Articles | Volume 11, issue 12
https://doi.org/10.5194/gmd-11-4817-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-11-4817-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluation of the atmosphere–land–ocean–sea ice interface processes in the Regional Arctic System Model version 1 (RASM1) using local and globally gridded observations
Michael A. Brunke
CORRESPONDING AUTHOR
Department of Hydrology and Atmospheric Sciences, The University of
Arizona, Tucson, AZ 85719, USA
John J. Cassano
Cooperative Institute for Research in Environmental Sciences and
Department of Atmospheric and Oceanic Sciences, University of Colorado,
Boulder, CO 80309, USA
Nicholas Dawson
Idaho Power, Boise, ID 83702, USA
Alice K. DuVivier
National Center for Atmospheric Research, Boulder, CO 80305, USA
William J. Gutowski Jr.
Department of Geological and Atmospheric Sciences, Iowa State
University, Ames, IA 50011, USA
Joseph Hamman
National Center for Atmospheric Research, Boulder, CO 80305, USA
Wieslaw Maslowski
Department of Oceanography, Naval Postgraduate School, Monterey, CA
93943, USA
Bart Nijssen
Department of Civil and Environmental Engineering, University of
Washington, Seattle, WA 98195, USA
J. E. Jack Reeves Eyre
Department of Hydrology and Atmospheric Sciences, The University of
Arizona, Tucson, AZ 85719, USA
José C. Renteria
U.S. Department of Defense, High Performance Computing Modernization
Program, Lorton, VA 22079, USA
Andrew Roberts
Department of Oceanography, Naval Postgraduate School, Monterey, CA
93943, USA
Xubin Zeng
Department of Hydrology and Atmospheric Sciences, The University of
Arizona, Tucson, AZ 85719, USA
Related authors
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
Hossein Dadashazar, Ewan Crosbie, Mohammad S. Majdi, Milad Panahi, Mohammad A. Moghaddam, Ali Behrangi, Michael Brunke, Xubin Zeng, Haflidi H. Jonsson, and Armin Sorooshian
Atmos. Chem. Phys., 20, 4637–4665, https://doi.org/10.5194/acp-20-4637-2020, https://doi.org/10.5194/acp-20-4637-2020, 2020
Short summary
Short summary
Clearings in the marine-boundary-layer (MBL) cloud deck of the Pacific Ocean were studied. Remote sensing, reanalysis, and airborne data were used along with machine-learning modeling to characterize the spatiotemporal nature of clearings and factors governing their growth. The most significant implications of our results are linked to modeling of fog and MBL clouds, with implications for societal and environmental issues like climate, military operations, transportation, and coastal ecology.
Hordur Bragi Helgason, Andri Gunnarsson, Óli Grétar Blöndal Sveinsson, and Bart Nijssen
EGUsphere, https://doi.org/10.5194/egusphere-2024-4186, https://doi.org/10.5194/egusphere-2024-4186, 2025
Short summary
Short summary
This study analyses streamflow variability and trends in Iceland. The results show a large inter-annual variability in streamflow. Positive trends are found for precipitation, which has led to increased streamflow in most gauges for both the last 30 and 50 years of annual and seasonal flows. This marks the first study to report such consistent results for streamflow trends in Iceland. Glaciated rivers show positive melt season trends over the last 50 years, but negative over the last 30 years.
Laura L. Landrum, Alice K. DuVivier, Marika M. Holland, Kristen Krumhardt, and Zephyr Sylvester
EGUsphere, https://doi.org/10.5194/egusphere-2024-3490, https://doi.org/10.5194/egusphere-2024-3490, 2024
Short summary
Short summary
Antarctic polynyas – areas of open water surrounded by sea ice or sea ice and land – are key players in Antarctic marine ecosystems. Changes in the physical characteristics of polynyas will influence how these ecosystems respond to a changing climate. This work explores how to best compare polynyas identified in satellite data and climate model data to verify that the model captures important features of Antarctic sea ice and marine ecosystems, and we show how polynyas may change.
Hordur Bragi Helgason and Bart Nijssen
Earth Syst. Sci. Data, 16, 2741–2771, https://doi.org/10.5194/essd-16-2741-2024, https://doi.org/10.5194/essd-16-2741-2024, 2024
Short summary
Short summary
LamaH-Ice is a large-sample hydrology (LSH) dataset for Iceland. The dataset includes daily and hourly hydro-meteorological time series, including observed streamflow and basin characteristics, for 107 basins. LamaH-Ice offers most variables that are included in existing LSH datasets and additional information relevant to cold-region hydrology such as annual time series of glacier extent and mass balance. A large majority of the basins in LamaH-Ice are unaffected by human activities.
Mckenzie J. Dice, John J. Cassano, and Gina C. Jozef
Weather Clim. Dynam., 5, 369–394, https://doi.org/10.5194/wcd-5-369-2024, https://doi.org/10.5194/wcd-5-369-2024, 2024
Short summary
Short summary
This study aims to identify the main reasonings for changes in boundary layer stability, namely changes in radiative forcing or mechanical mixing (wind shear). Across the continent of Antarctica, varying stability in the boundary layer is affected by many different forces, and this study seeks to characterize the main forcing mechanisms for these variations in stability across Antarctica, annually and seasonally.
Chen Zhang, John J. Cassano, Mark Seefeldt, Hailong Wang, Weiming Ma, and Wen-wen Tung
EGUsphere, https://doi.org/10.5194/egusphere-2024-320, https://doi.org/10.5194/egusphere-2024-320, 2024
Short summary
Short summary
An atmospheric river (AR) is a long, narrow corridor of moisture transport in the atmosphere. ARs are crucial for moisture and heat transport into the polar regions. Our study examines the role of ARs on the surface energy budget (SEB) in the Arctic. The results reveal distinct seasonality and land-sea-sea ice contrasts due to the impacts of ARs on the SEB. The conclusions provide greater insights into the current and future role of ARs on the Arctic climate system.
Gina C. Jozef, John J. Cassano, Sandro Dahlke, Mckenzie Dice, Christopher J. Cox, and Gijs de Boer
Atmos. Chem. Phys., 24, 1429–1450, https://doi.org/10.5194/acp-24-1429-2024, https://doi.org/10.5194/acp-24-1429-2024, 2024
Short summary
Short summary
Observations collected during MOSAiC were used to identify the range in vertical structure and stability of the central Arctic lower atmosphere through a self-organizing map analysis. Characteristics of wind features (such as low-level jets) and atmospheric moisture features (such as clouds) were analyzed in the context of the varying vertical structure and stability. Thus, the results of this paper give an overview of the thermodynamic and kinematic features of the central Arctic atmosphere.
Mckenzie J. Dice, John J. Cassano, Gina C. Jozef, and Mark Seefeldt
Weather Clim. Dynam., 4, 1045–1069, https://doi.org/10.5194/wcd-4-1045-2023, https://doi.org/10.5194/wcd-4-1045-2023, 2023
Short summary
Short summary
This study documents boundary layer stability profiles, from the surface to 500 m above ground level, present in radiosonde observations across the Antarctic continent. A boundary layer stability definition method is developed and applied to the radiosonde observations to determine the frequency and seasonality of stability regimes. It is found that, in the continental interior, strong stability is dominant throughout most of the year, while stability is more varied at coastal locations.
Gina C. Jozef, Robert Klingel, John J. Cassano, Björn Maronga, Gijs de Boer, Sandro Dahlke, and Christopher J. Cox
Earth Syst. Sci. Data, 15, 4983–4995, https://doi.org/10.5194/essd-15-4983-2023, https://doi.org/10.5194/essd-15-4983-2023, 2023
Short summary
Short summary
Observations from the MOSAiC expedition relating to lower-atmospheric temperature, wind, stability, moisture, and surface radiation budget from radiosondes, a meteorological tower, radiation station, and ceilometer were compiled to create a dataset which describes the thermodynamic and kinematic state of the central Arctic lower atmosphere between October 2019 and September 2020. This paper describes the methods used to develop this lower-atmospheric properties dataset.
Gina C. Jozef, John J. Cassano, Sandro Dahlke, Mckenzie Dice, Christopher J. Cox, and Gijs de Boer
Atmos. Chem. Phys., 23, 13087–13106, https://doi.org/10.5194/acp-23-13087-2023, https://doi.org/10.5194/acp-23-13087-2023, 2023
Short summary
Short summary
Observations from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) were used to determine the frequency of occurrence of various central Arctic lower atmospheric stability regimes and how the stability regimes transition between each other. Wind and radiation observations were analyzed in the context of stability regime and season to reveal the relationships between Arctic atmospheric stability and mechanically and radiatively driven turbulent forcings.
Qi Tang, Jean-Christophe Golaz, Luke P. Van Roekel, Mark A. Taylor, Wuyin Lin, Benjamin R. Hillman, Paul A. Ullrich, Andrew M. Bradley, Oksana Guba, Jonathan D. Wolfe, Tian Zhou, Kai Zhang, Xue Zheng, Yunyan Zhang, Meng Zhang, Mingxuan Wu, Hailong Wang, Cheng Tao, Balwinder Singh, Alan M. Rhoades, Yi Qin, Hong-Yi Li, Yan Feng, Yuying Zhang, Chengzhu Zhang, Charles S. Zender, Shaocheng Xie, Erika L. Roesler, Andrew F. Roberts, Azamat Mametjanov, Mathew E. Maltrud, Noel D. Keen, Robert L. Jacob, Christiane Jablonowski, Owen K. Hughes, Ryan M. Forsyth, Alan V. Di Vittorio, Peter M. Caldwell, Gautam Bisht, Renata B. McCoy, L. Ruby Leung, and David C. Bader
Geosci. Model Dev., 16, 3953–3995, https://doi.org/10.5194/gmd-16-3953-2023, https://doi.org/10.5194/gmd-16-3953-2023, 2023
Short summary
Short summary
High-resolution simulations are superior to low-resolution ones in capturing regional climate changes and climate extremes. However, uniformly reducing the grid size of a global Earth system model is too computationally expensive. We provide an overview of the fully coupled regionally refined model (RRM) of E3SMv2 and document a first-of-its-kind set of climate production simulations using RRM at an economic cost. The key to this success is our innovative hybrid time step method.
Hyein Jeong, Adrian K. Turner, Andrew F. Roberts, Milena Veneziani, Stephen F. Price, Xylar S. Asay-Davis, Luke P. Van Roekel, Wuyin Lin, Peter M. Caldwell, Hyo-Seok Park, Jonathan D. Wolfe, and Azamat Mametjanov
The Cryosphere, 17, 2681–2700, https://doi.org/10.5194/tc-17-2681-2023, https://doi.org/10.5194/tc-17-2681-2023, 2023
Short summary
Short summary
We find that E3SM-HR reproduces the main features of the Antarctic coastal polynyas. Despite the high amount of coastal sea ice production, the densest water masses are formed in the open ocean. Biases related to the lack of dense water formation are associated with overly strong atmospheric polar easterlies. Our results indicate that the large-scale polar atmospheric circulation must be accurately simulated in models to properly reproduce Antarctic dense water formation.
Koichi Sakaguchi, L. Ruby Leung, Colin M. Zarzycki, Jihyeon Jang, Seth McGinnis, Bryce E. Harrop, William C. Skamarock, Andrew Gettelman, Chun Zhao, William J. Gutowski, Stephen Leak, and Linda Mearns
Geosci. Model Dev., 16, 3029–3081, https://doi.org/10.5194/gmd-16-3029-2023, https://doi.org/10.5194/gmd-16-3029-2023, 2023
Short summary
Short summary
We document details of the regional climate downscaling dataset produced by a global variable-resolution model. The experiment is unique in that it follows a standard protocol designed for coordinated experiments of regional models. We found negligible influence of post-processing on statistical analysis, importance of simulation quality outside of the target region, and computational challenges that our model code faced due to rapidly changing super computer systems.
Sisi Chen, Lulin Xue, Sarah Tessendorf, Kyoko Ikeda, Courtney Weeks, Roy Rasmussen, Melvin Kunkel, Derek Blestrud, Shaun Parkinson, Melinda Meadows, and Nick Dawson
Atmos. Chem. Phys., 23, 5217–5231, https://doi.org/10.5194/acp-23-5217-2023, https://doi.org/10.5194/acp-23-5217-2023, 2023
Short summary
Short summary
The possible mechanism of effective ice growth in the cloud-top generating cells in winter orographic clouds is explored using a newly developed ultra-high-resolution cloud microphysics model. Simulations demonstrate that a high availability of moisture and liquid water is critical for producing large ice particles. Fluctuations in temperature and moisture down to millimeter scales due to cloud turbulence can substantially affect the growth history of the individual cloud particles.
Ulrike Egerer, John J. Cassano, Matthew D. Shupe, Gijs de Boer, Dale Lawrence, Abhiram Doddi, Holger Siebert, Gina Jozef, Radiance Calmer, Jonathan Hamilton, Christian Pilz, and Michael Lonardi
Atmos. Meas. Tech., 16, 2297–2317, https://doi.org/10.5194/amt-16-2297-2023, https://doi.org/10.5194/amt-16-2297-2023, 2023
Short summary
Short summary
This paper describes how measurements from a small uncrewed aircraft system can be used to estimate the vertical turbulent heat energy exchange between different layers in the atmosphere. This is particularly important for the atmosphere in the Arctic, as turbulent exchange in this region is often suppressed but is still important to understand how the atmosphere interacts with sea ice. We present three case studies from the MOSAiC field campaign in Arctic sea ice in 2020.
Nairita Pal, Kristin N. Barton, Mark R. Petersen, Steven R. Brus, Darren Engwirda, Brian K. Arbic, Andrew F. Roberts, Joannes J. Westerink, and Damrongsak Wirasaet
Geosci. Model Dev., 16, 1297–1314, https://doi.org/10.5194/gmd-16-1297-2023, https://doi.org/10.5194/gmd-16-1297-2023, 2023
Short summary
Short summary
Understanding tides is essential to accurately predict ocean currents. Over the next several decades coastal processes such as flooding and erosion will be severely impacted due to climate change. Tides affect currents along the coastal regions the most. In this paper we show the results of implementing tides in a global ocean model known as MPAS–Ocean. We also show how Antarctic ice shelf cavities affect global tides. Our work points towards future research with tide–ice interactions.
Elina Valkonen, John Cassano, Elizabeth Cassano, and Mark Seefeldt
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2023-2, https://doi.org/10.5194/wcd-2023-2, 2023
Publication in WCD not foreseen
Short summary
Short summary
Arctic sea ice is melting fast. This rapid change in the Arctic climate system can also affect the storms in the region. The strong connection between Arctic storms and sea ice makes it an important research subject in warming climate. In this study we compared the results of multiple climate models and ERA5 reanalysis data to each other, with a focus on Arctic storms and declining sea ice.
Younjoo J. Lee, Wieslaw Maslowski, John J. Cassano, Jaclyn Clement Kinney, Anthony P. Craig, Samy Kamal, Robert Osinski, Mark W. Seefeldt, Julienne Stroeve, and Hailong Wang
The Cryosphere, 17, 233–253, https://doi.org/10.5194/tc-17-233-2023, https://doi.org/10.5194/tc-17-233-2023, 2023
Short summary
Short summary
During 1979–2020, four winter polynyas occurred in December 1986 and February 2011, 2017, and 2018 north of Greenland. Instead of ice melting due to the anomalous warm air intrusion, the extreme wind forcing resulted in greater ice transport offshore. Based on the two ensemble runs, representing a 1980s thicker ice vs. a 2010s thinner ice, a dominant cause of these winter polynyas stems from internal variability of atmospheric forcing rather than from the forced response to a warming climate.
Xavier Crosta, Karen E. Kohfeld, Helen C. Bostock, Matthew Chadwick, Alice Du Vivier, Oliver Esper, Johan Etourneau, Jacob Jones, Amy Leventer, Juliane Müller, Rachael H. Rhodes, Claire S. Allen, Pooja Ghadi, Nele Lamping, Carina B. Lange, Kelly-Anne Lawler, David Lund, Alice Marzocchi, Katrin J. Meissner, Laurie Menviel, Abhilash Nair, Molly Patterson, Jennifer Pike, Joseph G. Prebble, Christina Riesselman, Henrik Sadatzki, Louise C. Sime, Sunil K. Shukla, Lena Thöle, Maria-Elena Vorrath, Wenshen Xiao, and Jiao Yang
Clim. Past, 18, 1729–1756, https://doi.org/10.5194/cp-18-1729-2022, https://doi.org/10.5194/cp-18-1729-2022, 2022
Short summary
Short summary
Despite its importance in the global climate, our knowledge of Antarctic sea-ice changes throughout the last glacial–interglacial cycle is extremely limited. As part of the Cycles of Sea Ice Dynamics in the Earth system (C-SIDE) Working Group, we review marine- and ice-core-based sea-ice proxies to provide insights into their applicability and limitations. By compiling published records, we provide information on Antarctic sea-ice dynamics over the past 130 000 years.
Gina Jozef, John Cassano, Sandro Dahlke, and Gijs de Boer
Atmos. Meas. Tech., 15, 4001–4022, https://doi.org/10.5194/amt-15-4001-2022, https://doi.org/10.5194/amt-15-4001-2022, 2022
Short summary
Short summary
During the MOSAiC expedition, meteorological conditions over the lowest 1 km of the atmosphere were sampled with the DataHawk2 uncrewed aircraft system. These data were used to identify the best method for atmospheric boundary layer height detection by comparing visually identified subjective boundary layer height to that identified by several objective automated detection methods. The results show a bulk Richardson number-based approach gives the best estimate of boundary layer height.
Milena Veneziani, Wieslaw Maslowski, Younjoo J. Lee, Gennaro D'Angelo, Robert Osinski, Mark R. Petersen, Wilbert Weijer, Anthony P. Craig, John D. Wolfe, Darin Comeau, and Adrian K. Turner
Geosci. Model Dev., 15, 3133–3160, https://doi.org/10.5194/gmd-15-3133-2022, https://doi.org/10.5194/gmd-15-3133-2022, 2022
Short summary
Short summary
We present an Earth system model (ESM) simulation, E3SM-Arctic-OSI, with a refined grid to better resolve the Arctic ocean and sea-ice system and low spatial resolution elsewhere. The configuration satisfactorily represents many aspects of the Arctic system and its interactions with the sub-Arctic, while keeping computational costs at a fraction of those necessary for global high-resolution ESMs. E3SM-Arctic can thus be an efficient tool to study Arctic processes on climate-relevant timescales.
Klaus Dethloff, Wieslaw Maslowski, Stefan Hendricks, Younjoo J. Lee, Helge F. Goessling, Thomas Krumpen, Christian Haas, Dörthe Handorf, Robert Ricker, Vladimir Bessonov, John J. Cassano, Jaclyn Clement Kinney, Robert Osinski, Markus Rex, Annette Rinke, Julia Sokolova, and Anja Sommerfeld
The Cryosphere, 16, 981–1005, https://doi.org/10.5194/tc-16-981-2022, https://doi.org/10.5194/tc-16-981-2022, 2022
Short summary
Short summary
Sea ice thickness anomalies during the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) winter in January, February and March 2020 were simulated with the coupled Regional Arctic climate System Model (RASM) and compared with CryoSat-2/SMOS satellite data. Hindcast and ensemble simulations indicate that the sea ice anomalies are driven by nonlinear interactions between ice growth processes and wind-driven sea-ice transports, with dynamics playing a dominant role.
Jaclyn Clement Kinney, Karen M. Assmann, Wieslaw Maslowski, Göran Björk, Martin Jakobsson, Sara Jutterström, Younjoo J. Lee, Robert Osinski, Igor Semiletov, Adam Ulfsbo, Irene Wåhlström, and Leif G. Anderson
Ocean Sci., 18, 29–49, https://doi.org/10.5194/os-18-29-2022, https://doi.org/10.5194/os-18-29-2022, 2022
Short summary
Short summary
We use data crossing Herald Canyon in the Chukchi Sea collected in 2008 and 2014 together with numerical modelling to investigate the circulation in the western Chukchi Sea. A large fraction of water from the Chukchi Sea enters the East Siberian Sea south of Wrangel Island and circulates in an anticyclonic direction around the island. To assess the differences between years, we use numerical modelling results, which show that high-frequency variability dominates the flow in Herald Canyon.
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
John J. Cassano, Melissa A. Nigro, Mark W. Seefeldt, Marwan Katurji, Kelly Guinn, Guy Williams, and Alice DuVivier
Earth Syst. Sci. Data, 13, 969–982, https://doi.org/10.5194/essd-13-969-2021, https://doi.org/10.5194/essd-13-969-2021, 2021
Short summary
Short summary
Between January 2012 and June 2017, a small unmanned aerial system (sUAS), or drone, known as the Small Unmanned Meteorological Observer (SUMO), was used to observe the lowest 1000 m of the Antarctic atmosphere. During six Antarctic field campaigns, 116 SUMO flights were completed. These flights took place during all seasons over both permanent ice and ice-free locations on the Antarctic continent and over sea ice in the western Ross Sea providing unique observations of the Antarctic atmosphere.
Laura E. Queen, Philip W. Mote, David E. Rupp, Oriana Chegwidden, and Bart Nijssen
Hydrol. Earth Syst. Sci., 25, 257–272, https://doi.org/10.5194/hess-25-257-2021, https://doi.org/10.5194/hess-25-257-2021, 2021
Short summary
Short summary
Using a large ensemble of simulated flows throughout the northwestern USA, we compare daily flood statistics in the past (1950–1999) and future (2050–1999) periods and find that nearly all locations will experience an increase in flood magnitudes. The flood season expands significantly in many currently snow-dominant rivers, moving from only spring to both winter and spring. These results, properly extended, may help inform flood risk management and negotiations of the Columbia River Treaty.
Bram Droppers, Wietse H. P. Franssen, Michelle T. H. van Vliet, Bart Nijssen, and Fulco Ludwig
Geosci. Model Dev., 13, 5029–5052, https://doi.org/10.5194/gmd-13-5029-2020, https://doi.org/10.5194/gmd-13-5029-2020, 2020
Short summary
Short summary
Our study aims to include both both societal and natural water requirements and uses into a hydrological model in order to enable worldwide assessments of sustainable water use. The model was extended to include irrigation, domestic, industrial, energy, and livestock water uses as well as minimum flow requirements for natural systems. Initial results showed competition for water resources between society and nature, especially with respect to groundwater withdrawals.
Peter Kuma, Adrian J. McDonald, Olaf Morgenstern, Simon P. Alexander, John J. Cassano, Sally Garrett, Jamie Halla, Sean Hartery, Mike J. Harvey, Simon Parsons, Graeme Plank, Vidya Varma, and Jonny Williams
Atmos. Chem. Phys., 20, 6607–6630, https://doi.org/10.5194/acp-20-6607-2020, https://doi.org/10.5194/acp-20-6607-2020, 2020
Short summary
Short summary
We evaluate clouds over the Southern Ocean in the climate model HadGEM3 and reanalysis MERRA-2 using ship-based ceilometer and radiosonde observations. We find the models underestimate cloud cover by 18–25 %, with clouds below 2 km dominant in reality but lacking in the models. We find a strong link between clouds, atmospheric stability and sea surface temperature in observations but not in the models, implying that sub-grid processes do not generate enough cloud in response to these conditions.
David Dziubanski, Kristie J. Franz, and William Gutowski
Hydrol. Earth Syst. Sci., 24, 2873–2894, https://doi.org/10.5194/hess-24-2873-2020, https://doi.org/10.5194/hess-24-2873-2020, 2020
Short summary
Short summary
We describe a socio-hydrologic model that couples an agent-based model (ABM) of human decision-making with a hydrologic model. We establish this model for a typical agricultural watershed in Iowa, USA, and simulate the evolution of large discharge events over a 47-year period under changing land use. Using this modeling approach, relationships between seemingly unrelated variables such as crop markets or crop yields and local peak flow trends are quantified.
Hossein Dadashazar, Ewan Crosbie, Mohammad S. Majdi, Milad Panahi, Mohammad A. Moghaddam, Ali Behrangi, Michael Brunke, Xubin Zeng, Haflidi H. Jonsson, and Armin Sorooshian
Atmos. Chem. Phys., 20, 4637–4665, https://doi.org/10.5194/acp-20-4637-2020, https://doi.org/10.5194/acp-20-4637-2020, 2020
Short summary
Short summary
Clearings in the marine-boundary-layer (MBL) cloud deck of the Pacific Ocean were studied. Remote sensing, reanalysis, and airborne data were used along with machine-learning modeling to characterize the spatiotemporal nature of clearings and factors governing their growth. The most significant implications of our results are linked to modeling of fog and MBL clouds, with implications for societal and environmental issues like climate, military operations, transportation, and coastal ecology.
Alice K. DuVivier, Patricia DeRepentigny, Marika M. Holland, Melinda Webster, Jennifer E. Kay, and Donald Perovich
The Cryosphere, 14, 1259–1271, https://doi.org/10.5194/tc-14-1259-2020, https://doi.org/10.5194/tc-14-1259-2020, 2020
Short summary
Short summary
In autumn 2019, a ship will be frozen into the Arctic sea ice for a year to study system changes. We analyze climate model data from a group of experiments and follow virtual sea ice floes throughout a year. The modeled sea ice conditions along possible tracks are highly variable. Observations that sample a wide range of sea ice conditions and represent the variety and diversity in possible conditions are necessary for improving climate model parameterizations over all types of sea ice.
Yixin Mao, Wade T. Crow, and Bart Nijssen
Hydrol. Earth Syst. Sci., 24, 615–631, https://doi.org/10.5194/hess-24-615-2020, https://doi.org/10.5194/hess-24-615-2020, 2020
Short summary
Short summary
The new generation of satellite soil moisture observations are used to correct the streamflow in a regional-scale river basin simulated by a mathematical model. The correction is done via both the direct updating of soil moisture and correction of rainfall input. Results show some streamflow improvement, but the magnitude is small. A larger improvement will need future generations of even higher-quality satellite soil moisture data and better process representation in the mathematical model.
John R. Yearsley, Ning Sun, Marisa Baptiste, and Bart Nijssen
Hydrol. Earth Syst. Sci., 23, 4491–4508, https://doi.org/10.5194/hess-23-4491-2019, https://doi.org/10.5194/hess-23-4491-2019, 2019
Short summary
Short summary
This study investigates the impact of dam-induced hydrologic alterations and modification of riparian buffers on stream temperatures and thermal habitat for aquatic species. We enhanced and applied a model system (DHSVM-RBM) that couples a distributed hydrologic model, DHSVM, with the distributed stream temperature model, RBM, in the Farmington River basin in the Connecticut River system, which includes varying types of watershed development (e.g., deforestation and reservoirs).
Andrew R. Bennett, Joseph J. Hamman, and Bart Nijssen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-179, https://doi.org/10.5194/gmd-2019-179, 2019
Preprint withdrawn
Short summary
Short summary
MetSim is a software package for simulating meteorologic processes, and aims to be applied in the environmental and Earth sciences. It can simulate processes such as solar and thermal radiation, specific humidity, and vapor pressure across large spatial areas in an efficient manner. This paper describes the software and analyzes it's ability to be used in large simulations. We describe how MetSim can be used and provide details on the various options that are available.
Joseph J. Hamman, Bart Nijssen, Theodore J. Bohn, Diana R. Gergel, and Yixin Mao
Geosci. Model Dev., 11, 3481–3496, https://doi.org/10.5194/gmd-11-3481-2018, https://doi.org/10.5194/gmd-11-3481-2018, 2018
Short summary
Short summary
Variable Infiltration Capacity (VIC) is a widely used hydrologic model. This paper documents the development of VIC version 5, which includes a reconfiguration of the model source code to support a wider range of modeling applications. It also represents a significant step forward for the VIC user community in terms of support for a range of modeling applications, reproducibility, and scientific robustness.
Abraham Endalamaw, W. Robert Bolton, Jessica M. Young-Robertson, Don Morton, Larry Hinzman, and Bart Nijssen
Hydrol. Earth Syst. Sci., 21, 4663–4680, https://doi.org/10.5194/hess-21-4663-2017, https://doi.org/10.5194/hess-21-4663-2017, 2017
Short summary
Short summary
This study applies plot-scale and hill-slope knowledge to a process-based mesoscale model to improve the skill of distributed hydrological models to simulate the spatially and basin-integrated hydrological processes of complex ecosystems in the sub-arctic boreal forest. We developed a sub-grid parameterization method to parameterize the surface heterogeneity of interior Alaskan discontinuous permafrost watersheds.
Pablo A. Mendoza, Andrew W. Wood, Elizabeth Clark, Eric Rothwell, Martyn P. Clark, Bart Nijssen, Levi D. Brekke, and Jeffrey R. Arnold
Hydrol. Earth Syst. Sci., 21, 3915–3935, https://doi.org/10.5194/hess-21-3915-2017, https://doi.org/10.5194/hess-21-3915-2017, 2017
Short summary
Short summary
Water supply forecasts are critical to support water resources operations and planning. The skill of such forecasts depends on our knowledge of (i) future meteorological conditions and (ii) the amount of water stored in a basin. We address this problem by testing several approaches that make use of these sources of predictability, either separately or in a combined fashion. The main goal is to understand the marginal benefits of both information and methodological complexity in forecast skill.
J. E. Jack Reeves Eyre and Xubin Zeng
The Cryosphere, 11, 1591–1605, https://doi.org/10.5194/tc-11-1591-2017, https://doi.org/10.5194/tc-11-1591-2017, 2017
Short summary
Short summary
We have used extensive air temperature measurements (~ 1400 station-years) to assess more than 10 gridded datasets over the Greenland ice sheet. We recommend the best datasets for estimating past melting of the ice sheet and show that choice of dataset is important for evaluating 31 earth system models. Most, but not all, of the datasets show similar history of temperature changes over the 20th century, and the earth system models generally capture long-term warming but not decadal variations.
William J. Gutowski Jr., Filippo Giorgi, Bertrand Timbal, Anne Frigon, Daniela Jacob, Hyun-Suk Kang, Krishnan Raghavan, Boram Lee, Christopher Lennard, Grigory Nikulin, Eleanor O'Rourke, Michel Rixen, Silvina Solman, Tannecia Stephenson, and Fredolin Tangang
Geosci. Model Dev., 9, 4087–4095, https://doi.org/10.5194/gmd-9-4087-2016, https://doi.org/10.5194/gmd-9-4087-2016, 2016
Short summary
Short summary
The Coordinated Regional Downscaling Experiment (CORDEX) is a diagnostic MIP in CMIP6. CORDEX builds on a foundation of previous downscaling intercomparison projects to provide a common framework for downscaling activities around the world. The CORDEX Regional Challenges provide a focus for downscaling research and a basis for making use of CMIP6 global output to produce downscaled projected changes in regional climates, and assess sources of uncertainties in the projections.
Naoki Mizukami, Martyn P. Clark, Kevin Sampson, Bart Nijssen, Yixin Mao, Hilary McMillan, Roland J. Viger, Steve L. Markstrom, Lauren E. Hay, Ross Woods, Jeffrey R. Arnold, and Levi D. Brekke
Geosci. Model Dev., 9, 2223–2238, https://doi.org/10.5194/gmd-9-2223-2016, https://doi.org/10.5194/gmd-9-2223-2016, 2016
Short summary
Short summary
mizuRoute version 1 is a stand-alone runoff routing tool that post-processes runoff outputs from any distributed hydrologic models to produce streamflow estimates in large-scale river network. mizuRoute is flexible to river network representation and includes two different river routing schemes. This paper demonstrates mizuRoute's capability of multi-decadal streamflow estimations in the river networks over the entire contiguous Unites States, which contains over 54 000 river segments.
John J. Cassano, Mark W. Seefeldt, Scott Palo, Shelley L. Knuth, Alice C. Bradley, Paul D. Herrman, Peter A. Kernebone, and Nick J. Logan
Earth Syst. Sci. Data, 8, 115–126, https://doi.org/10.5194/essd-8-115-2016, https://doi.org/10.5194/essd-8-115-2016, 2016
Short summary
Short summary
In September 2012 five Aerosonde unmanned aircraft were used to observe the atmosphere and ocean over the Terra Nova Bay polynya, Antarctica to explore the details of interactions between the ocean, sea ice, and atmosphere. A total of 14 flights and nearly 168 flight hours were completed as part of this project. A data set containing the atmospheric and surface data as well as operational aircraft data have been submitted to the United States Antarctic Program Data Coordination Center.
R. Rosolem, T. Hoar, A. Arellano, J. L. Anderson, W. J. Shuttleworth, X. Zeng, and T. E. Franz
Hydrol. Earth Syst. Sci., 18, 4363–4379, https://doi.org/10.5194/hess-18-4363-2014, https://doi.org/10.5194/hess-18-4363-2014, 2014
A. I. Gevaert, A. J. Teuling, R. Uijlenhoet, S. B. DeLong, T. E. Huxman, L. A. Pangle, D. D. Breshears, J. Chorover, J. D. Pelletier, S. R. Saleska, X. Zeng, and P. A. Troch
Hydrol. Earth Syst. Sci., 18, 3681–3692, https://doi.org/10.5194/hess-18-3681-2014, https://doi.org/10.5194/hess-18-3681-2014, 2014
P. Shao, X. Zeng, and X. Zeng
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esdd-5-991-2014, https://doi.org/10.5194/esdd-5-991-2014, 2014
Revised manuscript not accepted
S. L. Knuth, J. J. Cassano, J. A. Maslanik, P. D. Herrmann, P. A. Kernebone, R. I. Crocker, and N. J. Logan
Earth Syst. Sci. Data, 5, 57–69, https://doi.org/10.5194/essd-5-57-2013, https://doi.org/10.5194/essd-5-57-2013, 2013
Related subject area
Climate and Earth system modeling
Implementing deep soil and dynamic root uptake in Noah-MP (v4.5): impact on Amazon dry-season transpiration
Reducing time and computing costs in EC-Earth: an automatic load-balancing approach for coupled Earth system models
FLAME 1.0: a novel approach for modelling burned area in the Brazilian biomes using the maximum entropy concept
SURFER v3.0: a fast model with ice sheet tipping points and carbon cycle feedbacks for short- and long-term climate scenarios
NMH-CS 3.0: a C# programming language and Windows-system-based ecohydrological model derived from Noah-MP
A method for quantifying uncertainty in spatially interpolated meteorological data with application to daily maximum air temperature
Baseline Climate Variables for Earth System Modelling
PaleoSTeHM v1.0: a modern, scalable spatiotemporal hierarchical modeling framework for paleo-environmental data
The Tropical Basin Interaction Model Intercomparison Project (TBIMIP)
ZEMBA v1.0: an energy and moisture balance climate model to investigate Quaternary climate
Development and evaluation of a new 4DEnVar-based weakly coupled ocean data assimilation system in E3SMv2
TemDeep: a self-supervised framework for temporal downscaling of atmospheric fields at arbitrary time resolutions
The ensemble consistency test: from CESM to MPAS and beyond
Presentation, calibration and testing of the DCESS II Earth system model of intermediate complexity (version 1.0)
Synthesizing global carbon–nitrogen coupling effects – the MAGICC coupled carbon–nitrogen cycle model v1.0
Historical trends and controlling factors of isoprene emissions in CMIP6 Earth system models
Investigating carbon and nitrogen conservation in reported CMIP6 Earth system model data
From weather data to river runoff: using spatiotemporal convolutional networks for discharge forecasting
A Fortran–Python interface for integrating machine learning parameterization into earth system models
ROCKE-3D 2.0: An updated general circulation model for simulating the climates of rocky planets
A rapid-application emissions-to-impacts tool for scenario assessment: Probabilistic Regional Impacts from Model patterns and Emissions (PRIME)
The DOE E3SM version 2.1: overview and assessment of the impacts of parameterized ocean submesoscales
WRF-ELM v1.0: a regional climate model to study land–atmosphere interactions over heterogeneous land use regions
Modeling commercial-scale CO2 storage in the gas hydrate stability zone with PFLOTRAN v6.0
DiuSST: a conceptual model of diurnal warm layers for idealized atmospheric simulations with interactive sea surface temperature
High-Resolution Model Intercomparison Project phase 2 (HighResMIP2) towards CMIP7
T&C-CROP: representing mechanistic crop growth with a terrestrial biosphere model (T&C, v1.5) – model formulation and validation
An updated non-intrusive, multi-scale, and flexible coupling interface in WRF 4.6.0
Monitoring and benchmarking Earth system model simulations with ESMValTool v2.12.0
The Earth Science Box Modeling Toolkit (ESBMTK 0.14.0.11): a Python library for research and teaching
CropSuite v1.0 – a comprehensive open-source crop suitability model considering climate variability for climate impact assessment
ICON ComIn – the ICON Community Interface (ComIn version 0.1.0, with ICON version 2024.01-01)
Using feature importance as an exploratory data analysis tool on Earth system models
A new metrics framework for quantifying and intercomparing atmospheric rivers in observations, reanalyses, and climate models
The real challenges for climate and weather modelling on its way to sustained exascale performance: a case study using ICON (v2.6.6)
COSP-RTTOV-1.0: Flexible radiation diagnostics to enable new science applications in model evaluation, climate change detection, and satellite mission design
Impact of spatial resolution on CMIP6-driven Mediterranean climate simulations: a focus on precipitation distribution over Italy
Improving the representation of major Indian crops in the Community Land Model version 5.0 (CLM5) using site-scale crop data
Evaluation of CORDEX ERA5-forced NARCliM2.0 regional climate models over Australia using the Weather Research and Forecasting (WRF) model version 4.1.2
Design, evaluation, and future projections of the NARCliM2.0 CORDEX-CMIP6 Australasia regional climate ensemble
The Detection and Attribution Model Intercomparison Project (DAMIP v2.0) contribution to CMIP7
Statistical summaries for streamed data from climate simulations: One-pass algorithms (v0.6.2)
Amending the algorithm of aerosol–radiation interactions in WRF-Chem (v4.4)
The very-high-resolution configuration of the EC-Earth global model for HighResMIP
GOSI9: UK Global Ocean and Sea Ice configurations
FACA v1 – Fully Automated Co-Alignment of UAV Point Clouds
Decomposition of skill scores for conditional verification: impact of Atlantic Multidecadal Oscillation phases on the predictability of decadal temperature forecasts
Virtual Integration of Satellite and In-situ Observation Networks (VISION) v1.0: In-Situ Observations Simulator (ISO_simulator)
Climate model downscaling in central Asia: a dynamical and a neural network approach
Advanced climate model evaluation with ESMValTool v2.11.0 using parallel, out-of-core, and distributed computing
Carolina A. Bieri, Francina Dominguez, Gonzalo Miguez-Macho, and Ying Fan
Geosci. Model Dev., 18, 3755–3779, https://doi.org/10.5194/gmd-18-3755-2025, https://doi.org/10.5194/gmd-18-3755-2025, 2025
Short summary
Short summary
Access to deep moisture below the Earth's surface is important for vegetation in areas of the Amazon where there is little precipitation for part of the year. Most existing numerical models of the Earth system do not adequately capture where and when deep root water uptake occurs. We address this by adding deep soil layers and a root water uptake feature to an existing model. Out modifications lead to increased dry-month transpiration and improved simulation of the annual transpiration cycle.
Sergi Palomas, Mario C. Acosta, Gladys Utrera, and Etienne Tourigny
Geosci. Model Dev., 18, 3661–3679, https://doi.org/10.5194/gmd-18-3661-2025, https://doi.org/10.5194/gmd-18-3661-2025, 2025
Short summary
Short summary
We present an automatic tool that optimizes resource distribution in coupled climate models, enhancing speed and reducing computational costs without requiring expert knowledge. Users can set energy/time criteria or limit resource usage. Tested on various European Community Earth System Model (EC-Earth) configurations and high-performance computing (HPC) platforms, it achieved up to 34 % faster simulations with fewer resources.
Maria Lucia Ferreira Barbosa, Douglas I. Kelley, Chantelle A. Burton, Igor J. M. Ferreira, Renata Moura da Veiga, Anna Bradley, Paulo Guilherme Molin, and Liana O. Anderson
Geosci. Model Dev., 18, 3533–3557, https://doi.org/10.5194/gmd-18-3533-2025, https://doi.org/10.5194/gmd-18-3533-2025, 2025
Short summary
Short summary
As fire seasons in Brazil become increasingly severe, confidently understanding the factors driving fires is more critical than ever. To address this challenge, we developed FLAME (Fire Landscape Analysis using Maximum Entropy), a new model designed to predict fires and to analyse the spatial influence of both environmental and human factors while accounting for uncertainties. By adapting the model to different regions, we can enhance fire management strategies, making FLAME a powerful tool for protecting landscapes in Brazil and beyond.
Victor Couplet, Marina Martínez Montero, and Michel Crucifix
Geosci. Model Dev., 18, 3081–3129, https://doi.org/10.5194/gmd-18-3081-2025, https://doi.org/10.5194/gmd-18-3081-2025, 2025
Short summary
Short summary
We present SURFER v3.0, a simple climate model designed to estimate the impact of CO2 and CH4 emissions on global temperatures, sea levels, and ocean pH. We added new carbon cycle processes and calibrated the model to observations and results from more complex models, enabling use over timescales ranging from decades to millions of years. SURFER v3.0 is fast, transparent, and easy to use, making it an ideal tool for policy assessments and suitable for educational purposes.
Yong-He Liu and Zong-Liang Yang
Geosci. Model Dev., 18, 3157–3174, https://doi.org/10.5194/gmd-18-3157-2025, https://doi.org/10.5194/gmd-18-3157-2025, 2025
Short summary
Short summary
NMH-CS 3.0 is a C#-based ecohydrological model reconstructed from the WRF-Hydro/Noah-MP model by translating the Fortran code of WRF-Hydro 3.0 and integrating a parallel river routing module. It enables efficient execution on multi-core personal computers. Simulations in the Yellow River basin demonstrate its consistency with WRF-Hydro outputs, providing a reliable alternative to the original Noah-MP model.
Conor T. Doherty, Weile Wang, Hirofumi Hashimoto, and Ian G. Brosnan
Geosci. Model Dev., 18, 3003–3016, https://doi.org/10.5194/gmd-18-3003-2025, https://doi.org/10.5194/gmd-18-3003-2025, 2025
Short summary
Short summary
We present, analyze, and validate a methodology for quantifying uncertainty in gridded meteorological data products produced by spatial interpolation. In a validation case study using daily maximum near-surface air temperature (Tmax), the method works well and produces predictive distributions with closely matching theoretical versus actual coverage levels. Application of the method reveals that the magnitude of uncertainty in interpolated Tmax varies significantly in both space and time.
Martin Juckes, Karl E. Taylor, Fabrizio Antonio, David Brayshaw, Carlo Buontempo, Jian Cao, Paul J. Durack, Michio Kawamiya, Hyungjun Kim, Tomas Lovato, Chloe Mackallah, Matthew Mizielinski, Alessandra Nuzzo, Martina Stockhause, Daniele Visioni, Jeremy Walton, Briony Turner, Eleanor O'Rourke, and Beth Dingley
Geosci. Model Dev., 18, 2639–2663, https://doi.org/10.5194/gmd-18-2639-2025, https://doi.org/10.5194/gmd-18-2639-2025, 2025
Short summary
Short summary
The Baseline Climate Variables for Earth System Modelling (ESM-BCVs) are defined as a list of 135 variables which have high utility for the evaluation and exploitation of climate simulations. The list reflects the most frequently used variables from Earth system models based on an assessment of data publication and download records from the largest archive of global climate projects.
Yucheng Lin, Robert E. Kopp, Alexander Reedy, Matteo Turilli, Shantenu Jha, and Erica L. Ashe
Geosci. Model Dev., 18, 2609–2637, https://doi.org/10.5194/gmd-18-2609-2025, https://doi.org/10.5194/gmd-18-2609-2025, 2025
Short summary
Short summary
PaleoSTeHM v1.0 is a state-of-the-art framework designed to reconstruct past environmental conditions using geological data. Built on modern machine learning techniques, it efficiently handles the sparse and noisy nature of paleo-records, allowing scientists to make accurate and scalable inferences about past environmental change. By using flexible statistical models, PaleoSTeHM separates different sources of uncertainty, improving the precision of historical climate reconstructions.
Ingo Richter, Ping Chang, Ping-Gin Chiu, Gokhan Danabasoglu, Takeshi Doi, Dietmar Dommenget, Guillaume Gastineau, Zoe E. Gillett, Aixue Hu, Takahito Kataoka, Noel S. Keenlyside, Fred Kucharski, Yuko M. Okumura, Wonsun Park, Malte F. Stuecker, Andréa S. Taschetto, Chunzai Wang, Stephen G. Yeager, and Sang-Wook Yeh
Geosci. Model Dev., 18, 2587–2608, https://doi.org/10.5194/gmd-18-2587-2025, https://doi.org/10.5194/gmd-18-2587-2025, 2025
Short summary
Short summary
Tropical ocean basins influence each other through multiple pathways and mechanisms, referred to here as tropical basin interaction (TBI). Many researchers have examined TBI using comprehensive climate models but have obtained conflicting results. This may be partly due to differences in experiment protocols and partly due to systematic model errors. The Tropical Basin Interaction Model Intercomparison Project (TBIMIP) aims to address this problem by designing a set of TBI experiments that will be performed by multiple models.
Daniel F. J. Gunning, Kerim H. Nisancioglu, Emilie Capron, and Roderik S. W. van de Wal
Geosci. Model Dev., 18, 2479–2508, https://doi.org/10.5194/gmd-18-2479-2025, https://doi.org/10.5194/gmd-18-2479-2025, 2025
Short summary
Short summary
This work documents the first results from ZEMBA: an energy balance model of the climate system. The model is a computationally efficient tool designed to study the response of climate to changes in the Earth's orbit. We demonstrate that ZEMBA reproduces many features of the Earth's climate for both the pre-industrial period and the Earth's most recent cold extreme – the Last Glacial Maximum. We intend to develop ZEMBA further and investigate the glacial cycles of the last 2.5 million years.
Pengfei Shi, L. Ruby Leung, and Bin Wang
Geosci. Model Dev., 18, 2443–2460, https://doi.org/10.5194/gmd-18-2443-2025, https://doi.org/10.5194/gmd-18-2443-2025, 2025
Short summary
Short summary
Improving climate predictions has significant socio-economic impacts. In this study, we develop and apply a new weakly coupled ocean data assimilation (WCODA) system to a coupled climate model. The WCODA system improves simulations of ocean temperature and salinity across many global regions. This system is meant to advance our understanding of the ocean's role in climate predictability.
Liwen Wang, Qian Li, Qi Lv, Xuan Peng, and Wei You
Geosci. Model Dev., 18, 2427–2442, https://doi.org/10.5194/gmd-18-2427-2025, https://doi.org/10.5194/gmd-18-2427-2025, 2025
Short summary
Short summary
Our research presents a novel deep learning approach called "TemDeep" for downscaling atmospheric variables at arbitrary time resolutions based on temporal coherence. Results show that our method can accurately recover evolution details superior to other methods, reaching 53.7 % in the restoration rate. Our findings are important for advancing weather forecasting models and enabling more precise and reliable predictions to support disaster preparedness, agriculture, and sustainable development.
Teo Price-Broncucia, Allison Baker, Dorit Hammerling, Michael Duda, and Rebecca Morrison
Geosci. Model Dev., 18, 2349–2372, https://doi.org/10.5194/gmd-18-2349-2025, https://doi.org/10.5194/gmd-18-2349-2025, 2025
Short summary
Short summary
The ensemble consistency test (ECT) and its ultrafast variant (UF-ECT) have become powerful tools in the development community for the identification of unwanted changes in the Community Earth System Model (CESM). We develop a generalized setup framework to enable easy adoption of the ECT approach for other model developers and communities. This framework specifies test parameters to accurately characterize model variability and balance test sensitivity and computational cost.
Esteban Fernández Villanueva and Gary Shaffer
Geosci. Model Dev., 18, 2161–2192, https://doi.org/10.5194/gmd-18-2161-2025, https://doi.org/10.5194/gmd-18-2161-2025, 2025
Short summary
Short summary
We describe, calibrate and test the Danish Center for Earth System Science (DCESS) II model, a new, broad, adaptable and fast Earth system model. DCESS II is designed for global simulations over timescales of years to millions of years using limited computer resources like a personal computer. With its flexibility and comprehensive treatment of the global carbon cycle, DCESS II is a useful, computationally friendly tool for simulations of past climates as well as for future Earth system projections.
Gang Tang, Zebedee Nicholls, Alexander Norton, Sönke Zaehle, and Malte Meinshausen
Geosci. Model Dev., 18, 2193–2230, https://doi.org/10.5194/gmd-18-2193-2025, https://doi.org/10.5194/gmd-18-2193-2025, 2025
Short summary
Short summary
We studied carbon–nitrogen coupling in Earth system models by developing a global carbon–nitrogen cycle model (CNit v1.0) within the widely used emulator MAGICC. CNit effectively reproduced the global carbon–nitrogen cycle dynamics observed in complex models. Our results show persistent nitrogen limitations on plant growth (net primary production) from 1850 to 2100, suggesting that nitrogen deficiency may constrain future land carbon sequestration.
Ngoc Thi Nhu Do, Kengo Sudo, Akihiko Ito, Louisa K. Emmons, Vaishali Naik, Kostas Tsigaridis, Øyvind Seland, Gerd A. Folberth, and Douglas I. Kelley
Geosci. Model Dev., 18, 2079–2109, https://doi.org/10.5194/gmd-18-2079-2025, https://doi.org/10.5194/gmd-18-2079-2025, 2025
Short summary
Short summary
Understanding historical isoprene emission changes is important for predicting future climate, but trends and their controlling factors remain uncertain. This study shows that long-term isoprene trends vary among Earth system models mainly due to partially incorporating CO2 effects and land cover changes rather than to climate. Future models that refine these factors’ effects on isoprene emissions, along with long-term observations, are essential for better understanding plant–climate interactions.
Gang Tang, Zebedee Nicholls, Chris Jones, Thomas Gasser, Alexander Norton, Tilo Ziehn, Alejandro Romero-Prieto, and Malte Meinshausen
Geosci. Model Dev., 18, 2111–2136, https://doi.org/10.5194/gmd-18-2111-2025, https://doi.org/10.5194/gmd-18-2111-2025, 2025
Short summary
Short summary
We analyzed carbon and nitrogen mass conservation in data from various Earth system models. Our findings reveal significant discrepancies between flux and pool size data, where cumulative imbalances can reach hundreds of gigatons of carbon or nitrogen. These imbalances appear primarily due to missing or inconsistently reported fluxes – especially for land-use and fire emissions. To enhance data quality, we recommend that future climate data protocols address this issue at the reporting stage.
Florian Börgel, Sven Karsten, Karoline Rummel, and Ulf Gräwe
Geosci. Model Dev., 18, 2005–2019, https://doi.org/10.5194/gmd-18-2005-2025, https://doi.org/10.5194/gmd-18-2005-2025, 2025
Short summary
Short summary
Forecasting river runoff, which is crucial for managing water resources and understanding climate impacts, can be challenging. This study introduces a new method using convolutional long short-term memory (ConvLSTM) networks, a machine learning model that processes spatial and temporal data. Focusing on the Baltic Sea region, our model uses weather data as input to predict daily river runoff for 97 rivers.
Tao Zhang, Cyril Morcrette, Meng Zhang, Wuyin Lin, Shaocheng Xie, Ye Liu, Kwinten Van Weverberg, and Joana Rodrigues
Geosci. Model Dev., 18, 1917–1928, https://doi.org/10.5194/gmd-18-1917-2025, https://doi.org/10.5194/gmd-18-1917-2025, 2025
Short summary
Short summary
Earth system models (ESMs) struggle with the uncertainties associated with parameterizing subgrid physics. Machine learning (ML) algorithms offer a solution by learning the important relationships and features from high-resolution models. To incorporate ML parameterizations into ESMs, we develop a Fortran–Python interface that allows for calling Python functions within Fortran-based ESMs. Through two case studies, this interface demonstrates its feasibility, modularity, and effectiveness.
Kostas Tsigaridis, Andrew S. Ackerman, Igor Aleinov, Mark A. Chandler, Thomas L. Clune, Christopher M. Colose, Anthony D. Del Genio, Maxwell Kelley, Nancy Y. Kiang, Anthony Leboissetier, Jan P. Perlwitz, Reto A. Ruedy, Gary L. Russell, Linda E. Sohl, Michael J. Way, and Eric T. Wolf
EGUsphere, https://doi.org/10.5194/egusphere-2025-925, https://doi.org/10.5194/egusphere-2025-925, 2025
Short summary
Short summary
We present the second generation of ROCKE-3D, a generalized 3-dimensional model for use in Solar System and exoplanetary simulations of rocky planet climates. We quantify how the different component choices affect model results, and discuss strengths and limitations of using each component, together with how one can select which component to use. ROCKE-3D is publicly available and tutorial sessions are available for the community, greatly facilitating its use by any interested group.
Camilla Mathison, Eleanor J. Burke, Gregory Munday, Chris D. Jones, Chris J. Smith, Norman J. Steinert, Andy J. Wiltshire, Chris Huntingford, Eszter Kovacs, Laila K. Gohar, Rebecca M. Varney, and Douglas McNeall
Geosci. Model Dev., 18, 1785–1808, https://doi.org/10.5194/gmd-18-1785-2025, https://doi.org/10.5194/gmd-18-1785-2025, 2025
Short summary
Short summary
We present PRIME (Probabilistic Regional Impacts from Model patterns and Emissions), which is designed to take new emissions scenarios and rapidly provide regional impact information. PRIME allows large ensembles to be run on multi-centennial timescales, including the analysis of many important variables for impact assessments. Our evaluation shows that PRIME reproduces the climate response for known scenarios, providing confidence in using PRIME for novel scenarios.
Katherine M. Smith, Alice M. Barthel, LeAnn M. Conlon, Luke P. Van Roekel, Anthony Bartoletti, Jean-Christophe Golaz, Chengzhu Zhang, Carolyn Branecky Begeman, James J. Benedict, Gautam Bisht, Yan Feng, Walter Hannah, Bryce E. Harrop, Nicole Jeffery, Wuyin Lin, Po-Lun Ma, Mathew E. Maltrud, Mark R. Petersen, Balwinder Singh, Qi Tang, Teklu Tesfa, Jonathan D. Wolfe, Shaocheng Xie, Xue Zheng, Karthik Balaguru, Oluwayemi Garuba, Peter Gleckler, Aixue Hu, Jiwoo Lee, Ben Moore-Maley, and Ana C. Ordoñez
Geosci. Model Dev., 18, 1613–1633, https://doi.org/10.5194/gmd-18-1613-2025, https://doi.org/10.5194/gmd-18-1613-2025, 2025
Short summary
Short summary
Version 2.1 of the U.S. Department of Energy's Energy Exascale Earth System Model (E3SM) adds the Fox-Kemper et al. (2011) mixed-layer eddy parameterization, which restratifies the ocean surface layer through an overturning streamfunction. Results include surface layer bias reduction in temperature, salinity, and sea ice extent in the North Atlantic; a small strengthening of the Atlantic meridional overturning circulation; and improvements to many atmospheric climatological variables.
Huilin Huang, Yun Qian, Gautam Bisht, Jiali Wang, Tirthankar Chakraborty, Dalei Hao, Jianfeng Li, Travis Thurber, Balwinder Singh, Zhao Yang, Ye Liu, Pengfei Xue, William J. Sacks, Ethan Coon, and Robert Hetland
Geosci. Model Dev., 18, 1427–1443, https://doi.org/10.5194/gmd-18-1427-2025, https://doi.org/10.5194/gmd-18-1427-2025, 2025
Short summary
Short summary
We integrate the E3SM Land Model (ELM) with the WRF model through the Lightweight Infrastructure for Land Atmosphere Coupling (LILAC) Earth System Modeling Framework (ESMF). This framework includes a top-level driver, LILAC, for variable communication between WRF and ELM and ESMF caps for ELM initialization, execution, and finalization. The LILAC–ESMF framework maintains the integrity of the ELM's source code structure and facilitates the transfer of future ELM model developments to WRF-ELM.
Michael Nole, Jonah Bartrand, Fawz Naim, and Glenn Hammond
Geosci. Model Dev., 18, 1413–1425, https://doi.org/10.5194/gmd-18-1413-2025, https://doi.org/10.5194/gmd-18-1413-2025, 2025
Short summary
Short summary
Safe carbon dioxide (CO2) storage is likely to be critical for mitigating some of the most severe effects of climate change. We present a simulation framework for modeling CO2 storage beneath the seafloor, where CO2 can form a solid. This can aid in permanent CO2 storage for long periods of time. Our models show what a commercial-scale CO2 injection would look like in a marine environment. We discuss what would need to be considered when designing a subsea CO2 injection.
Reyk Börner, Jan O. Haerter, and Romain Fiévet
Geosci. Model Dev., 18, 1333–1356, https://doi.org/10.5194/gmd-18-1333-2025, https://doi.org/10.5194/gmd-18-1333-2025, 2025
Short summary
Short summary
The daily cycle of sea surface temperature (SST) impacts clouds above the ocean and could influence the clustering of thunderstorms linked to extreme rainfall and hurricanes. However, daily SST variability is often poorly represented in modeling studies of how clouds cluster. We present a simple, wind-responsive model of upper-ocean temperature for use in atmospheric simulations. Evaluating the model against observations, we show that it performs significantly better than common slab models.
Malcolm J. Roberts, Kevin A. Reed, Qing Bao, Joseph J. Barsugli, Suzana J. Camargo, Louis-Philippe Caron, Ping Chang, Cheng-Ta Chen, Hannah M. Christensen, Gokhan Danabasoglu, Ivy Frenger, Neven S. Fučkar, Shabeh ul Hasson, Helene T. Hewitt, Huanping Huang, Daehyun Kim, Chihiro Kodama, Michael Lai, Lai-Yung Ruby Leung, Ryo Mizuta, Paulo Nobre, Pablo Ortega, Dominique Paquin, Christopher D. Roberts, Enrico Scoccimarro, Jon Seddon, Anne Marie Treguier, Chia-Ying Tu, Paul A. Ullrich, Pier Luigi Vidale, Michael F. Wehner, Colin M. Zarzycki, Bosong Zhang, Wei Zhang, and Ming Zhao
Geosci. Model Dev., 18, 1307–1332, https://doi.org/10.5194/gmd-18-1307-2025, https://doi.org/10.5194/gmd-18-1307-2025, 2025
Short summary
Short summary
HighResMIP2 is a model intercomparison project focusing on high-resolution global climate models, that is, those with grid spacings of 25 km or less in the atmosphere and ocean, using simulations of decades to a century in length. We are proposing an update of our simulation protocol to make the models more applicable to key questions for climate variability and hazard in present-day and future projections and to build links with other communities to provide more robust climate information.
Jordi Buckley Paules, Simone Fatichi, Bonnie Warring, and Athanasios Paschalis
Geosci. Model Dev., 18, 1287–1305, https://doi.org/10.5194/gmd-18-1287-2025, https://doi.org/10.5194/gmd-18-1287-2025, 2025
Short summary
Short summary
We present and validate enhancements to the process-based T&C model aimed at improving its representation of crop growth and management practices. The updated model, T&C-CROP, enables applications such as analysing the hydrological and carbon storage impacts of land use transitions (e.g. conversions between crops, forests, and pastures) and optimizing irrigation and fertilization strategies in response to climate change.
Sébastien Masson, Swen Jullien, Eric Maisonnave, David Gill, Guillaume Samson, Mathieu Le Corre, and Lionel Renault
Geosci. Model Dev., 18, 1241–1263, https://doi.org/10.5194/gmd-18-1241-2025, https://doi.org/10.5194/gmd-18-1241-2025, 2025
Short summary
Short summary
This article details a new feature we implemented in the popular regional atmospheric model WRF. This feature allows for data exchange between WRF and any other model (e.g. an ocean model) using the coupling library Ocean–Atmosphere–Sea–Ice–Soil Model Coupling Toolkit (OASIS3-MCT). This coupling interface is designed to be non-intrusive, flexible and modular. It also offers the possibility of taking into account the nested zooms used in WRF or in the models with which it is coupled.
Axel Lauer, Lisa Bock, Birgit Hassler, Patrick Jöckel, Lukas Ruhe, and Manuel Schlund
Geosci. Model Dev., 18, 1169–1188, https://doi.org/10.5194/gmd-18-1169-2025, https://doi.org/10.5194/gmd-18-1169-2025, 2025
Short summary
Short summary
Earth system models are important tools to improve our understanding of current climate and to project climate change. Thus, it is crucial to understand possible shortcomings in the models. New features of the ESMValTool software package allow one to compare and visualize a model's performance with respect to reproducing observations in the context of other climate models in an easy and user-friendly way. We aim to help model developers assess and monitor climate simulations more efficiently.
Ulrich G. Wortmann, Tina Tsan, Mahrukh Niazi, Irene A. Ma, Ruben Navasardyan, Magnus-Roland Marun, Bernardo S. Chede, Jingwen Zhong, and Morgan Wolfe
Geosci. Model Dev., 18, 1155–1167, https://doi.org/10.5194/gmd-18-1155-2025, https://doi.org/10.5194/gmd-18-1155-2025, 2025
Short summary
Short summary
The Earth Science Box Modeling Toolkit (ESBMTK) is a user-friendly Python library that simplifies the creation of models to study earth system processes, such as the carbon cycle and ocean chemistry. It enhances learning by emphasizing concepts over programming and is accessible to students and researchers alike. By automating complex calculations and promoting code clarity, ESBMTK accelerates model development while improving reproducibility and the usability of scientific research.
Florian Zabel, Matthias Knüttel, and Benjamin Poschlod
Geosci. Model Dev., 18, 1067–1087, https://doi.org/10.5194/gmd-18-1067-2025, https://doi.org/10.5194/gmd-18-1067-2025, 2025
Short summary
Short summary
CropSuite is a new open-source crop suitability model. It provides a GUI and a wide range of options, including a spatial downscaling of climate data. We apply CropSuite to 48 staple and opportunity crops at a 1 km spatial resolution in Africa. We find that climate variability significantly impacts suitable areas but also affects optimal sowing dates and multiple cropping potential. The results provide valuable information for climate impact assessments, adaptation, and land-use planning.
Kerstin Hartung, Bastian Kern, Nils-Arne Dreier, Jörn Geisbüsch, Mahnoosh Haghighatnasab, Patrick Jöckel, Astrid Kerkweg, Wilton Jaciel Loch, Florian Prill, and Daniel Rieger
Geosci. Model Dev., 18, 1001–1015, https://doi.org/10.5194/gmd-18-1001-2025, https://doi.org/10.5194/gmd-18-1001-2025, 2025
Short summary
Short summary
The ICOsahedral Non-hydrostatic (ICON) model system Community Interface (ComIn) library supports connecting third-party modules to the ICON model. Third-party modules can range from simple diagnostic Python scripts to full chemistry models. ComIn offers a low barrier for code extensions to ICON, provides multi-language support (Fortran, C/C++, and Python), and reduces the migration effort in response to new ICON releases. This paper presents the ComIn design principles and a range of use cases.
Daniel Ries, Katherine Goode, Kellie McClernon, and Benjamin Hillman
Geosci. Model Dev., 18, 1041–1065, https://doi.org/10.5194/gmd-18-1041-2025, https://doi.org/10.5194/gmd-18-1041-2025, 2025
Short summary
Short summary
Machine learning has advanced research in the climate science domain, but its models are difficult to understand. In order to understand the impacts and consequences of climate interventions such as stratospheric aerosol injection, complex models are often necessary. We use a case study to illustrate how we can understand the inner workings of a complex model. We present this technique as an exploratory tool that can be used to quickly discover and assess relationships in complex climate data.
Bo Dong, Paul Ullrich, Jiwoo Lee, Peter Gleckler, Kristin Chang, and Travis A. O'Brien
Geosci. Model Dev., 18, 961–976, https://doi.org/10.5194/gmd-18-961-2025, https://doi.org/10.5194/gmd-18-961-2025, 2025
Short summary
Short summary
A metrics package designed for easy analysis of atmospheric river (AR) characteristics and statistics is presented. The tool is efficient for diagnosing systematic AR bias in climate models and useful for evaluating new AR characteristics in model simulations. In climate models, landfalling AR precipitation shows dry biases globally, and AR tracks are farther poleward (equatorward) in the North and South Atlantic (South Pacific and Indian Ocean).
Panagiotis Adamidis, Erik Pfister, Hendryk Bockelmann, Dominik Zobel, Jens-Olaf Beismann, and Marek Jacob
Geosci. Model Dev., 18, 905–919, https://doi.org/10.5194/gmd-18-905-2025, https://doi.org/10.5194/gmd-18-905-2025, 2025
Short summary
Short summary
In this paper, we investigated performance indicators of the climate model ICON (ICOsahedral Nonhydrostatic) on different compute architectures to answer the question of how to generate high-resolution climate simulations. Evidently, it is not enough to use more computing units of the conventionally used architectures; higher memory throughput is the most promising approach. More potential can be gained from single-node optimization rather than simply increasing the number of compute nodes.
Jonah K. Shaw, Dustin J. Swales, Sergio DeSouza-Machado, David D. Turner, Jennifer E. Kay, and David P. Schneider
EGUsphere, https://doi.org/10.5194/egusphere-2025-169, https://doi.org/10.5194/egusphere-2025-169, 2025
Short summary
Short summary
Satellites have observed earth's emission of infrared radiation since the 1970s. Because infrared wavelengths interact with the atmosphere in distinct ways, these observations contain information about the earth and atmosphere. We present a tool that runs alongside global climate models and produces output that can be directly compared with satellite measurements of infrared radiation. We then use this tool for climate model evaluation, climate change detection, and satellite mission design.
Maria Vittoria Struglia, Alessandro Anav, Marta Antonelli, Sandro Calmanti, Franco Catalano, Alessandro Dell'Aquila, Emanuela Pichelli, and Giovanna Pisacane
EGUsphere, https://doi.org/10.5194/egusphere-2025-387, https://doi.org/10.5194/egusphere-2025-387, 2025
Short summary
Short summary
We present the results of downscaling global climate projections for the Mediterranean and Italian regions aiming to produce high-resolution climate information for the assessment of climate change signals, focusing on extreme events. A general warming is foreseen by the end of century with a mean precipitation reduction accompanied, over Italian Peninsula, by a strong increase in the intensity of extreme precipitation events, particularly relevant for the high emissions scenario during autumn
Kangari Narender Reddy, Somnath Baidya Roy, Sam S. Rabin, Danica L. Lombardozzi, Gudimetla Venkateswara Varma, Ruchira Biswas, and Devavat Chiru Naik
Geosci. Model Dev., 18, 763–785, https://doi.org/10.5194/gmd-18-763-2025, https://doi.org/10.5194/gmd-18-763-2025, 2025
Short summary
Short summary
The study aimed to improve the representation of wheat and rice in a land model for the Indian region. The modified model performed significantly better than the default model in simulating crop phenology, yield, and carbon, water, and energy fluxes compared to observations. The study highlights the need for global land models to use region-specific crop parameters for accurately simulating vegetation processes and land surface processes.
Giovanni Di Virgilio, Fei Ji, Eugene Tam, Jason P. Evans, Jatin Kala, Julia Andrys, Christopher Thomas, Dipayan Choudhury, Carlos Rocha, Yue Li, and Matthew L. Riley
Geosci. Model Dev., 18, 703–724, https://doi.org/10.5194/gmd-18-703-2025, https://doi.org/10.5194/gmd-18-703-2025, 2025
Short summary
Short summary
We evaluate the skill in simulating the Australian climate of some of the latest generation of regional climate models. We show when and where the models simulate this climate with high skill versus model limitations. We show how new models perform relative to the previous-generation models, assessing how model design features may underlie key performance improvements. This work is of national and international relevance as it can help guide the use and interpretation of climate projections.
Giovanni Di Virgilio, Jason P. Evans, Fei Ji, Eugene Tam, Jatin Kala, Julia Andrys, Christopher Thomas, Dipayan Choudhury, Carlos Rocha, Stephen White, Yue Li, Moutassem El Rafei, Rishav Goyal, Matthew L. Riley, and Jyothi Lingala
Geosci. Model Dev., 18, 671–702, https://doi.org/10.5194/gmd-18-671-2025, https://doi.org/10.5194/gmd-18-671-2025, 2025
Short summary
Short summary
We introduce new climate models that simulate Australia’s future climate at regional scales, including at an unprecedented resolution of 4 km for 1950–2100. We describe the model design process used to create these new climate models. We show how the new models perform relative to previous-generation models and compare their climate projections. This work is of national and international relevance as it can help guide climate model design and the use and interpretation of climate projections.
Nathan P. Gillett, Isla R. Simpson, Gabi Hegerl, Reto Knutti, Dann Mitchell, Aurélien Ribes, Hideo Shiogama, Dáithí Stone, Claudia Tebaldi, Piotr Wolski, Wenxia Zhang, and Vivek K. Arora
EGUsphere, https://doi.org/10.5194/egusphere-2024-4086, https://doi.org/10.5194/egusphere-2024-4086, 2025
Short summary
Short summary
Climate model simulations of the response to human and natural influences together, natural climate influences alone, and greenhouse gases alone, among others, are key to quantifying human influence on the climate. The last set of such coordinated simulations underpinned key findings in the last Intergovernmental Panel on Climate Change (IPCC) report. Here we propose a new set of such simulations to be used in the next generation of attribution studies, and to underpin the next IPCC report.
Katherine Grayson, Stephan Thober, Aleksander Lacima-Nadolnik, Ehsan Sharifi, Llorenç Lledó, and Francisco Doblas-Reyes
EGUsphere, https://doi.org/10.5194/egusphere-2025-28, https://doi.org/10.5194/egusphere-2025-28, 2025
Short summary
Short summary
To provide the most accurate climate adaptation information, climate models are being run with finer grid resolution, resulting in larger data output. This paper presents intelligent data reduction algorithms that act on streamed data, a novel way of processing climate data as soon as it is produced. Using these algorithms to calculate statistics, we show that the accuracy provided is well within acceptable bounds while still providing memory savings that bypass unfeasible storage requirements.
Jiawang Feng, Chun Zhao, Qiuyan Du, Zining Yang, and Chen Jin
Geosci. Model Dev., 18, 585–603, https://doi.org/10.5194/gmd-18-585-2025, https://doi.org/10.5194/gmd-18-585-2025, 2025
Short summary
Short summary
In this study, we improved the calculation of how aerosols in the air interact with radiation in WRF-Chem. The original model used a simplified method, but we developed a more accurate approach. We found that this method significantly changes the properties of the estimated aerosols and their effects on radiation, especially for dust aerosols. It also impacts the simulated weather conditions. Our work highlights the importance of correctly representing aerosol–radiation interactions in models.
Eduardo Moreno-Chamarro, Thomas Arsouze, Mario Acosta, Pierre-Antoine Bretonnière, Miguel Castrillo, Eric Ferrer, Amanda Frigola, Daria Kuznetsova, Eneko Martin-Martinez, Pablo Ortega, and Sergi Palomas
Geosci. Model Dev., 18, 461–482, https://doi.org/10.5194/gmd-18-461-2025, https://doi.org/10.5194/gmd-18-461-2025, 2025
Short summary
Short summary
We present the high-resolution model version of the EC-Earth global climate model to contribute to HighResMIP. The combined model resolution is about 10–15 km in both the ocean and atmosphere, which makes it one of the finest ever used to complete historical and scenario simulations. This model is compared with two lower-resolution versions, with a 100 km and a 25 km grid. The three models are compared with observations to study the improvements thanks to the increased resolution.
Catherine Guiavarc'h, David Storkey, Adam T. Blaker, Ed Blockley, Alex Megann, Helene Hewitt, Michael J. Bell, Daley Calvert, Dan Copsey, Bablu Sinha, Sophia Moreton, Pierre Mathiot, and Bo An
Geosci. Model Dev., 18, 377–403, https://doi.org/10.5194/gmd-18-377-2025, https://doi.org/10.5194/gmd-18-377-2025, 2025
Short summary
Short summary
The Global Ocean and Sea Ice configuration version 9 (GOSI9) is the new UK hierarchy of model configurations based on the Nucleus for European Modelling of the Ocean (NEMO) and available at three resolutions. It will be used for various applications, e.g. weather forecasting and climate prediction. It improves upon the previous version by reducing global temperature and salinity biases and enhancing the representation of Arctic sea ice and the Antarctic Circumpolar Current.
Nick Schüßler, Jewgenij Torizin, Claudia Gunkel, Karsten Schütze, Lars Tiepolt, Dirk Kuhn, Michael Fuchs, and Steffen Prüfer
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-209, https://doi.org/10.5194/gmd-2024-209, 2025
Revised manuscript accepted for GMD
Short summary
Short summary
FACA – Fully Automated Co-Alignment – is a tool designed to generate co-aligned point clouds. We aim to accelerate the application of the co-alignment method and achieve fast results with evolving temporal data and minimal site-specific preparation. FACA offers multiple ways to interact with the workflow, enabling new users to quickly generate initial results through the custom interface, as well as integration into larger automated workflows via the command line. Test datasets are provided.
Andy Richling, Jens Grieger, and Henning W. Rust
Geosci. Model Dev., 18, 361–375, https://doi.org/10.5194/gmd-18-361-2025, https://doi.org/10.5194/gmd-18-361-2025, 2025
Short summary
Short summary
The performance of weather and climate prediction systems is variable in time and space. It is of interest how this performance varies in different situations. We provide a decomposition of a skill score (a measure of forecast performance) as a tool for detailed assessment of performance variability to support model development or forecast improvement. The framework is exemplified with decadal forecasts to assess the impact of different ocean states in the North Atlantic on temperature forecast.
Maria R. Russo, Sadie L. Bartholomew, David Hassell, Alex M. Mason, Erica Neininger, A. James Perman, David A. J. Sproson, Duncan Watson-Parris, and Nathan Luke Abraham
Geosci. Model Dev., 18, 181–191, https://doi.org/10.5194/gmd-18-181-2025, https://doi.org/10.5194/gmd-18-181-2025, 2025
Short summary
Short summary
Observational data and modelling capabilities have expanded in recent years, but there are still barriers preventing these two data sources from being used in synergy. Proper comparison requires generating, storing, and handling a large amount of data. This work describes the first step in the development of a new set of software tools, the VISION toolkit, which can enable the easy and efficient integration of observational and model data required for model evaluation.
Bijan Fallah, Masoud Rostami, Emmanuele Russo, Paula Harder, Christoph Menz, Peter Hoffmann, Iulii Didovets, and Fred F. Hattermann
Geosci. Model Dev., 18, 161–180, https://doi.org/10.5194/gmd-18-161-2025, https://doi.org/10.5194/gmd-18-161-2025, 2025
Short summary
Short summary
We tried to contribute to a local climate change impact study in central Asia, a region that is water-scarce and vulnerable to global climate change. We use regional models and machine learning to produce reliable local data from global climate models. We find that regional models show more realistic and detailed changes in heavy precipitation than global climate models. Our work can help assess the future risks of extreme events and plan adaptation strategies in central Asia.
Manuel Schlund, Bouwe Andela, Jörg Benke, Ruth Comer, Birgit Hassler, Emma Hogan, Peter Kalverla, Axel Lauer, Bill Little, Saskia Loosveldt Tomas, Francesco Nattino, Patrick Peglar, Valeriu Predoi, Stef Smeets, Stephen Worsley, Martin Yeo, and Klaus Zimmermann
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-236, https://doi.org/10.5194/gmd-2024-236, 2025
Revised manuscript accepted for GMD
Short summary
Short summary
The Earth System Model Evaluation Tool (ESMValTool) is a community diagnostics and performance metrics tool for the evaluation of Earth system models. Here, we describe recent significant improvements of ESMValTool’s computational efficiency including parallel, out-of-core, and distributed computing. Evaluations with the enhanced version of ESMValTool are faster, use less computational resources, and can handle input data larger than the available memory.
Cited articles
Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak,
J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind,
J., Arkin, P., and Nelkin, E.: The version 2 Global Precipitation Climatology
Project (GPCP) monthly precipitation analysis (1979–present), J.
Hydrometeorol., 4, 1147–1167, 2003.
Adler, R. F., Gu, G., and Huffman, G. J.: Estimating climatological bias
errors for the Global Precipitation Climatology Project (GPCP), J. Appl. Meteorol. Clim., 51, 84–99,
https://doi.org/10.1175/JAMC-D-11-052.1, 2012.
Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S.,
Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A.,
Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W.,
Paw U, K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala,
T., Wilson, K., and Wofsy, S.: FLUXNET: A new tool to study the temporal and
spatial variability of ecosystem-scale carbon dioxide, water vapor, and
energy flux densities, B. Am. Meteorol. Soc., 82, 2415–2434, 2001.
Barlage, M., Zeng, X., Wei, H., and Mitchell, K. E.: A global 0.05∘
maximum albedo dataset of snow-covered land based on MODIS observations,
Geophys. Res. Lett., 32, L17405, https://doi.org/10.1029/2005GL022881, 2005.
Behrangi, A., Christensen, M., Richardson, M., Lebsock, M., Stephens, G.,
Huffman, G. J., Bolvin, D., Adler, R. F., Gardner, A., Lambrigtsen, B., and
Fetzer, E.: Status of high-latitude precipitation estimates from observations
and reanalyses, J. Geophys. Res., 121, 4468–4486,
https://doi.org/10.1002/2015JD024546, 2016.
Betts, A. K., Ball, J. H., Barr, A. G., Black, T. A., McCaughey, J. H., and
Viterbo, P.: Assessing land-surface-atmosphere coupling in the ERA-40
reanalysis with boreal forest data, Agr. Forest Meteorol., 140, 365–382,
https://doi.org/10.1016/j.agrformet.2006.08.009, 2006.
Berg, P., Döscher, R., and Koenigk, T.: Impacts of using spectral nudging
on regional climate model RCA4 simulations of the Arctic, Geosci. Model Dev.,
6, 849–859, https://doi.org/10.5194/gmd-6-849-2013, 2013.
Berg, P., Döscher, R., and Koenigk, T.: On the effects of constraining
atmospheric circulation in a coupled atmosphere-ocean Arctic regional climate
model, Clim. Dynam., 46, 3499–3515, https://doi.org/10.1007/s00382-015-2783-y, 2016.
Bromwich, D. H., Cassano, J. J., Klein, T., Heinemann, G., Hines, K. M.,
Steffen, K., and Box, J. E.: Mesoscale modeling of katabatic winds over
Greenland with the Polar MM5, Mon. Weather Rev., 129, 2290–2309, 2001.
Bromwich, D. H., Hines, K. M., and Bai, L.-S.: Development and testing of
Polar Weather Research and Forecasting model: 2. Arctic Ocean, J. Geophys.
Res., 114, D08122, https://doi.org/10.1029/2008JD010300, 2009.
Bromwich, D. H., Wilson, A. B., Bai, L.-S., Moore, G. W. K., and Bauer, P.:
A comparison of the regional Arctic System Reanalysis and the global
ERA-Interim Reanalysis for the Arctic, Q. J. Roy. Meteor. Soc., 142,
644–658, https://doi.org/10.1002/qj.2527, 2016.
Broxton, P., Zeng, X., and Dawson, N.: Why do global reanalyses and land
data assimilation products underestimate snow water equivalent?, J.
Hydrometeorol., 17, 2743–2761, https://doi.org/10.1175/JHM-D-16-0056.1, 2016.
Brunke, M. A., Fairall, C. W., Zeng, X., Eymard, L., and Curry, J. A.: Which
bulk aerodynamic flux algorithms are least problematic in computing ocean
surface turbulent fluxes?, J. Climate, 16, 619–635, 2003.
Brunke, M. A., Zhou, M., Zeng, X., and Andreas, E. L: An intercomparison of
bulk aerodynamic algorithms used over sea ice with data from the Surface Heat
Budget for the Arctic Ocean (SHEBA) experiment, J. Geophys. Res., 111,
C09001, https://doi.org/10.1029/2005JC002907, 2006.
Cassano, J. J., Box, J. E., Bromwich, D. H., Li, L., and Steffen, K.:
Evaluation of Polar MM5 simulations of Greenland's atmospheric circulation,
J. Geophys. Res., 106, 33867–33889, 2001.
Cassano, J. J., Higgins, M. E., and Seefeldt, M. W.: Performance of the
Weather Research and Forecasting Model for month-long pan-Arctic simulations,
Mon. Weather Rev., 139, 3469–3488, 2011.
Cassano, J. J., DuVivier, A., Roberts, A., Hughes, M., Seefeldt, M., Brunke,
M., Craig, A., Fisel, B., Gutowski, W., Hamman, J., Higgins, M., Maslowski,
W., Nijssen, B., Osinski, R., and Zeng, X.: Development of the Regional
Arctic System Model (RASM): Near surface atmospheric climate sensitivity, J.
Climate, 30, 5729–5753, https://doi.org/10.1175/JCLI-D-15-0775.1, 2017.
Comiso, J. C. and Hall, D. K.: Climate trends in the Arctic as observed from
space, Wires Clim. Change, 5, 389–409, 2014.
Comiso, J. C., Parkinson, C. L., Gersten, R., and Stock, L.: Accelerated
decline in the Arctic sea ice cover, Geophys. Res. Lett., 35, L01703,
https://doi.org/10.1029/2007GL031972, 2008.
Craig, A. P., Vertenstein, M., and Jacob, R.: A new flexible coupler for
Earth system modeling developed for CCSM4 and CESM1, Int. J. High Perform.
C., 26, 31–42, https://doi.org/10.1177/1094342011428141, 2012.
Dawson, N., Broxton, P., Zeng, X., Leuthold, M., Barlage, M., and Holbrook,
P.: Evaluation of Snow Initializations for NCEP Global and Regional
Forecasting Models, J. Hydrometeorol., 17, 1885–1901,
https://doi.org/10.1175/JHM-D-15-0227.1, 2016.
Decker, M., Brunke, M. A., Wang, Z., Sakaguchi, K., Zeng, X., and
Bosilovich, M. G.: Evaluation of the reanalysis products from GSFC, NCEP, and
ECMWF using flux tower observations, J. Climate, 25, 1916–1944,
https://doi.org/10.1175/JCLI-D-11-00004.1, 2012.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler,
M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J.,
Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and
Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the
data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, 2011.
DeRepentigny, P., Tremblay, L. B., Newton, R., and Pfirman, S.: Patterns of
sea ice retreat in the transition to a seasonally ice-free Arctic, J.
Climate, 29, 6993–7008, https://doi.org/10.1175/JCLI-D-15-0733.1, 2016.
Dethloff, K., Rinke, A., Lehmann, R., Christensen, J. H., Botzet, M., and
Machenhauser, B.: A regional climate model of the Arctic atmosphere, J.
Geophys. Res., 101, 23401–23422, 1996.
Dorn, W., Dethloff, K., Rinke, A., Frickenhaus, S., Gerdes, R., Karcher, M.,
and Kauker, F.: Sensitivities and uncertainties in a coupled regional
atmosphere-ocean-ice model with respect to the simulation of Arctic sea ice,
J. Geophys. Res., 112, D10118, https://doi.org/10.1029/2006JD007814, 2007.
Döscher, R., Willén, U., Jones, C., Rutgersson, A., Markus Meier, H.
E., Hansson, U., and Graham, L. P.: The development of the regional coupled
ocean-atmosphere model RCAO, Boreal Environ. Res., 7, 183–192, 2002.
D
öscher, R., Wyser, K., Markus Meier, H. E., Qian, M., and Redler, R.:
Quantifying Arctic contributions to climate predictability in a regional
coupled ocean-ice-atmosphere model, Clim. Dynam., 34, 1157–1167,
https://doi.org/10.1007/s00382-009-0567-y, 2010.
Du, J., Wang, K., Wang, J., Jiang, S., and Zhou, C.: Diurnal cycle of surface
air temperature within China in current reanalyses: Evaluation and
diagnostics, J. Climate, 31, 4585–4603, https://doi.org/10.1175/JCLI-D-0773.1, 2018.
Dukowicz, J. K. and Smith, R. D.: Implicit free-surface method for the
Bryan-Cox-Semtner ocean model, J. Geophys. Res., 99, 7991–8014,
https://doi.org/10.1029/93JC03455, 1994.
DuVivier, A. K. and Cassano, J. J.: Exploration of turbulent heat fluxes
and wind stress curl in WRF and ERA-Interim during wintertime mesoscale wind
events around southeastern Greenland, J. Geophys. Res., 120, 3593–3609,
https://doi.org/10.1002/2014JD022991, 2015.
Estilow, T. W., Young, A. H., and Robinson, D. A.: A long-term Northern
Hemisphere snow cover extent data record for climate studies and monitoring,
Earth Syst. Sci. Data, 7, 137–142, https://doi.org/10.5194/essd-7-137-2015,
2015.
European Centre for Medium-Range Weather Forecasts: ERA-Interim Project,
Monthly Means, Research Data Archive at the National Center for Atmospheric
Research, https://doi.org/10.5065/D68050NT, 2012.
Gelaro, R., McCarty, W., Suarez, M. J., Todling, R., Molod, A., Takacs, L.,
Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K.,
Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da
Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert,
S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis
for Research and Applications, Version 2 (MERRA-2), J. Climate, 30,
5419–5454, 2017.
Glisan, J. M., Gutowski, W. J., Cassano, J. J., and Higgins, M. E.: Effects
of spectral nudging in WRF on Arctic temperature and precipitation
simulations, J. Climate, 26, 3985–3999, https://doi.org/10.1175/JCLI-D-12-00318.1,
2012.
Grell, G. A. and Dévényi, D.: A generalized approach to
parameterizing convection combining ensemble and data assimilation
techniques, Geophys. Res. Lett., 29, 1693, https://doi.org/10.1029/2002GL015311, 2002.
Gupta, S. K., Whitlock, C. H., Ritchey, N. A., and Wilber, A. C.: An
algorithm for longwave surface radiation budget for total skies (Subsystem
4.6.3), Clouds and Earth's Radiant Energy System (CERES) ATBD, 21 pp., 1997.
Hamman, J., Nijssen, B., Brunke, M., Cassano, J., Craig, A., DuVivier, A.,
Hughes, M., Lettenmaier, D. P., Maslowski, W., Osinski, R., Roberts, A., and
Zeng, X.: Land surface climate in the Regional Arctic System Model, J.
Climate, 29, 6543–6562, https://doi.org/10.1175/JCLI-D-15-0415.1, 2016.
Hamman, J., Nijssen, B., Roberts, A., Craig, A., Maslowski, W., and Osinski,
R.: The Coastal Streamflow Flux in the Regional Arctic System Model, J.
Geophys. Res., 122, 1683–1701, https://doi.org/10.1002/2016JC012323, 2017.
Hartmann, D. L.: Global Physical Climatology, Academic Press, San Diego, Calif., 1994.
Hines, K. M. and Bromwich, D. H.: Development and testing of Polar WRF. Part
I: Greenland Ice Sheet meteorology, Mon. Weather Rev., 136, 1971–1989,
https://doi.org/10.1175/2007MWR2112.1, 2008.
Holland, M. M. and Bitz, C. M.: Polar amplification of climate change in
coupled models, Clim. Dynam., 21, 221–232, 2003.
Hong, S.-Y., Noh, Y., and Dudhia, J.: A new vertical diffusion package with
an explicit treatment of entrainment processes, Mon. Weather Rev., 134,
2318–2314, https://doi.org/10.1175/MWR3199.1, 2006.
Hunke, E. C., Hebert, D. A., and Lecomte, O.: Level-ice melt ponds in the
Los Alamos sea ice model, CICE, Ocean Model., 71, 26–42,
https://doi.org/10.1016/j.ocemod.2012.11.008, 2013.
Hunke, E. C., Lipscomb, W. H., Turner, A. K., Jeffery, N., and Elliott,
S.: CICE?: the Los Alamos Sea Ice Model Documentation and Software User's
Manual Version 5.1, Los Alamos National Lab., Los Alamos, N.M., LA-CC-06-012,
2015.
Johannessen, O. M., Bengtsson, L., Miles, M. W., Kuzmina, S. I., Semenov, V.
A., Alekseev, G. V., Nagurnyi, A. P., Zakharov, V. F., Bobylev, L. P.,
Pettersson, L. H., Hasselmann, K., and Cattle, H. P.: Arctic climate change:
observed and modelled temperature and sea-ice variability, Tellus, 56A,
328–341, 2004.
Jousse, A., Hall, A., Sun, F., and Teixeira, J.: Causes of WRF surface
energy fluxes biases in a stratocumulus region, Clim. Dynam., 46, 571–584,
https://doi.org/10.1007/s00382-015-2599-9, 2016.
Kain, J. S.: The Kain-Fritsch convective parameterization: an update,
J. Appl. Meteorol., 43, 170–181,
https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.C0;2, 2004.
Kato, S., Loeb, N. G., Rose, F. G., Doelling, D. R., Rutan, D. A.,
Caldwell, T. E., Yu, L., and Weller, R. A.: Surface irradiances consistent
with CERES-derived top-of-atmosphere shortwave and longwave irradiances, J.
Climate, 26, 2719–2740, https://doi.org/10.1175/JCLI-D-12-00436.1, 2013.
Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G.
Arblaster, J. M., Bates, S. C., Danabasoglu, G., Edwards, J., Holland, M.,
Kushner, P.: The Community Earth System Model (CESM) Large Ensemble Project:
A community resource for studying climate change in the presence of internal
climate variability, B. Am. Meterol. Soc., 96, 1333–1349,
https://doi.org/10.1175/BAMS-D-13-00255.1, 2015.
Kennedy, J. J., Rayner, N. A., Smith, R. O., Parker, D. E., and Saunby, M.:
Reassessing biases and other uncertainties in sea surface temperature
observations measured in situ since 1850: 1. Measurement and sampling
uncertainties, J. Geophys. Res., 116, D14103, https://doi.org/10.1029/2010JD015218,
2011a.
Kennedy, J. J., Rayner, N. A., Smith, R. O., Parker, D. E., and Saunby, M.:
Reassessing biases and other uncertainties in sea surface temperature
observations measured in situ since 1850: 2. Biases and homogenization, J.
Geophys. Res., 116, D14104, https://doi.org/10.1029/2010JD015220, 2011b.
Large, W. G. and Yeager, S. G.: The global climatology of an interannually
varying air-sea flux data set, Clim. Dynam., 33, 341–364,
https://doi.org/10.1007/s00382-008-0441-3, 2009.
Lawrence, D. M., Koven, C. D., Swenson, S. C., Riley, W. J., and Slater, A.
G.: Permafrost thaw and resulting soil moisture changes regulate projected
high-latitude CO2 and CH4 emissions, Environ. Res.
Lett., 10, 094011, https://doi.org/10.1088/1748-9326/10/9/094011, 2015.
Li, Z. and Kratz, D. P.: Estimate of shortwave surface radiation budget
from CERES (Subsystem 4.6.1), Clouds and Earth's Radiant Energy System
(CERES) ATBD, 18 pp., 1997.
Li, Z., Leighton, H. G., Masuda, K., and Takashima, T.: Estimation of SW
flux absorbed at the surface from TOA reflected flux, J. Climate, 6,
317–330, 1993.
Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: A simple
hydrologically based model of land surface water and energy fluxes for
general circulation models, J. Geophys. Res., 99, 14415–14428,
https://doi.org/10.1029/94JD00483, 1994.
Liang, X., Wood, E. F., and Lettenmaier, D. P.: Surface soil moisture
parameterization of the VIC-2L model: Evaluation and modification, Global
Planet. Change, 13, 195–206, 1996.
Lindsay, R., Wensnahan, M., Schweiger, A., and Zhang, J.: Evaluation of
seven different atmospheric reanalysis products in the Arctic, J. Climate,
27, 2588–2606, https://doi.org/10.1175/JCLI-D-13-00014.s1, 2014.
Lynch, A. H. and Cullather, R. I.: An investigation of boundary-forcing
sensitivities in a regional climate model, J. Geophys. Res., 105,
26603–26617, 2000.
Lynch, A. H., Chapman, W. L., Walsh, J. E., and Weller, G.: Development of a
regional climate model of the western Arctic, J. Climate, 8, 1555–1570,
1995.
Lynch, A. H., McGinnis, D. L., and Bailey, D. A.: Snow-albedo feedback and
the spring transition in a regional climate system model: Influence of land
surface model, J. Geophys. Res., 103, 29037–29049, 1998.
Lynch, A. H., Maslanik, J. A., and Wu, W.: Mechanisms in the development of
anomalous sea ice extent in the western Arctic: A case study, J. Geophys.
Res., 106, 28097–28105, 2001.
Maslowski, W., Kinney, J. C., Higgins, M., and Roberts, A.: The future of
Arctic sea ice, Annu. Rev. Earth Pl. Sc., 40, 625–654, 2012.
Maykut, G. A.: Energy exchange over young sea ice in the central Arctic,
J. Geophys. Res., 23, 3646–3658, 1978.
Maykut, G. A. and Untersteiner, N.: Some results from a time-dependent
thermodynamic model of sea ice, J. Geophys. Res., 76, 1550–1575, 1971.
Meier, W., Peng, G., Scott, D. J., and Savoie, M. H.: Verification of a new
NOAA/NSIDC passive microwave sea-ice concentration climate record, Polar
Res., 33, 21004, https://doi.org/10.3402/polar.v33.21004, 2014.
Meier, W., Fetterer, F., Savoie, M., Mallory, S., Duerr, R., and Stroeve, J.:
NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration,
Version 3, National Snow and Ice Data Center, https://doi.org/10.7265/N59P2ZTG, 2017.
Militzer, J. M., Michaelis, M. C., Semmer, S. R., Norris, K. S., Horst, T.
W., Oncley, S. P., Delany, A. C., and Brock, F. V.: Development of the
prototype PAM III/Flux-PAM surface meteorological station, paper presented
at 9th Symposium on Meteorological Observations and Instrumentation, American
Meteorological Society, Charlotte, N.C., 1995.
Moritz, R. E., Bitz, C. M., and Steig, E. J.: Dynamics of recent climate
change in the Arctic, Science, 297, 1497–1502, 2002.
Morrison, H., Thompson, G., and Tatarskii, V.: Impact of cloud microphysics
on the development of trailing stratiform precipitation in a simulated squall
line: Comparison of one- and two-moment schemes, Mon. Weather Rev., 137,
991–1007, https://doi.org/10.1175/2008MWR2556.1, 2009.
Nakanishi, M. and Niino, H.: An improved Mellor-Yamada level-3 model: Its
numerical stability and application to a regional prediction of advection
fog, Bound.-Lay. Meteorol., 119, 397–407, https://doi.org/10.1007/s10546-005-9030-8,
2006.
New, M., Lister, D., Hulme, M., and Makin, I.: A high-resolution data set of
surface climate over global land areas, Clim. Res., 21, 1–25,
https://doi.org/10.3354/cr021001, 2002.
Osborn, T. J. and Jones, P. D.: The CRUTEM4 land-surface air temperature data
set: construction, previous versions and dissemination via Google Earth,
Earth Syst. Sci. Data, 6, 61–68, https://doi.org/10.5194/essd-6-61-2014,
2014.
Peng, G., Meier, W. N., Scott, D. J., and Savoie, M. H.: A long-term and
reproducible passive microwave sea ice concentration data record for climate
studies and monitoring, Earth Syst. Sci. Data, 5, 311–318,
https://doi.org/10.5194/essd-5-311-2013, 2013.
Persson, P. O. G., Fairall, C. W., Andreas, E. L, Guest, P. S., and
Perovich, D. K.: Measurements near the Atmospheric Surface Flux Group tower
at SHEBA: Near-surface conditions and surface energy budget, J. Geophys.
Res., 107, 8045, https://doi.org/10.1029/2000JC000705, 2002.
Porter, D. F., Cassano, J. J., and Serreze, M. C.: Analysis of the Arctic
atmospheric energy budget in WRF: A comparison with reanalyses and satellite
observations, J. Geophys. Res., 116, D22108, https://doi.org/10.1029/2011JD016622,
2011.
Reeves Eyre, J. E. J. and Zeng, X.: Evaluation of Greenland near surface air
temperature datasets, The Cryosphere, 11, 1591–1605,
https://doi.org/10.5194/tc-11-1591-2017, 2017.
Rinke, A., Gerdes, R., Dethloff, K., Kandlbinder, T., Karcher, M., Kauker,
F., Frickenhaus, S., Köberle, C., and Hiller, W.: A case sudy of the
anomalous Arctic sea ice conditions during 1990: Insights from coupled and
uncoupled regional climate model simulations, J. Geophys. Res., 108, 4275,
https://doi.org/10.1029/2002JD003146, 2003.
Roberts, A., Cassano, J., Döscher, Hinzman, L., Holland, M., Mitsudera,
H., Sumi, A., Walsh, J. E., Alessa, L., Alexeev, V., Arendt, A., Altaweel,
M., Bhatt, U., Cherry, J., Deal, C., Elliot, S., Follows, M., Hock, R.,
Kliskey, A., Lantuit, H., Lawrence, D., Maslowski, W., McGuire, A. D.,
Overduin, P. P., Overeem, I., Proshutinsky, A., Romanovsky, V., Sushama, L.,
and Truffer, M.: A science plan for regional Arctic system modeling: A report
by the Arctic research community for the National Science Foundation Office
of Polar Programs, International Arctic Res. Center, Fairbanks, AK,
International Arctic Research Center Technical Paper 10-0001,
https://doi.org/10.13140/2.1.1828.9441, 2010.
Roberts, A., Craig, A., Maslowski, W., Osinski, R., DuVivier, A., Hughes, M.,
Nijssen, B., and Brunke, M.: Simulating transient ice-ocean Ekman transport
in the Regional Arctic System Model and Community Earth System Model, Ann.
Glaciol., 56, 211–228, 2015.
Roberts, A. F., Cherry, J., Döscher, R., Elliott, S., and Sushama, L.:
Exploring the Potential for Arctic System Modeling, B. Am. Meteorol. Soc.,
92, 203–206, https://doi.org/10.1175/2010bams2959.1, 2011.
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng,
C.-J., Aresenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin,
J. K., Walker, J. P., Lohmann, D., and Toll, D.: The Global Land Data
Assimilation System, B. Am. Meteorol. Soc., 85, 381–394,
https://doi.org/10.1175/BAMS-85-3-381, 2004.
Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P.,
Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R.,
Gayno, G., Wang, J., Hou, Y.-T., Chuang, H.-Y., Juang, H.-M. J., Sela, J.,
Iredell, M., Treadon, R., Kleist, D., Van Delst, P., Keyser, D., Derber, J.,
Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., van den Dool, H., Kumar, A.,
Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.-K.,
Ebisuzaki, W., Lin, R., Xie, P., Chen, M, Zhou, S., Higgins, W., Zou, C.-Z.,
Liu, Q., Chen,Y., Han, Y., and Cucuruul, L.: The NCEP Climate Forecast System
reanalysis, B. Am. Meteorol. Soc., 91, 1015–1057, 2010.
Schuur, E. A. G., McGuire, A. D., Schadel, C., Grosse, G., Harden, J. W.,
Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M., Natali,
S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M. R., Treat,
C. C., and Vonk, J. E.: Climate change and the permafrost carbon feedback,
Nature, 520, 171–179, https://doi.org/10.1038/nature14338, 2015.
Screen, J. A. and Simmonds, I.: The central role of diminishing sea ice in
recent Arctic temperature amplification, Nature, 464, 1334–1337,
https://doi.org/10.1038/nature09051, 2010.
Serreze, M. C. and Francis, J. A.: The Arctic amplification debate, Climatic
Change, 76, 241–264, https://doi.org/10.1007/s10584-005-9017-y, 2006.
Serreze, M. C., Barrett, A. P. and Lo, F.: Northern high-latitude
precipitation by atmospheric reanalyses and satellite retrievals, Mon.
Weather Rev., 133, 3407–3430, 2005.
Serreze, M. C., Holland, M. H., and Stroeve, J.: Perspectives on the
Arctic's shrinking sea-ice cover, Science, 315, 1533–1536, 2007.
Serreze, M. C., Barrett, A. P., Stroeve, J. C., Kindig, D. N., and Holland,
M. M.: The emergence of surface-based Arctic amplification, The Cryosphere,
3, 11–19, https://doi.org/10.5194/tc-3-11-2009, 2009.
Sheffield, J., Goteti, G., and Wood, E. F.: Development of a 50-year
high-resolution global dataset of meteorological forcings for land surface
modeling, J. Climate, 19, 3088–3111, https://doi.org/10.1175/jcli3790.1, 2006.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda,
M. G., Huang, X.-Y., Wang, W., and Powers, J. G.: A description of the
Advanced Research WRF version 3, National Center for Atmos. Res., Boulder,
Colo., NCAR Tech. Note NCAR/TN-457+STR, 113 pp., https://doi.org/10.5065/D68S4MVH,
2008.
Smith, R., Jones, P., Briegleb, B., Bryan, F., Danabasoglu, G., Dennis, J.,
Dukowicz, J., Eden, C., Fox-Kemper, B., Gent, P., Hecht, M., Jayne, S.,
Jochum, M., Large, W., Lindsay, K., Maltrud, M., Norton, N., Peacock, S.,
Vertenstein, M., and Yeager, S.: The Parallel Ocean Program (POP) Reference
Manual Ocean Component of the Community Climate System Model (CCSM) and
Community Earth System Model (CESM), Los Alamos National Lab., Los Alamos,
N.M., Rep. LAUR-10-01853, 2010.
Smith, R. D., Dukowicz, J. K., and Malone, R. C.: Parallel ocean circulation
modeling, Physica D, 60, 38–61, https://doi.org/10.1016/0167-2789(92)90225-C, 1992.
Steffen, K. and Box, J.: Surface climatology of the Greenland ice sheet:
Greenland Climate Network 1995–1999, J. Geophys. Res., 106, 33951–33964,
2001.
Stroeve, J., Holland, M. M., Meier, W., Scambos, T., and Serreze, M.: Arctic
sea ice decline: Faster than forecast, Geophysical Research Letters, 34, L09501,
https://doi.org/10.1029/2007GL029703, 2007.
Stroeve, J., Serreze, M. C., Holland, M. M., Kay, J. E., Malanik, J., and
Barrett, A. P.: The Arctic's rapidly shrinking sea ice cover: a research
synthesis, Climatic Change, 110, 1105–1027, https://doi.org/10.1007/s10584-011-0101-1,
2012.
Sturm, M., Holmgren, J., and Perovich, D. K.: Spatial variation in the
winter heat flux at SHEBA: estimates from snow-ice interface temperatures,
Ann. Glaciol., 33, 213–220, 2001.
Swart, N. C., Fyfe, J. C., Hawkins, E., Kay, J. E., and Jahn, A.: Influence
of internal variability on Arctic sea-ice trends, Nat. Clim. Change, 5,
86–89, 2015.
Tsamados, M., Feltham, D. L., and Wilchinsky, A. V.: Increased Arctic sea
ice volume after anomalously low melting in 2013, Nat. Geosci., 8,
643–646, https://doi.org/10.1038/ngeo2489, 2013.
Turner, A. K. and Hunke, E. C.: Impacts of a mushy-layer thermodynamic
approach in global sea-ice simulations using the CICE sea-ice model,
J. Geophys. Res.-Oceans, 120, 1253–1275, https://doi.org/10.1002/2014JC010358, 2015.
Uttal, T., Curry, J. A., McPhee, M. G., Perovich, D. K., Moritz, R. E.,
Maslanik, J. A., Guest, P. S., Stern, H. L., Moore, J. A., Turenne, R.,
Heiberg, A., Serreze, M. C., Wylie, D. P., Persson, O. G., Paulson, C. A.,
Halle, C., Morison, J. H., Wheeler, P. A., Makshtas, A., Welch, H., Shupe, M.
D., Intrieri, J. M., Stamnes, K., Lindsey, R. W., Pinkel, R., Pegau, W. S.,
Stanton, T. P., and Grenfeld, T. C.: Surface Heat Budget of the Arctic Ocean,
B. Am. Meteorol. Soc., 83, 255–275, 2002.
Vavrus, S.: The impact of cloud feedbacks on Arctic climate under Greenhouse
forcing, J. Climate, 17, 603–615,
https://doi.org/10.1175/1520-0442(2004)017<0603:TIOCFO>2.0.CO;2, 2004.
Wang, A. and Zeng, X.: Development of global hourly 0.5∘ land
surface air temperature datasets, J. Climate, 26, 7676–7691,
https://doi.org/10.1175/JCLI-D-12-00682.1, 2013.
Wang, A. and Zeng, X.: Range of monthly mean hourly land surface air
temperature diurnal cycle over high northern latitudes, J. Geophys. Res.,
119, 5836–5844, https://doi.org/10.1002/2014JD021602, 2014.
Xie, P. P. and Arkin, P. A.: Global precipitation: A 17-year monthly
analysis based on gauge observations, satellite estimates, and numerical
model outputs, B. Am. Meteorol. Soc., 78, 2539–2558, 1997.
Zhang, X.: Sensitivity of arctic summer sea ice coverage to global warming
forcing: towards reducing uncertainty in arctic climate change projections,
Tellus, 62A, 220–227, 2010.
Zhang, X. and Walsh, J. E.: Toward a seasonally ice-covered Arctic Ocean:
scenarios from the IPCC AR4 model simulations, J. Climate, 19, 1730–1747,
2006.
Zhou, C. and Wang, K.: Evaluation of surface fluxes in ERA-Interim using flux
tower data, J. Climate, 29, 1573–1582, https://doi.org/10.1175/JCLI-D-15-0523.1,
2016.
Short summary
The Regional Arctic System Model version 1 (RASM1) was recently developed for high-resolution simulation of the coupled atmosphere–ocean–sea ice–land system in the Arctic. Its simulation of the atmosphere–land–ocean–sea ice interface is evaluated by using the spread in recent reanalyses and a global Earth system model as baselines. Such comparisons reveal that RASM1 simulates precipitation well and improves the simulation of surface fluxes over sea ice.
The Regional Arctic System Model version 1 (RASM1) was recently developed for high-resolution...