynamics in LM3-FANSY v1.0
Validating a microphysical prognostic stratospheric aerosol implementation in E3SMv2 using observations after the Mount Pinatubo eruption
Architectural Insights and Training Methodology Optimization of Pangu-Weather
Implementing detailed nucleation predictions in the Earth system model EC-Earth3.3.4: sulfuric acid–ammonia nucleation
Modeling biochar effects on soil organic carbon on croplands in a microbial decomposition model (MIMICS-BC_v1.0)
Hector V3.2.0: functionality and performance of a reduced-complexity climate model
Evaluation of CMIP6 model simulations of PM2.5 and its components over China
Robust handling of extremes in quantile mapping – "Murder your darlings"
Assessment of a tiling energy budget approach in a land surface model, ORCHIDEE-MICT (r8205)
Virtual Integration of Satellite and In-situ Observation Networks (VISION) v1.0: In-Situ Observations Simulator
Multivariate adjustment of drizzle bias using machine learning in European climate projections
Development and evaluation of the interactive Model for Air Pollution and Land Ecosystems (iMAPLE) version 1.0
A perspective on the next generation of Earth system model scenarios: towards representative emission pathways (REPs)
Evaluating downscaled products with expected hydroclimatic co-variances
Software sustainability of global impact models
Short-term effects of hurricanes on nitrate-nitrogen runoff loading: a case study of Hurricane Ida using E3SM land model (v2.1)
CARIB12: A Regional Community Earth System Model / Modular Ocean Model 6 Configuration of the Caribbean Sea
Parallel SnowModel (v1.0): a parallel implementation of a distributed snow-evolution modeling system (SnowModel)
GOSI9: UK Global Ocean and Sea Ice configurations
LB-SCAM: a learning-based method for efficient large-scale sensitivity analysis and tuning of the Single Column Atmosphere Model (SCAM)
Quantifying the impact of SST feedback frequency on Madden–Julian oscillation simulations
Systematic and objective evaluation of Earth system models: PCMDI Metrics Package (PMP) version 3
A revised model of global silicate weathering considering the influence of vegetation cover on erosion rate
Philip J. Rasch, Haruki Hirasawa, Mingxuan Wu, Sarah J. Doherty, Robert Wood, Hailong Wang, Andy Jones, James Haywood, and Hansi Singh
Geosci. Model Dev., 17, 7963–7994, https://doi.org/10.5194/gmd-17-7963-2024, https://doi.org/10.5194/gmd-17-7963-2024, 2024
Short summary
Short summary
We introduce a protocol to compare computer climate simulations to better understand a proposed strategy intended to counter warming and climate impacts from greenhouse gas increases. This slightly changes clouds in six ocean regions to reflect more sunlight and cool the Earth. Example changes in clouds and climate are shown for three climate models. Cloud changes differ between the models, but precipitation and surface temperature changes are similar when their cooling effects are made similar.
Trude Eidhammer, Andrew Gettelman, Katherine Thayer-Calder, Duncan Watson-Parris, Gregory Elsaesser, Hugh Morrison, Marcus van Lier-Walqui, Ci Song, and Daniel McCoy
Geosci. Model Dev., 17, 7835–7853, https://doi.org/10.5194/gmd-17-7835-2024, https://doi.org/10.5194/gmd-17-7835-2024, 2024
Short summary
Short summary
We describe a dataset where 45 parameters related to cloud processes in the Community Earth System Model version 2 (CESM2) Community Atmosphere Model version 6 (CAM6) are perturbed. Three sets of perturbed parameter ensembles (263 members) were created: current climate, preindustrial aerosol loading and future climate with sea surface temperature increased by 4 K.
Ha Thi Minh Ho-Hagemann, Vera Maurer, Stefan Poll, and Irina Fast
Geosci. Model Dev., 17, 7815–7834, https://doi.org/10.5194/gmd-17-7815-2024, https://doi.org/10.5194/gmd-17-7815-2024, 2024
Short summary
Short summary
The regional Earth system model GCOAST-AHOI v2.0 that includes the regional climate model ICON-CLM coupled to the ocean model NEMO and the hydrological discharge model HD via the OASIS3-MCT coupler can be a useful tool for conducting long-term regional climate simulations over the EURO-CORDEX domain. The new OASIS3-MCT coupling interface implemented in ICON-CLM makes it more flexible for coupling to an external ocean model and an external hydrological discharge model.
Sandro Vattioni, Rahel Weber, Aryeh Feinberg, Andrea Stenke, John A. Dykema, Beiping Luo, Georgios A. Kelesidis, Christian A. Bruun, Timofei Sukhodolov, Frank N. Keutsch, Thomas Peter, and Gabriel Chiodo
Geosci. Model Dev., 17, 7767–7793, https://doi.org/10.5194/gmd-17-7767-2024, https://doi.org/10.5194/gmd-17-7767-2024, 2024
Short summary
Short summary
We quantified impacts and efficiency of stratospheric solar climate intervention via solid particle injection. Microphysical interactions of solid particles with the sulfur cycle were interactively coupled to the heterogeneous chemistry scheme and the radiative transfer code of an aerosol–chemistry–climate model. Compared to injection of SO2 we only find a stronger cooling efficiency for solid particles when normalizing to the aerosol load but not when normalizing to the injection rate.
Samuel Rémy, Swen Metzger, Vincent Huijnen, Jason E. Williams, and Johannes Flemming
Geosci. Model Dev., 17, 7539–7567, https://doi.org/10.5194/gmd-17-7539-2024, https://doi.org/10.5194/gmd-17-7539-2024, 2024
Short summary
Short summary
In this paper we describe the development of the future operational cycle 49R1 of the IFS-COMPO system, used for operational forecasts of atmospheric composition in the CAMS project, and focus on the implementation of the thermodynamical model EQSAM4Clim version 12. The implementation of EQSAM4Clim significantly improves the simulated secondary inorganic aerosol surface concentration. The new aerosol and precipitation acidity diagnostics showed good agreement against observational datasets.
Maximillian Van Wyk de Vries, Tom Matthews, L. Baker Perry, Nirakar Thapa, and Rob Wilby
Geosci. Model Dev., 17, 7629–7643, https://doi.org/10.5194/gmd-17-7629-2024, https://doi.org/10.5194/gmd-17-7629-2024, 2024
Short summary
Short summary
This paper introduces the AtsMOS workflow, a new tool for improving weather forecasts in mountainous areas. By combining advanced statistical techniques with local weather data, AtsMOS can provide more accurate predictions of weather conditions. Using data from Mount Everest as an example, AtsMOS has shown promise in better forecasting hazardous weather conditions, making it a valuable tool for communities in mountainous regions and beyond.
Sofia Allende, Anne Marie Treguier, Camille Lique, Clément de Boyer Montégut, François Massonnet, Thierry Fichefet, and Antoine Barthélemy
Geosci. Model Dev., 17, 7445–7466, https://doi.org/10.5194/gmd-17-7445-2024, https://doi.org/10.5194/gmd-17-7445-2024, 2024
Short summary
Short summary
We study the parameters of the turbulent-kinetic-energy mixed-layer-penetration scheme in the NEMO model with regard to sea-ice-covered regions of the Arctic Ocean. This evaluation reveals the impact of these parameters on mixed-layer depth, sea surface temperature and salinity, and ocean stratification. Our findings demonstrate significant impacts on sea ice thickness and sea ice concentration, emphasizing the need for accurately representing ocean mixing to understand Arctic climate dynamics.
Sabin I. Taranu, David M. Lawrence, Yoshihide Wada, Ting Tang, Erik Kluzek, Sam Rabin, Yi Yao, Steven J. De Hertog, Inne Vanderkelen, and Wim Thiery
Geosci. Model Dev., 17, 7365–7399, https://doi.org/10.5194/gmd-17-7365-2024, https://doi.org/10.5194/gmd-17-7365-2024, 2024
Short summary
Short summary
In this study, we improved a climate model by adding the representation of water use sectors such as domestic, industry, and agriculture. This new feature helps us understand how water is used and supplied in various areas. We tested our model from 1971 to 2010 and found that it accurately identifies areas with water scarcity. By modelling the competition between sectors when water availability is limited, the model helps estimate the intensity and extent of individual sectors' water shortages.
Cynthia Whaley, Montana Etten-Bohm, Courtney Schumacher, Ayodeji Akingunola, Vivek Arora, Jason Cole, Michael Lazare, David Plummer, Knut von Salzen, and Barbara Winter
Geosci. Model Dev., 17, 7141–7155, https://doi.org/10.5194/gmd-17-7141-2024, https://doi.org/10.5194/gmd-17-7141-2024, 2024
Short summary
Short summary
This paper describes how lightning was added as a process in the Canadian Earth System Model in order to interactively respond to climate changes. As lightning is an important cause of global wildfires, this new model development allows for more realistic projections of how wildfires may change in the future, responding to a changing climate.
Erik Gustafsson, Bo G. Gustafsson, Martijn Hermans, Christoph Humborg, and Christian Stranne
Geosci. Model Dev., 17, 7157–7179, https://doi.org/10.5194/gmd-17-7157-2024, https://doi.org/10.5194/gmd-17-7157-2024, 2024
Short summary
Short summary
Methane (CH4) cycling in the Baltic Proper is studied through model simulations, enabling a first estimate of key CH4 fluxes. A preliminary budget identifies benthic CH4 release as the dominant source and two main sinks: CH4 oxidation in the water (92 % of sinks) and outgassing to the atmosphere (8 % of sinks). This study addresses CH4 emissions from coastal seas and is a first step toward understanding the relative importance of open-water outgassing compared with local coastal hotspots.
Tridib Banerjee, Patrick Scholz, Sergey Danilov, Knut Klingbeil, and Dmitry Sidorenko
Geosci. Model Dev., 17, 7051–7065, https://doi.org/10.5194/gmd-17-7051-2024, https://doi.org/10.5194/gmd-17-7051-2024, 2024
Short summary
Short summary
In this paper we propose a new alternative to one of the functionalities of the sea ice model FESOM2. The alternative we propose allows the model to capture and simulate fast changes in quantities like sea surface elevation more accurately. We also demonstrate that the new alternative is faster and more adept at taking advantages of highly parallelized computing infrastructure. We therefore show that this new alternative is a great addition to the sea ice model FESOM2.
Yuwen Fan, Zhao Yang, Min-Hui Lo, Jina Hur, and Eun-Soon Im
Geosci. Model Dev., 17, 6929–6947, https://doi.org/10.5194/gmd-17-6929-2024, https://doi.org/10.5194/gmd-17-6929-2024, 2024
Short summary
Short summary
Irrigated agriculture in the North China Plain (NCP) has a significant impact on the local climate. To better understand this impact, we developed a specialized model specifically for the NCP region. This model allows us to simulate the double-cropping vegetation and the dynamic irrigation practices that are commonly employed in the NCP. This model shows improved performance in capturing the general crop growth, such as crop stages, biomass, crop yield, and vegetation greenness.
Ed Blockley, Emma Fiedler, Jeff Ridley, Luke Roberts, Alex West, Dan Copsey, Daniel Feltham, Tim Graham, David Livings, Clement Rousset, David Schroeder, and Martin Vancoppenolle
Geosci. Model Dev., 17, 6799–6817, https://doi.org/10.5194/gmd-17-6799-2024, https://doi.org/10.5194/gmd-17-6799-2024, 2024
Short summary
Short summary
This paper documents the sea ice model component of the latest Met Office coupled model configuration, which will be used as the physical basis for UK contributions to CMIP7. Documentation of science options used in the configuration are given along with a brief model evaluation. This is the first UK configuration to use NEMO’s new SI3 sea ice model. We provide details on how SI3 was adapted to work with Met Office coupling methodology and documentation of coupling processes in the model.
Jean-François Lemieux, William H. Lipscomb, Anthony Craig, David A. Bailey, Elizabeth C. Hunke, Philippe Blain, Till A. S. Rasmussen, Mats Bentsen, Frédéric Dupont, David Hebert, and Richard Allard
Geosci. Model Dev., 17, 6703–6724, https://doi.org/10.5194/gmd-17-6703-2024, https://doi.org/10.5194/gmd-17-6703-2024, 2024
Short summary
Short summary
We present the latest version of the CICE model. It solves equations that describe the dynamics and the growth and melt of sea ice. To do so, the domain is divided into grid cells and variables are positioned at specific locations in the cells. A new implementation (C-grid) is presented, with the velocity located on cell edges. Compared to the previous B-grid, the C-grid allows for a natural coupling with some oceanic and atmospheric models. It also allows for ice transport in narrow channels.
Rachid El Montassir, Olivier Pannekoucke, and Corentin Lapeyre
Geosci. Model Dev., 17, 6657–6681, https://doi.org/10.5194/gmd-17-6657-2024, https://doi.org/10.5194/gmd-17-6657-2024, 2024
Short summary
Short summary
This study introduces a novel approach that combines physics and artificial intelligence (AI) for improved cloud cover forecasting. This approach outperforms traditional deep learning (DL) methods in producing realistic and physically consistent results while requiring less training data. This architecture provides a promising solution to overcome the limitations of classical AI methods and contributes to open up new possibilities for combining physical knowledge with deep learning models.
Marit Sandstad, Borgar Aamaas, Ane Nordlie Johansen, Marianne Tronstad Lund, Glen Philip Peters, Bjørn Hallvard Samset, Benjamin Mark Sanderson, and Ragnhild Bieltvedt Skeie
Geosci. Model Dev., 17, 6589–6625, https://doi.org/10.5194/gmd-17-6589-2024, https://doi.org/10.5194/gmd-17-6589-2024, 2024
Short summary
Short summary
The CICERO-SCM has existed as a Fortran model since 1999 that calculates the radiative forcing and concentrations from emissions and is an upwelling diffusion energy balance model of the ocean that calculates temperature change. In this paper, we describe an updated version ported to Python and publicly available at https://github.com/ciceroOslo/ciceroscm (https://doi.org/10.5281/zenodo.10548720). This version contains functionality for parallel runs and automatic calibration.
Zheng Xiang, Yongkang Xue, Weidong Guo, Melannie D. Hartman, Ye Liu, and William J. Parton
Geosci. Model Dev., 17, 6437–6464, https://doi.org/10.5194/gmd-17-6437-2024, https://doi.org/10.5194/gmd-17-6437-2024, 2024
Short summary
Short summary
A process-based plant carbon (C)–nitrogen (N) interface coupling framework has been developed which mainly focuses on plant resistance and N-limitation effects on photosynthesis, plant respiration, and plant phenology. A dynamic C / N ratio is introduced to represent plant resistance and self-adjustment. The framework has been implemented in a coupled biophysical-ecosystem–biogeochemical model, and testing results show a general improvement in simulating plant properties with this framework.
Yangke Liu, Qing Bao, Bian He, Xiaofei Wu, Jing Yang, Yimin Liu, Guoxiong Wu, Tao Zhu, Siyuan Zhou, Yao Tang, Ankang Qu, Yalan Fan, Anling Liu, Dandan Chen, Zhaoming Luo, Xing Hu, and Tongwen Wu
Geosci. Model Dev., 17, 6249–6275, https://doi.org/10.5194/gmd-17-6249-2024, https://doi.org/10.5194/gmd-17-6249-2024, 2024
Short summary
Short summary
We give an overview of the Institute of Atmospheric Physics–Chinese Academy of Sciences subseasonal-to-seasonal ensemble forecasting system and Madden–Julian Oscillation forecast evaluation of the system. Compared to other S2S models, the IAP-CAS model has its benefits but also biases, i.e., underdispersive ensemble, overestimated amplitude, and faster propagation speed when forecasting MJO. We provide a reason for these biases and prospects for further improvement of this system in the future.
Laurent Brodeau, Pierre Rampal, Einar Ólason, and Véronique Dansereau
Geosci. Model Dev., 17, 6051–6082, https://doi.org/10.5194/gmd-17-6051-2024, https://doi.org/10.5194/gmd-17-6051-2024, 2024
Short summary
Short summary
A new brittle sea ice rheology, BBM, has been implemented into the sea ice component of NEMO. We describe how a new spatial discretization framework was introduced to achieve this. A set of idealized and realistic ocean and sea ice simulations of the Arctic have been performed using BBM and the standard viscous–plastic rheology of NEMO. When compared to satellite data, our simulations show that our implementation of BBM leads to a fairly good representation of sea ice deformations.
Joseph P. Hollowed, Christiane Jablonowski, Hunter Y. Brown, Benjamin R. Hillman, Diana L. Bull, and Joseph L. Hart
Geosci. Model Dev., 17, 5913–5938, https://doi.org/10.5194/gmd-17-5913-2024, https://doi.org/10.5194/gmd-17-5913-2024, 2024
Short summary
Short summary
Large volcanic eruptions deposit material in the upper atmosphere, which is capable of altering temperature and wind patterns of Earth's atmosphere for subsequent years. This research describes a new method of simulating these effects in an idealized, efficient atmospheric model. A volcanic eruption of sulfur dioxide is described with a simplified set of physical rules, which eventually cools the planetary surface. This model has been designed as a test bed for climate attribution studies.
Hong Li, Yi Yang, Jian Sun, Yuan Jiang, Ruhui Gan, and Qian Xie
Geosci. Model Dev., 17, 5883–5896, https://doi.org/10.5194/gmd-17-5883-2024, https://doi.org/10.5194/gmd-17-5883-2024, 2024
Short summary
Short summary
Vertical atmospheric motions play a vital role in convective-scale precipitation forecasts by connecting atmospheric dynamics with cloud development. A three-dimensional variational vertical velocity assimilation scheme is developed within the high-resolution CMA-MESO model, utilizing the adiabatic Richardson equation as the observation operator. A 10 d continuous run and an individual case study demonstrate improved forecasts, confirming the scheme's effectiveness.
Matthias Nützel, Laura Stecher, Patrick Jöckel, Franziska Winterstein, Martin Dameris, Michael Ponater, Phoebe Graf, and Markus Kunze
Geosci. Model Dev., 17, 5821–5849, https://doi.org/10.5194/gmd-17-5821-2024, https://doi.org/10.5194/gmd-17-5821-2024, 2024
Short summary
Short summary
We extended the infrastructure of our modelling system to enable the use of an additional radiation scheme. After calibrating the model setups to the old and the new radiation scheme, we find that the simulation with the new scheme shows considerable improvements, e.g. concerning the cold-point temperature and stratospheric water vapour. Furthermore, perturbations of radiative fluxes associated with greenhouse gas changes, e.g. of methane, tend to be improved when the new scheme is employed.
Yibing Wang, Xianhong Xie, Bowen Zhu, Arken Tursun, Fuxiao Jiang, Yao Liu, Dawei Peng, and Buyun Zheng
Geosci. Model Dev., 17, 5803–5819, https://doi.org/10.5194/gmd-17-5803-2024, https://doi.org/10.5194/gmd-17-5803-2024, 2024
Short summary
Short summary
Urban expansion intensifies challenges like urban heat and urban dry islands. To address this, we developed an urban module, VIC-urban, in the Variable Infiltration Capacity (VIC) model. Tested in Beijing, VIC-urban accurately simulated turbulent heat fluxes, runoff, and land surface temperature. We provide a reliable tool for large-scale simulations considering urban environment and a systematic urban modelling framework within VIC, offering crucial insights for urban planners and designers.
Jeremy Carter, Erick A. Chacón-Montalván, and Amber Leeson
Geosci. Model Dev., 17, 5733–5757, https://doi.org/10.5194/gmd-17-5733-2024, https://doi.org/10.5194/gmd-17-5733-2024, 2024
Short summary
Short summary
Climate models are essential tools in the study of climate change and its wide-ranging impacts on life on Earth. However, the output is often afflicted with some bias. In this paper, a novel model is developed to predict and correct bias in the output of climate models. The model captures uncertainty in the correction and explicitly models underlying spatial correlation between points. These features are of key importance for climate change impact assessments and resulting decision-making.
Anna Martin, Veronika Gayler, Benedikt Steil, Klaus Klingmüller, Patrick Jöckel, Holger Tost, Jos Lelieveld, and Andrea Pozzer
Geosci. Model Dev., 17, 5705–5732, https://doi.org/10.5194/gmd-17-5705-2024, https://doi.org/10.5194/gmd-17-5705-2024, 2024
Short summary
Short summary
The study evaluates the land surface and vegetation model JSBACHv4 as a replacement for the simplified submodel SURFACE in EMAC. JSBACH mitigates earlier problems of soil dryness, which are critical for vegetation modelling. When analysed using different datasets, the coupled model shows strong correlations of key variables, such as land surface temperature, surface albedo and radiation flux. The versatility of the model increases significantly, while the overall performance does not degrade.
Hugo Banderier, Christian Zeman, David Leutwyler, Stefan Rüdisühli, and Christoph Schär
Geosci. Model Dev., 17, 5573–5586, https://doi.org/10.5194/gmd-17-5573-2024, https://doi.org/10.5194/gmd-17-5573-2024, 2024
Short summary
Short summary
We investigate the effects of reduced-precision arithmetic in a state-of-the-art regional climate model by studying the results of 10-year-long simulations. After this time, the results of the reduced precision and the standard implementation are hardly different. This should encourage the use of reduced precision in climate models to exploit the speedup and memory savings it brings. The methodology used in this work can help researchers verify reduced-precision implementations of their model.
David Fuchs, Steven C. Sherwood, Abhnil Prasad, Kirill Trapeznikov, and Jim Gimlett
Geosci. Model Dev., 17, 5459–5475, https://doi.org/10.5194/gmd-17-5459-2024, https://doi.org/10.5194/gmd-17-5459-2024, 2024
Short summary
Short summary
Machine learning (ML) of unresolved processes offers many new possibilities for improving weather and climate models, but integrating ML into the models has been an engineering challenge, and there are performance issues. We present a new software plugin for this integration, TorchClim, that is scalable and flexible and thereby allows a new level of experimentation with the ML approach. We also provide guidance on ML training and demonstrate a skillful hybrid ML atmosphere model.
Minjin Lee, Charles A. Stock, John P. Dunne, and Elena Shevliakova
Geosci. Model Dev., 17, 5191–5224, https://doi.org/10.5194/gmd-17-5191-2024, https://doi.org/10.5194/gmd-17-5191-2024, 2024
Short summary
Short summary
Modeling global freshwater solid and nutrient loads, in both magnitude and form, is imperative for understanding emerging eutrophication problems. Such efforts, however, have been challenged by the difficulty of balancing details of freshwater biogeochemical processes with limited knowledge, input, and validation datasets. Here we develop a global freshwater model that resolves intertwined algae, solid, and nutrient dynamics and provide performance assessment against measurement-based estimates.
Hunter York Brown, Benjamin Wagman, Diana Bull, Kara Peterson, Benjamin Hillman, Xiaohong Liu, Ziming Ke, and Lin Lin
Geosci. Model Dev., 17, 5087–5121, https://doi.org/10.5194/gmd-17-5087-2024, https://doi.org/10.5194/gmd-17-5087-2024, 2024
Short summary
Short summary
Explosive volcanic eruptions lead to long-lived, microscopic particles in the upper atmosphere which act to cool the Earth's surface by reflecting the Sun's light back to space. We include and test this process in a global climate model, E3SM. E3SM is tested against satellite and balloon observations of the 1991 eruption of Mt. Pinatubo, showing that with these particles in the model we reasonably recreate Pinatubo and its global effects. We also explore how particle size leads to these effects.
Deifilia Aurora To, Julian Quinting, Gholam Ali Hoshyaripour, Markus Götz, Achim Streit, and Charlotte Debus
EGUsphere, https://doi.org/10.5194/egusphere-2024-1714, https://doi.org/10.5194/egusphere-2024-1714, 2024
Short summary
Short summary
Pangu-Weather is a breakthrough machine learning model in medium-range weather forecasting that considers three-dimensional atmospheric information. We show that using a simpler 2D framework improves robustness, speeds up training, and reduces computational needs by 20–30%. We introduce a training procedure that varies the importance of atmospheric variables over time to speed up training convergence. Decreasing computational demand increases accessibility of training and working with the model.
Carl Svenhag, Moa K. Sporre, Tinja Olenius, Daniel Yazgi, Sara M. Blichner, Lars P. Nieradzik, and Pontus Roldin
Geosci. Model Dev., 17, 4923–4942, https://doi.org/10.5194/gmd-17-4923-2024, https://doi.org/10.5194/gmd-17-4923-2024, 2024
Short summary
Short summary
Our research shows the importance of modeling new particle formation (NPF) and growth of particles in the atmosphere on a global scale, as they influence the outcomes of clouds and our climate. With the global model EC-Earth3 we show that using a new method for NPF modeling, which includes new detailed processes with NH3 and H2SO4, significantly impacts the number of particles in the air and clouds and changes the radiation balance of the same magnitude as anthropogenic greenhouse emissions.
Mengjie Han, Qing Zhao, Xili Wang, Ying-Ping Wang, Philippe Ciais, Haicheng Zhang, Daniel S. Goll, Lei Zhu, Zhe Zhao, Zhixuan Guo, Chen Wang, Wei Zhuang, Fengchang Wu, and Wei Li
Geosci. Model Dev., 17, 4871–4890, https://doi.org/10.5194/gmd-17-4871-2024, https://doi.org/10.5194/gmd-17-4871-2024, 2024
Short summary
Short summary
The impact of biochar (BC) on soil organic carbon (SOC) dynamics is not represented in most land carbon models used for assessing land-based climate change mitigation. Our study develops a BC model that incorporates our current understanding of BC effects on SOC based on a soil carbon model (MIMICS). The BC model can reproduce the SOC changes after adding BC, providing a useful tool to couple dynamic land models to evaluate the effectiveness of BC application for CO2 removal from the atmosphere.
Kalyn Dorheim, Skylar Gering, Robert Gieseke, Corinne Hartin, Leeya Pressburger, Alexey N. Shiklomanov, Steven J. Smith, Claudia Tebaldi, Dawn L. Woodard, and Ben Bond-Lamberty
Geosci. Model Dev., 17, 4855–4869, https://doi.org/10.5194/gmd-17-4855-2024, https://doi.org/10.5194/gmd-17-4855-2024, 2024
Short summary
Short summary
Hector is an easy-to-use, global climate–carbon cycle model. With its quick run time, Hector can provide climate information from a run in a fraction of a second. Hector models on a global and annual basis. Here, we present an updated version of the model, Hector V3. In this paper, we document Hector’s new features. Hector V3 is capable of reproducing historical observations, and its future temperature projections are consistent with those of more complex models.
Fangxuan Ren, Jintai Lin, Chenghao Xu, Jamiu A. Adeniran, Jingxu Wang, Randall V. Martin, Aaron van Donkelaar, Melanie S. Hammer, Larry W. Horowitz, Steven T. Turnock, Naga Oshima, Jie Zhang, Susanne Bauer, Kostas Tsigaridis, Øyvind Seland, Pierre Nabat, David Neubauer, Gary Strand, Twan van Noije, Philippe Le Sager, and Toshihiko Takemura
Geosci. Model Dev., 17, 4821–4836, https://doi.org/10.5194/gmd-17-4821-2024, https://doi.org/10.5194/gmd-17-4821-2024, 2024
Short summary
Short summary
We evaluate the performance of 14 CMIP6 ESMs in simulating total PM2.5 and its 5 components over China during 2000–2014. PM2.5 and its components are underestimated in almost all models, except that black carbon (BC) and sulfate are overestimated in two models, respectively. The underestimation is the largest for organic carbon (OC) and the smallest for BC. Models reproduce the observed spatial pattern for OC, sulfate, nitrate and ammonium well, yet the agreement is poorer for BC.
Peter Berg, Thomas Bosshard, Denica Bozhinova, Lars Bärring, Joakim Löw, Carolina Nilsson, Gustav Strandberg, Johan Södling, Johan Thuresson, Renate Wilcke, and Wei Yang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-98, https://doi.org/10.5194/gmd-2024-98, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
When bias adjusting climate model data using quantile mapping, one needs to prescribe what to do at the tails of the distribution, where a larger range of data is likely encountered outside the calibration period. The end result is highly dependent on the method used, and we show that one needs to exclude data in the calibration range to activate the extrapolation functionality also in that time period, else there will be discontinuities in the timeseries.
Yi Xi, Chunjing Qiu, Yuan Zhang, Dan Zhu, Shushi Peng, Gustaf Hugelius, Jinfeng Chang, Elodie Salmon, and Philippe Ciais
Geosci. Model Dev., 17, 4727–4754, https://doi.org/10.5194/gmd-17-4727-2024, https://doi.org/10.5194/gmd-17-4727-2024, 2024
Short summary
Short summary
The ORCHIDEE-MICT model can simulate the carbon cycle and hydrology at a sub-grid scale but energy budgets only at a grid scale. This paper assessed the implementation of a multi-tiling energy budget approach in ORCHIDEE-MICT and found warmer surface and soil temperatures, higher soil moisture, and more soil organic carbon across the Northern Hemisphere compared with the original version.
Maria Rosa Russo, Sadie L. Bartholomew, David Hassell, Alex M. Mason, Erica Neininger, A. James Perman, David A. J. Sproson, Duncan Watson-Parris, and Nathan Luke Abraham
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-73, https://doi.org/10.5194/gmd-2024-73, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Observational data and modelling capabilities are expanding in recent years, but there are still barriers preventing these two data sources to be used in synergy. Proper comparison requires generating, storing and handling a large amount of data. This manuscript describes the first step in the development of a new set of software tools, the ‘VISION toolkit’, which can enable the easy and efficient integration of observational and model data required for model evaluation.
Georgia Lazoglou, Theo Economou, Christina Anagnostopoulou, George Zittis, Anna Tzyrkalli, Pantelis Georgiades, and Jos Lelieveld
Geosci. Model Dev., 17, 4689–4703, https://doi.org/10.5194/gmd-17-4689-2024, https://doi.org/10.5194/gmd-17-4689-2024, 2024
Short summary
Short summary
This study focuses on the important issue of the drizzle bias effect in regional climate models, described by an over-prediction of the number of rainy days while underestimating associated precipitation amounts. For this purpose, two distinct methodologies are applied and rigorously evaluated. These results are encouraging for using the multivariate machine learning method random forest to increase the accuracy of climate models concerning the projection of the number of wet days.
Xu Yue, Hao Zhou, Chenguang Tian, Yimian Ma, Yihan Hu, Cheng Gong, Hui Zheng, and Hong Liao
Geosci. Model Dev., 17, 4621–4642, https://doi.org/10.5194/gmd-17-4621-2024, https://doi.org/10.5194/gmd-17-4621-2024, 2024
Short summary
Short summary
We develop the interactive Model for Air Pollution and Land Ecosystems (iMAPLE). The model considers the full coupling between carbon and water cycles, dynamic fire emissions, wetland methane emissions, biogenic volatile organic compound emissions, and trait-based ozone vegetation damage. Evaluations show that iMAPLE is a useful tool for the study of the interactions among climate, chemistry, and ecosystems.
Malte Meinshausen, Carl-Friedrich Schleussner, Kathleen Beyer, Greg Bodeker, Olivier Boucher, Josep G. Canadell, John S. Daniel, Aïda Diongue-Niang, Fatima Driouech, Erich Fischer, Piers Forster, Michael Grose, Gerrit Hansen, Zeke Hausfather, Tatiana Ilyina, Jarmo S. Kikstra, Joyce Kimutai, Andrew D. King, June-Yi Lee, Chris Lennard, Tabea Lissner, Alexander Nauels, Glen P. Peters, Anna Pirani, Gian-Kasper Plattner, Hans Pörtner, Joeri Rogelj, Maisa Rojas, Joyashree Roy, Bjørn H. Samset, Benjamin M. Sanderson, Roland Séférian, Sonia Seneviratne, Christopher J. Smith, Sophie Szopa, Adelle Thomas, Diana Urge-Vorsatz, Guus J. M. Velders, Tokuta Yokohata, Tilo Ziehn, and Zebedee Nicholls
Geosci. Model Dev., 17, 4533–4559, https://doi.org/10.5194/gmd-17-4533-2024, https://doi.org/10.5194/gmd-17-4533-2024, 2024
Short summary
Short summary
The scientific community is considering new scenarios to succeed RCPs and SSPs for the next generation of Earth system model runs to project future climate change. To contribute to that effort, we reflect on relevant policy and scientific research questions and suggest categories for representative emission pathways. These categories are tailored to the Paris Agreement long-term temperature goal, high-risk outcomes in the absence of further climate policy and worlds “that could have been”.
Seung H. Baek, Paul A. Ullrich, Bo Dong, and Jiwoo Lee
EGUsphere, https://doi.org/10.5194/egusphere-2024-1456, https://doi.org/10.5194/egusphere-2024-1456, 2024
Short summary
Short summary
We evaluate downscaled products by examining locally relevant covariances during convective and frontal precipitation events. Common statistical downscaling techniques preserve expected covariances during convective precipitation. However, they dampen future intensification of frontal precipitation captured in global climate models and dynamical downscaling. This suggests statistical downscaling may not fully resolve non-stationary hydrologic processes as compared to dynamical downscaling.
Emmanuel Nyenah, Petra Döll, Daniel S. Katz, and Robert Reinecke
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-97, https://doi.org/10.5194/gmd-2024-97, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Research software is crucial for scientific progress but is often developed by scientists with limited training, time, and funding, leading to software that is hard to understand, (re)use, modify, and maintain. Our study across 10 research sectors highlights strengths in version control, open-source licensing, and documentation while emphasizing the need for containerization and code quality. Recommendations include workshops, code quality metrics, funding, and adherence to FAIR standards.
Yilin Fang, Hoang Viet Tran, and L. Ruby Leung
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-70, https://doi.org/10.5194/gmd-2024-70, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Hurricanes may worsen the water quality in the lower Mississippi River Basin (LMRB) by increasing nutrient runoff. We found that runoff parameterizations greatly affect nitrate-nitrogen runoff simulated using an Earth system land model. Our simulations predicted increased nitrogen runoff in LMRB during Hurricane Ida in 2021, but less pronounced than the observations, indicating areas for model improvement to better understand and manage nutrient runoff loss during hurricanes in the region.
Giovanni G. Seijo-Ellis, Donata Giglio, Gustavo M. Marques, and Frank O. Bryan
EGUsphere, https://doi.org/10.5194/egusphere-2024-1378, https://doi.org/10.5194/egusphere-2024-1378, 2024
Short summary
Short summary
A CESM/MOM6 regional configuration of the Caribbean Sea was developed as a response to the rising need of high-resolution models for climate impact studies. The configuration is validated for the period of 2000–2020 and improves significant errors in a low resolution model. Oceanic properties are well represented. Patterns of freshwater associated with the Amazon river are well captured and the mean flows across the multiple passages in the Caribbean Sea agree with observations.
Ross Mower, Ethan D. Gutmann, Glen E. Liston, Jessica Lundquist, and Soren Rasmussen
Geosci. Model Dev., 17, 4135–4154, https://doi.org/10.5194/gmd-17-4135-2024, https://doi.org/10.5194/gmd-17-4135-2024, 2024
Short summary
Short summary
Higher-resolution model simulations are better at capturing winter snowpack changes across space and time. However, increasing resolution also increases the computational requirements. This work provides an overview of changes made to a distributed snow-evolution modeling system (SnowModel) to allow it to leverage high-performance computing resources. Continental simulations that were previously estimated to take 120 d can now be performed in 5 h.
Catherine Guiavarc'h, Dave Storkey, Adam T. Blaker, Ed Blockley, Alex Megann, Helene T. Hewitt, Michael J. Bell, Daley Calvert, Dan Copsey, Bablu Sinha, Sophia Moreton, Pierre Mathiot, and Bo An
EGUsphere, https://doi.org/10.5194/egusphere-2024-805, https://doi.org/10.5194/egusphere-2024-805, 2024
Short summary
Short summary
GOSI9 is the new UK’s hierarchy of global ocean and sea ice models. Developed as part of a collaboration between several UK research institutes it will be used for various applications such as weather forecast and climate prediction. The models, based on NEMO, are available at three resolutions 1°, ¼° and 1/12°. GOSI9 improves upon previous version by reducing global temperature and salinity biases and enhancing the representation of the Arctic sea ice and of the Antarctic Circumpolar Current.
Jiaxu Guo, Juepeng Zheng, Yidan Xu, Haohuan Fu, Wei Xue, Lanning Wang, Lin Gan, Ping Gao, Wubing Wan, Xianwei Wu, Zhitao Zhang, Liang Hu, Gaochao Xu, and Xilong Che
Geosci. Model Dev., 17, 3975–3992, https://doi.org/10.5194/gmd-17-3975-2024, https://doi.org/10.5194/gmd-17-3975-2024, 2024
Short summary
Short summary
To enhance the efficiency of experiments using SCAM, we train a learning-based surrogate model to facilitate large-scale sensitivity analysis and tuning of combinations of multiple parameters. Employing a hybrid method, we investigate the joint sensitivity of multi-parameter combinations across typical cases, identifying the most sensitive three-parameter combination out of 11. Subsequently, we conduct a tuning process aimed at reducing output errors in these cases.
Yung-Yao Lan, Huang-Hsiung Hsu, and Wan-Ling Tseng
Geosci. Model Dev., 17, 3897–3918, https://doi.org/10.5194/gmd-17-3897-2024, https://doi.org/10.5194/gmd-17-3897-2024, 2024
Short summary
Short summary
This study uses the CAM5–SIT coupled model to investigate the effects of SST feedback frequency on the MJO simulations with intervals at 30 min, 1, 3, 6, 12, 18, 24, and 30 d. The simulations become increasingly unrealistic as the frequency of the SST feedback decreases. Our results suggest that more spontaneous air--sea interaction (e.g., ocean response within 3 d in this study) with high vertical resolution in the ocean model is key to the realistic simulation of the MJO.
Jiwoo Lee, Peter J. Gleckler, Min-Seop Ahn, Ana Ordonez, Paul A. Ullrich, Kenneth R. Sperber, Karl E. Taylor, Yann Y. Planton, Eric Guilyardi, Paul Durack, Celine Bonfils, Mark D. Zelinka, Li-Wei Chao, Bo Dong, Charles Doutriaux, Chengzhu Zhang, Tom Vo, Jason Boutte, Michael F. Wehner, Angeline G. Pendergrass, Daehyun Kim, Zeyu Xue, Andrew T. Wittenberg, and John Krasting
Geosci. Model Dev., 17, 3919–3948, https://doi.org/10.5194/gmd-17-3919-2024, https://doi.org/10.5194/gmd-17-3919-2024, 2024
Short summary
Short summary
We introduce an open-source software, the PCMDI Metrics Package (PMP), developed for a comprehensive comparison of Earth system models (ESMs) with real-world observations. Using diverse metrics evaluating climatology, variability, and extremes simulated in thousands of simulations from the Coupled Model Intercomparison Project (CMIP), PMP aids in benchmarking model improvements across generations. PMP also enables efficient tracking of performance evolutions during ESM developments.
Haoyue Zuo, Yonggang Liu, Gaojun Li, Zhifang Xu, Liang Zhao, Zhengtang Guo, and Yongyun Hu
Geosci. Model Dev., 17, 3949–3974, https://doi.org/10.5194/gmd-17-3949-2024, https://doi.org/10.5194/gmd-17-3949-2024, 2024
Short summary
Short summary
Compared to the silicate weathering fluxes measured at large river basins, the current models tend to systematically overestimate the fluxes over the tropical region, which leads to an overestimation of the global total weathering flux. The most possible cause of such bias is found to be the overestimation of tropical surface erosion, which indicates that the tropical vegetation likely slows down physical erosion significantly. We propose a way of taking this effect into account in models.
Cited articles
Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak,
J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind,
J., Arkin, P., and Nelkin, E.: The version 2 Global Precipitation Climatology
Project (GPCP) monthly precipitation analysis (1979–present), J.
Hydrometeorol., 4, 1147–1167, 2003.
Adler, R. F., Gu, G., and Huffman, G. J.: Estimating climatological bias
errors for the Global Precipitation Climatology Project (GPCP), J. Appl. Meteorol. Clim., 51, 84–99,
https://doi.org/10.1175/JAMC-D-11-052.1, 2012.
Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S.,
Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A.,
Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W.,
Paw U, K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala,
T., Wilson, K., and Wofsy, S.: FLUXNET: A new tool to study the temporal and
spatial variability of ecosystem-scale carbon dioxide, water vapor, and
energy flux densities, B. Am. Meteorol. Soc., 82, 2415–2434, 2001.
Barlage, M., Zeng, X., Wei, H., and Mitchell, K. E.: A global 0.05∘
maximum albedo dataset of snow-covered land based on MODIS observations,
Geophys. Res. Lett., 32, L17405, https://doi.org/10.1029/2005GL022881, 2005.
Behrangi, A., Christensen, M., Richardson, M., Lebsock, M., Stephens, G.,
Huffman, G. J., Bolvin, D., Adler, R. F., Gardner, A., Lambrigtsen, B., and
Fetzer, E.: Status of high-latitude precipitation estimates from observations
and reanalyses, J. Geophys. Res., 121, 4468–4486,
https://doi.org/10.1002/2015JD024546, 2016.
Betts, A. K., Ball, J. H., Barr, A. G., Black, T. A., McCaughey, J. H., and
Viterbo, P.: Assessing land-surface-atmosphere coupling in the ERA-40
reanalysis with boreal forest data, Agr. Forest Meteorol., 140, 365–382,
https://doi.org/10.1016/j.agrformet.2006.08.009, 2006.
Berg, P., Döscher, R., and Koenigk, T.: Impacts of using spectral nudging
on regional climate model RCA4 simulations of the Arctic, Geosci. Model Dev.,
6, 849–859, https://doi.org/10.5194/gmd-6-849-2013, 2013.
Berg, P., Döscher, R., and Koenigk, T.: On the effects of constraining
atmospheric circulation in a coupled atmosphere-ocean Arctic regional climate
model, Clim. Dynam., 46, 3499–3515, https://doi.org/10.1007/s00382-015-2783-y, 2016.
Bromwich, D. H., Cassano, J. J., Klein, T., Heinemann, G., Hines, K. M.,
Steffen, K., and Box, J. E.: Mesoscale modeling of katabatic winds over
Greenland with the Polar MM5, Mon. Weather Rev., 129, 2290–2309, 2001.
Bromwich, D. H., Hines, K. M., and Bai, L.-S.: Development and testing of
Polar Weather Research and Forecasting model: 2. Arctic Ocean, J. Geophys.
Res., 114, D08122, https://doi.org/10.1029/2008JD010300, 2009.
Bromwich, D. H., Wilson, A. B., Bai, L.-S., Moore, G. W. K., and Bauer, P.:
A comparison of the regional Arctic System Reanalysis and the global
ERA-Interim Reanalysis for the Arctic, Q. J. Roy. Meteor. Soc., 142,
644–658, https://doi.org/10.1002/qj.2527, 2016.
Broxton, P., Zeng, X., and Dawson, N.: Why do global reanalyses and land
data assimilation products underestimate snow water equivalent?, J.
Hydrometeorol., 17, 2743–2761, https://doi.org/10.1175/JHM-D-16-0056.1, 2016.
Brunke, M. A., Fairall, C. W., Zeng, X., Eymard, L., and Curry, J. A.: Which
bulk aerodynamic flux algorithms are least problematic in computing ocean
surface turbulent fluxes?, J. Climate, 16, 619–635, 2003.
Brunke, M. A., Zhou, M., Zeng, X., and Andreas, E. L: An intercomparison of
bulk aerodynamic algorithms used over sea ice with data from the Surface Heat
Budget for the Arctic Ocean (SHEBA) experiment, J. Geophys. Res., 111,
C09001, https://doi.org/10.1029/2005JC002907, 2006.
Cassano, J. J., Box, J. E., Bromwich, D. H., Li, L., and Steffen, K.:
Evaluation of Polar MM5 simulations of Greenland's atmospheric circulation,
J. Geophys. Res., 106, 33867–33889, 2001.
Cassano, J. J., Higgins, M. E., and Seefeldt, M. W.: Performance of the
Weather Research and Forecasting Model for month-long pan-Arctic simulations,
Mon. Weather Rev., 139, 3469–3488, 2011.
Cassano, J. J., DuVivier, A., Roberts, A., Hughes, M., Seefeldt, M., Brunke,
M., Craig, A., Fisel, B., Gutowski, W., Hamman, J., Higgins, M., Maslowski,
W., Nijssen, B., Osinski, R., and Zeng, X.: Development of the Regional
Arctic System Model (RASM): Near surface atmospheric climate sensitivity, J.
Climate, 30, 5729–5753, https://doi.org/10.1175/JCLI-D-15-0775.1, 2017.
Comiso, J. C. and Hall, D. K.: Climate trends in the Arctic as observed from
space, Wires Clim. Change, 5, 389–409, 2014.
Comiso, J. C., Parkinson, C. L., Gersten, R., and Stock, L.: Accelerated
decline in the Arctic sea ice cover, Geophys. Res. Lett., 35, L01703,
https://doi.org/10.1029/2007GL031972, 2008.
Craig, A. P., Vertenstein, M., and Jacob, R.: A new flexible coupler for
Earth system modeling developed for CCSM4 and CESM1, Int. J. High Perform.
C., 26, 31–42, https://doi.org/10.1177/1094342011428141, 2012.
Dawson, N., Broxton, P., Zeng, X., Leuthold, M., Barlage, M., and Holbrook,
P.: Evaluation of Snow Initializations for NCEP Global and Regional
Forecasting Models, J. Hydrometeorol., 17, 1885–1901,
https://doi.org/10.1175/JHM-D-15-0227.1, 2016.
Decker, M., Brunke, M. A., Wang, Z., Sakaguchi, K., Zeng, X., and
Bosilovich, M. G.: Evaluation of the reanalysis products from GSFC, NCEP, and
ECMWF using flux tower observations, J. Climate, 25, 1916–1944,
https://doi.org/10.1175/JCLI-D-11-00004.1, 2012.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler,
M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J.,
Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and
Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the
data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, 2011.
DeRepentigny, P., Tremblay, L. B., Newton, R., and Pfirman, S.: Patterns of
sea ice retreat in the transition to a seasonally ice-free Arctic, J.
Climate, 29, 6993–7008, https://doi.org/10.1175/JCLI-D-15-0733.1, 2016.
Dethloff, K., Rinke, A., Lehmann, R., Christensen, J. H., Botzet, M., and
Machenhauser, B.: A regional climate model of the Arctic atmosphere, J.
Geophys. Res., 101, 23401–23422, 1996.
Dorn, W., Dethloff, K., Rinke, A., Frickenhaus, S., Gerdes, R., Karcher, M.,
and Kauker, F.: Sensitivities and uncertainties in a coupled regional
atmosphere-ocean-ice model with respect to the simulation of Arctic sea ice,
J. Geophys. Res., 112, D10118, https://doi.org/10.1029/2006JD007814, 2007.
Döscher, R., Willén, U., Jones, C., Rutgersson, A., Markus Meier, H.
E., Hansson, U., and Graham, L. P.: The development of the regional coupled
ocean-atmosphere model RCAO, Boreal Environ. Res., 7, 183–192, 2002.
D
öscher, R., Wyser, K., Markus Meier, H. E., Qian, M., and Redler, R.:
Quantifying Arctic contributions to climate predictability in a regional
coupled ocean-ice-atmosphere model, Clim. Dynam., 34, 1157–1167,
https://doi.org/10.1007/s00382-009-0567-y, 2010.
Du, J., Wang, K., Wang, J., Jiang, S., and Zhou, C.: Diurnal cycle of surface
air temperature within China in current reanalyses: Evaluation and
diagnostics, J. Climate, 31, 4585–4603, https://doi.org/10.1175/JCLI-D-0773.1, 2018.
Dukowicz, J. K. and Smith, R. D.: Implicit free-surface method for the
Bryan-Cox-Semtner ocean model, J. Geophys. Res., 99, 7991–8014,
https://doi.org/10.1029/93JC03455, 1994.
DuVivier, A. K. and Cassano, J. J.: Exploration of turbulent heat fluxes
and wind stress curl in WRF and ERA-Interim during wintertime mesoscale wind
events around southeastern Greenland, J. Geophys. Res., 120, 3593–3609,
https://doi.org/10.1002/2014JD022991, 2015.
Estilow, T. W., Young, A. H., and Robinson, D. A.: A long-term Northern
Hemisphere snow cover extent data record for climate studies and monitoring,
Earth Syst. Sci. Data, 7, 137–142, https://doi.org/10.5194/essd-7-137-2015,
2015.
European Centre for Medium-Range Weather Forecasts: ERA-Interim Project,
Monthly Means, Research Data Archive at the National Center for Atmospheric
Research, https://doi.org/10.5065/D68050NT, 2012.
Gelaro, R., McCarty, W., Suarez, M. J., Todling, R., Molod, A., Takacs, L.,
Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K.,
Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da
Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert,
S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis
for Research and Applications, Version 2 (MERRA-2), J. Climate, 30,
5419–5454, 2017.
Glisan, J. M., Gutowski, W. J., Cassano, J. J., and Higgins, M. E.: Effects
of spectral nudging in WRF on Arctic temperature and precipitation
simulations, J. Climate, 26, 3985–3999, https://doi.org/10.1175/JCLI-D-12-00318.1,
2012.
Grell, G. A. and Dévényi, D.: A generalized approach to
parameterizing convection combining ensemble and data assimilation
techniques, Geophys. Res. Lett., 29, 1693, https://doi.org/10.1029/2002GL015311, 2002.
Gupta, S. K., Whitlock, C. H., Ritchey, N. A., and Wilber, A. C.: An
algorithm for longwave surface radiation budget for total skies (Subsystem
4.6.3), Clouds and Earth's Radiant Energy System (CERES) ATBD, 21 pp., 1997.
Hamman, J., Nijssen, B., Brunke, M., Cassano, J., Craig, A., DuVivier, A.,
Hughes, M., Lettenmaier, D. P., Maslowski, W., Osinski, R., Roberts, A., and
Zeng, X.: Land surface climate in the Regional Arctic System Model, J.
Climate, 29, 6543–6562, https://doi.org/10.1175/JCLI-D-15-0415.1, 2016.
Hamman, J., Nijssen, B., Roberts, A., Craig, A., Maslowski, W., and Osinski,
R.: The Coastal Streamflow Flux in the Regional Arctic System Model, J.
Geophys. Res., 122, 1683–1701, https://doi.org/10.1002/2016JC012323, 2017.
Hartmann, D. L.: Global Physical Climatology, Academic Press, San Diego, Calif., 1994.
Hines, K. M. and Bromwich, D. H.: Development and testing of Polar WRF. Part
I: Greenland Ice Sheet meteorology, Mon. Weather Rev., 136, 1971–1989,
https://doi.org/10.1175/2007MWR2112.1, 2008.
Holland, M. M. and Bitz, C. M.: Polar amplification of climate change in
coupled models, Clim. Dynam., 21, 221–232, 2003.
Hong, S.-Y., Noh, Y., and Dudhia, J.: A new vertical diffusion package with
an explicit treatment of entrainment processes, Mon. Weather Rev., 134,
2318–2314, https://doi.org/10.1175/MWR3199.1, 2006.
Hunke, E. C., Hebert, D. A., and Lecomte, O.: Level-ice melt ponds in the
Los Alamos sea ice model, CICE, Ocean Model., 71, 26–42,
https://doi.org/10.1016/j.ocemod.2012.11.008, 2013.
Hunke, E. C., Lipscomb, W. H., Turner, A. K., Jeffery, N., and Elliott,
S.: CICE?: the Los Alamos Sea Ice Model Documentation and Software User's
Manual Version 5.1, Los Alamos National Lab., Los Alamos, N.M., LA-CC-06-012,
2015.
Johannessen, O. M., Bengtsson, L., Miles, M. W., Kuzmina, S. I., Semenov, V.
A., Alekseev, G. V., Nagurnyi, A. P., Zakharov, V. F., Bobylev, L. P.,
Pettersson, L. H., Hasselmann, K., and Cattle, H. P.: Arctic climate change:
observed and modelled temperature and sea-ice variability, Tellus, 56A,
328–341, 2004.
Jousse, A., Hall, A., Sun, F., and Teixeira, J.: Causes of WRF surface
energy fluxes biases in a stratocumulus region, Clim. Dynam., 46, 571–584,
https://doi.org/10.1007/s00382-015-2599-9, 2016.
Kain, J. S.: The Kain-Fritsch convective parameterization: an update,
J. Appl. Meteorol., 43, 170–181,
https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.C0;2, 2004.
Kato, S., Loeb, N. G., Rose, F. G., Doelling, D. R., Rutan, D. A.,
Caldwell, T. E., Yu, L., and Weller, R. A.: Surface irradiances consistent
with CERES-derived top-of-atmosphere shortwave and longwave irradiances, J.
Climate, 26, 2719–2740, https://doi.org/10.1175/JCLI-D-12-00436.1, 2013.
Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G.
Arblaster, J. M., Bates, S. C., Danabasoglu, G., Edwards, J., Holland, M.,
Kushner, P.: The Community Earth System Model (CESM) Large Ensemble Project:
A community resource for studying climate change in the presence of internal
climate variability, B. Am. Meterol. Soc., 96, 1333–1349,
https://doi.org/10.1175/BAMS-D-13-00255.1, 2015.
Kennedy, J. J., Rayner, N. A., Smith, R. O., Parker, D. E., and Saunby, M.:
Reassessing biases and other uncertainties in sea surface temperature
observations measured in situ since 1850: 1. Measurement and sampling
uncertainties, J. Geophys. Res., 116, D14103, https://doi.org/10.1029/2010JD015218,
2011a.
Kennedy, J. J., Rayner, N. A., Smith, R. O., Parker, D. E., and Saunby, M.:
Reassessing biases and other uncertainties in sea surface temperature
observations measured in situ since 1850: 2. Biases and homogenization, J.
Geophys. Res., 116, D14104, https://doi.org/10.1029/2010JD015220, 2011b.
Large, W. G. and Yeager, S. G.: The global climatology of an interannually
varying air-sea flux data set, Clim. Dynam., 33, 341–364,
https://doi.org/10.1007/s00382-008-0441-3, 2009.
Lawrence, D. M., Koven, C. D., Swenson, S. C., Riley, W. J., and Slater, A.
G.: Permafrost thaw and resulting soil moisture changes regulate projected
high-latitude CO2 and CH4 emissions, Environ. Res.
Lett., 10, 094011, https://doi.org/10.1088/1748-9326/10/9/094011, 2015.
Li, Z. and Kratz, D. P.: Estimate of shortwave surface radiation budget
from CERES (Subsystem 4.6.1), Clouds and Earth's Radiant Energy System
(CERES) ATBD, 18 pp., 1997.
Li, Z., Leighton, H. G., Masuda, K., and Takashima, T.: Estimation of SW
flux absorbed at the surface from TOA reflected flux, J. Climate, 6,
317–330, 1993.
Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: A simple
hydrologically based model of land surface water and energy fluxes for
general circulation models, J. Geophys. Res., 99, 14415–14428,
https://doi.org/10.1029/94JD00483, 1994.
Liang, X., Wood, E. F., and Lettenmaier, D. P.: Surface soil moisture
parameterization of the VIC-2L model: Evaluation and modification, Global
Planet. Change, 13, 195–206, 1996.
Lindsay, R., Wensnahan, M., Schweiger, A., and Zhang, J.: Evaluation of
seven different atmospheric reanalysis products in the Arctic, J. Climate,
27, 2588–2606, https://doi.org/10.1175/JCLI-D-13-00014.s1, 2014.
Lynch, A. H. and Cullather, R. I.: An investigation of boundary-forcing
sensitivities in a regional climate model, J. Geophys. Res., 105,
26603–26617, 2000.
Lynch, A. H., Chapman, W. L., Walsh, J. E., and Weller, G.: Development of a
regional climate model of the western Arctic, J. Climate, 8, 1555–1570,
1995.
Lynch, A. H., McGinnis, D. L., and Bailey, D. A.: Snow-albedo feedback and
the spring transition in a regional climate system model: Influence of land
surface model, J. Geophys. Res., 103, 29037–29049, 1998.
Lynch, A. H., Maslanik, J. A., and Wu, W.: Mechanisms in the development of
anomalous sea ice extent in the western Arctic: A case study, J. Geophys.
Res., 106, 28097–28105, 2001.
Maslowski, W., Kinney, J. C., Higgins, M., and Roberts, A.: The future of
Arctic sea ice, Annu. Rev. Earth Pl. Sc., 40, 625–654, 2012.
Maykut, G. A.: Energy exchange over young sea ice in the central Arctic,
J. Geophys. Res., 23, 3646–3658, 1978.
Maykut, G. A. and Untersteiner, N.: Some results from a time-dependent
thermodynamic model of sea ice, J. Geophys. Res., 76, 1550–1575, 1971.
Meier, W., Peng, G., Scott, D. J., and Savoie, M. H.: Verification of a new
NOAA/NSIDC passive microwave sea-ice concentration climate record, Polar
Res., 33, 21004, https://doi.org/10.3402/polar.v33.21004, 2014.
Meier, W., Fetterer, F., Savoie, M., Mallory, S., Duerr, R., and Stroeve, J.:
NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration,
Version 3, National Snow and Ice Data Center, https://doi.org/10.7265/N59P2ZTG, 2017.
Militzer, J. M., Michaelis, M. C., Semmer, S. R., Norris, K. S., Horst, T.
W., Oncley, S. P., Delany, A. C., and Brock, F. V.: Development of the
prototype PAM III/Flux-PAM surface meteorological station, paper presented
at 9th Symposium on Meteorological Observations and Instrumentation, American
Meteorological Society, Charlotte, N.C., 1995.
Moritz, R. E., Bitz, C. M., and Steig, E. J.: Dynamics of recent climate
change in the Arctic, Science, 297, 1497–1502, 2002.
Morrison, H., Thompson, G., and Tatarskii, V.: Impact of cloud microphysics
on the development of trailing stratiform precipitation in a simulated squall
line: Comparison of one- and two-moment schemes, Mon. Weather Rev., 137,
991–1007, https://doi.org/10.1175/2008MWR2556.1, 2009.
Nakanishi, M. and Niino, H.: An improved Mellor-Yamada level-3 model: Its
numerical stability and application to a regional prediction of advection
fog, Bound.-Lay. Meteorol., 119, 397–407, https://doi.org/10.1007/s10546-005-9030-8,
2006.
New, M., Lister, D., Hulme, M., and Makin, I.: A high-resolution data set of
surface climate over global land areas, Clim. Res., 21, 1–25,
https://doi.org/10.3354/cr021001, 2002.
Osborn, T. J. and Jones, P. D.: The CRUTEM4 land-surface air temperature data
set: construction, previous versions and dissemination via Google Earth,
Earth Syst. Sci. Data, 6, 61–68, https://doi.org/10.5194/essd-6-61-2014,
2014.
Peng, G., Meier, W. N., Scott, D. J., and Savoie, M. H.: A long-term and
reproducible passive microwave sea ice concentration data record for climate
studies and monitoring, Earth Syst. Sci. Data, 5, 311–318,
https://doi.org/10.5194/essd-5-311-2013, 2013.
Persson, P. O. G., Fairall, C. W., Andreas, E. L, Guest, P. S., and
Perovich, D. K.: Measurements near the Atmospheric Surface Flux Group tower
at SHEBA: Near-surface conditions and surface energy budget, J. Geophys.
Res., 107, 8045, https://doi.org/10.1029/2000JC000705, 2002.
Porter, D. F., Cassano, J. J., and Serreze, M. C.: Analysis of the Arctic
atmospheric energy budget in WRF: A comparison with reanalyses and satellite
observations, J. Geophys. Res., 116, D22108, https://doi.org/10.1029/2011JD016622,
2011.
Reeves Eyre, J. E. J. and Zeng, X.: Evaluation of Greenland near surface air
temperature datasets, The Cryosphere, 11, 1591–1605,
https://doi.org/10.5194/tc-11-1591-2017, 2017.
Rinke, A., Gerdes, R., Dethloff, K., Kandlbinder, T., Karcher, M., Kauker,
F., Frickenhaus, S., Köberle, C., and Hiller, W.: A case sudy of the
anomalous Arctic sea ice conditions during 1990: Insights from coupled and
uncoupled regional climate model simulations, J. Geophys. Res., 108, 4275,
https://doi.org/10.1029/2002JD003146, 2003.
Roberts, A., Cassano, J., Döscher, Hinzman, L., Holland, M., Mitsudera,
H., Sumi, A., Walsh, J. E., Alessa, L., Alexeev, V., Arendt, A., Altaweel,
M., Bhatt, U., Cherry, J., Deal, C., Elliot, S., Follows, M., Hock, R.,
Kliskey, A., Lantuit, H., Lawrence, D., Maslowski, W., McGuire, A. D.,
Overduin, P. P., Overeem, I., Proshutinsky, A., Romanovsky, V., Sushama, L.,
and Truffer, M.: A science plan for regional Arctic system modeling: A report
by the Arctic research community for the National Science Foundation Office
of Polar Programs, International Arctic Res. Center, Fairbanks, AK,
International Arctic Research Center Technical Paper 10-0001,
https://doi.org/10.13140/2.1.1828.9441, 2010.
Roberts, A., Craig, A., Maslowski, W., Osinski, R., DuVivier, A., Hughes, M.,
Nijssen, B., and Brunke, M.: Simulating transient ice-ocean Ekman transport
in the Regional Arctic System Model and Community Earth System Model, Ann.
Glaciol., 56, 211–228, 2015.
Roberts, A. F., Cherry, J., Döscher, R., Elliott, S., and Sushama, L.:
Exploring the Potential for Arctic System Modeling, B. Am. Meteorol. Soc.,
92, 203–206, https://doi.org/10.1175/2010bams2959.1, 2011.
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng,
C.-J., Aresenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin,
J. K., Walker, J. P., Lohmann, D., and Toll, D.: The Global Land Data
Assimilation System, B. Am. Meteorol. Soc., 85, 381–394,
https://doi.org/10.1175/BAMS-85-3-381, 2004.
Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P.,
Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R.,
Gayno, G., Wang, J., Hou, Y.-T., Chuang, H.-Y., Juang, H.-M. J., Sela, J.,
Iredell, M., Treadon, R., Kleist, D., Van Delst, P., Keyser, D., Derber, J.,
Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., van den Dool, H., Kumar, A.,
Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.-K.,
Ebisuzaki, W., Lin, R., Xie, P., Chen, M, Zhou, S., Higgins, W., Zou, C.-Z.,
Liu, Q., Chen,Y., Han, Y., and Cucuruul, L.: The NCEP Climate Forecast System
reanalysis, B. Am. Meteorol. Soc., 91, 1015–1057, 2010.
Schuur, E. A. G., McGuire, A. D., Schadel, C., Grosse, G., Harden, J. W.,
Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M., Natali,
S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M. R., Treat,
C. C., and Vonk, J. E.: Climate change and the permafrost carbon feedback,
Nature, 520, 171–179, https://doi.org/10.1038/nature14338, 2015.
Screen, J. A. and Simmonds, I.: The central role of diminishing sea ice in
recent Arctic temperature amplification, Nature, 464, 1334–1337,
https://doi.org/10.1038/nature09051, 2010.
Serreze, M. C. and Francis, J. A.: The Arctic amplification debate, Climatic
Change, 76, 241–264, https://doi.org/10.1007/s10584-005-9017-y, 2006.
Serreze, M. C., Barrett, A. P. and Lo, F.: Northern high-latitude
precipitation by atmospheric reanalyses and satellite retrievals, Mon.
Weather Rev., 133, 3407–3430, 2005.
Serreze, M. C., Holland, M. H., and Stroeve, J.: Perspectives on the
Arctic's shrinking sea-ice cover, Science, 315, 1533–1536, 2007.
Serreze, M. C., Barrett, A. P., Stroeve, J. C., Kindig, D. N., and Holland,
M. M.: The emergence of surface-based Arctic amplification, The Cryosphere,
3, 11–19, https://doi.org/10.5194/tc-3-11-2009, 2009.
Sheffield, J., Goteti, G., and Wood, E. F.: Development of a 50-year
high-resolution global dataset of meteorological forcings for land surface
modeling, J. Climate, 19, 3088–3111, https://doi.org/10.1175/jcli3790.1, 2006.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda,
M. G., Huang, X.-Y., Wang, W., and Powers, J. G.: A description of the
Advanced Research WRF version 3, National Center for Atmos. Res., Boulder,
Colo., NCAR Tech. Note NCAR/TN-457+STR, 113 pp., https://doi.org/10.5065/D68S4MVH,
2008.
Smith, R., Jones, P., Briegleb, B., Bryan, F., Danabasoglu, G., Dennis, J.,
Dukowicz, J., Eden, C., Fox-Kemper, B., Gent, P., Hecht, M., Jayne, S.,
Jochum, M., Large, W., Lindsay, K., Maltrud, M., Norton, N., Peacock, S.,
Vertenstein, M., and Yeager, S.: The Parallel Ocean Program (POP) Reference
Manual Ocean Component of the Community Climate System Model (CCSM) and
Community Earth System Model (CESM), Los Alamos National Lab., Los Alamos,
N.M., Rep. LAUR-10-01853, 2010.
Smith, R. D., Dukowicz, J. K., and Malone, R. C.: Parallel ocean circulation
modeling, Physica D, 60, 38–61, https://doi.org/10.1016/0167-2789(92)90225-C, 1992.
Steffen, K. and Box, J.: Surface climatology of the Greenland ice sheet:
Greenland Climate Network 1995–1999, J. Geophys. Res., 106, 33951–33964,
2001.
Stroeve, J., Holland, M. M., Meier, W., Scambos, T., and Serreze, M.: Arctic
sea ice decline: Faster than forecast, Geophysical Research Letters, 34, L09501,
https://doi.org/10.1029/2007GL029703, 2007.
Stroeve, J., Serreze, M. C., Holland, M. M., Kay, J. E., Malanik, J., and
Barrett, A. P.: The Arctic's rapidly shrinking sea ice cover: a research
synthesis, Climatic Change, 110, 1105–1027, https://doi.org/10.1007/s10584-011-0101-1,
2012.
Sturm, M., Holmgren, J., and Perovich, D. K.: Spatial variation in the
winter heat flux at SHEBA: estimates from snow-ice interface temperatures,
Ann. Glaciol., 33, 213–220, 2001.
Swart, N. C., Fyfe, J. C., Hawkins, E., Kay, J. E., and Jahn, A.: Influence
of internal variability on Arctic sea-ice trends, Nat. Clim. Change, 5,
86–89, 2015.
Tsamados, M., Feltham, D. L., and Wilchinsky, A. V.: Increased Arctic sea
ice volume after anomalously low melting in 2013, Nat. Geosci., 8,
643–646, https://doi.org/10.1038/ngeo2489, 2013.
Turner, A. K. and Hunke, E. C.: Impacts of a mushy-layer thermodynamic
approach in global sea-ice simulations using the CICE sea-ice model,
J. Geophys. Res.-Oceans, 120, 1253–1275, https://doi.org/10.1002/2014JC010358, 2015.
Uttal, T., Curry, J. A., McPhee, M. G., Perovich, D. K., Moritz, R. E.,
Maslanik, J. A., Guest, P. S., Stern, H. L., Moore, J. A., Turenne, R.,
Heiberg, A., Serreze, M. C., Wylie, D. P., Persson, O. G., Paulson, C. A.,
Halle, C., Morison, J. H., Wheeler, P. A., Makshtas, A., Welch, H., Shupe, M.
D., Intrieri, J. M., Stamnes, K., Lindsey, R. W., Pinkel, R., Pegau, W. S.,
Stanton, T. P., and Grenfeld, T. C.: Surface Heat Budget of the Arctic Ocean,
B. Am. Meteorol. Soc., 83, 255–275, 2002.
Vavrus, S.: The impact of cloud feedbacks on Arctic climate under Greenhouse
forcing, J. Climate, 17, 603–615,
https://doi.org/10.1175/1520-0442(2004)017<0603:TIOCFO>2.0.CO;2, 2004.
Wang, A. and Zeng, X.: Development of global hourly 0.5∘ land
surface air temperature datasets, J. Climate, 26, 7676–7691,
https://doi.org/10.1175/JCLI-D-12-00682.1, 2013.
Wang, A. and Zeng, X.: Range of monthly mean hourly land surface air
temperature diurnal cycle over high northern latitudes, J. Geophys. Res.,
119, 5836–5844, https://doi.org/10.1002/2014JD021602, 2014.
Xie, P. P. and Arkin, P. A.: Global precipitation: A 17-year monthly
analysis based on gauge observations, satellite estimates, and numerical
model outputs, B. Am. Meteorol. Soc., 78, 2539–2558, 1997.
Zhang, X.: Sensitivity of arctic summer sea ice coverage to global warming
forcing: towards reducing uncertainty in arctic climate change projections,
Tellus, 62A, 220–227, 2010.
Zhang, X. and Walsh, J. E.: Toward a seasonally ice-covered Arctic Ocean:
scenarios from the IPCC AR4 model simulations, J. Climate, 19, 1730–1747,
2006.
Zhou, C. and Wang, K.: Evaluation of surface fluxes in ERA-Interim using flux
tower data, J. Climate, 29, 1573–1582, https://doi.org/10.1175/JCLI-D-15-0523.1,
2016.
Short summary
The Regional Arctic System Model version 1 (RASM1) was recently developed for high-resolution simulation of the coupled atmosphere–ocean–sea ice–land system in the Arctic. Its simulation of the atmosphere–land–ocean–sea ice interface is evaluated by using the spread in recent reanalyses and a global Earth system model as baselines. Such comparisons reveal that RASM1 simulates precipitation well and improves the simulation of surface fluxes over sea ice.
The Regional Arctic System Model version 1 (RASM1) was recently developed for high-resolution...