Articles | Volume 11, issue 9
https://doi.org/10.5194/gmd-11-3883-2018
https://doi.org/10.5194/gmd-11-3883-2018
Development and technical paper
 | 
27 Sep 2018
Development and technical paper |  | 27 Sep 2018

LCice 1.0 – a generalized Ice Sheet System Model coupler for LOVECLIM version 1.3: description, sensitivities, and validation with the Glacial Systems Model (GSM version D2017.aug17)

Taimaz Bahadory and Lev Tarasov

Related authors

A history-matching analysis of the Antarctic Ice Sheet since the Last Interglacial – Part 1: Ice sheet evolution
Benoit S. Lecavalier and Lev Tarasov
The Cryosphere, 19, 919–953, https://doi.org/10.5194/tc-19-919-2025,https://doi.org/10.5194/tc-19-919-2025, 2025
Short summary
A comparison of the last two glacial inceptions (MIS 7/5) via fully coupled transient ice and climate modeling
Marilena Sophie Geng, Lev Tarasov, and April Sue Dalton
EGUsphere, https://doi.org/10.5194/egusphere-2025-495,https://doi.org/10.5194/egusphere-2025-495, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
The glacial systems model (GSM) Version 24G
Lev Tarasov, Benoit S. Lecavalier, Kevin Hank, and David Pollard
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-175,https://doi.org/10.5194/gmd-2024-175, 2025
Preprint under review for GMD
Short summary
A history-matching analysis of the Antarctic Ice Sheet since the last interglacial – Part 2: Glacial isostatic adjustment
Benoit S. Lecavalier and Lev Tarasov
EGUsphere, https://doi.org/10.5194/egusphere-2024-3268,https://doi.org/10.5194/egusphere-2024-3268, 2024
Short summary
A fast surrogate model for 3D Earth glacial isostatic adjustment using Tensorflow (v2.8.0) artificial neural networks
Ryan Love, Glenn A. Milne, Parviz Ajourlou, Soran Parang, Lev Tarasov, and Konstantin Latychev
Geosci. Model Dev., 17, 8535–8551, https://doi.org/10.5194/gmd-17-8535-2024,https://doi.org/10.5194/gmd-17-8535-2024, 2024
Short summary

Related subject area

Climate and Earth system modeling
From weather data to river runoff: using spatiotemporal convolutional networks for discharge forecasting
Florian Börgel, Sven Karsten, Karoline Rummel, and Ulf Gräwe
Geosci. Model Dev., 18, 2005–2019, https://doi.org/10.5194/gmd-18-2005-2025,https://doi.org/10.5194/gmd-18-2005-2025, 2025
Short summary
A Fortran–Python interface for integrating machine learning parameterization into earth system models
Tao Zhang, Cyril Morcrette, Meng Zhang, Wuyin Lin, Shaocheng Xie, Ye Liu, Kwinten Van Weverberg, and Joana Rodrigues
Geosci. Model Dev., 18, 1917–1928, https://doi.org/10.5194/gmd-18-1917-2025,https://doi.org/10.5194/gmd-18-1917-2025, 2025
Short summary
A rapid-application emissions-to-impacts tool for scenario assessment: Probabilistic Regional Impacts from Model patterns and Emissions (PRIME)
Camilla Mathison, Eleanor J. Burke, Gregory Munday, Chris D. Jones, Chris J. Smith, Norman J. Steinert, Andy J. Wiltshire, Chris Huntingford, Eszter Kovacs, Laila K. Gohar, Rebecca M. Varney, and Douglas McNeall
Geosci. Model Dev., 18, 1785–1808, https://doi.org/10.5194/gmd-18-1785-2025,https://doi.org/10.5194/gmd-18-1785-2025, 2025
Short summary
The DOE E3SM version 2.1: overview and assessment of the impacts of parameterized ocean submesoscales
Katherine M. Smith, Alice M. Barthel, LeAnn M. Conlon, Luke P. Van Roekel, Anthony Bartoletti, Jean-Christophe Golaz, Chengzhu Zhang, Carolyn Branecky Begeman, James J. Benedict, Gautam Bisht, Yan Feng, Walter Hannah, Bryce E. Harrop, Nicole Jeffery, Wuyin Lin, Po-Lun Ma, Mathew E. Maltrud, Mark R. Petersen, Balwinder Singh, Qi Tang, Teklu Tesfa, Jonathan D. Wolfe, Shaocheng Xie, Xue Zheng, Karthik Balaguru, Oluwayemi Garuba, Peter Gleckler, Aixue Hu, Jiwoo Lee, Ben Moore-Maley, and Ana C. Ordoñez
Geosci. Model Dev., 18, 1613–1633, https://doi.org/10.5194/gmd-18-1613-2025,https://doi.org/10.5194/gmd-18-1613-2025, 2025
Short summary
WRF-ELM v1.0: a regional climate model to study land–atmosphere interactions over heterogeneous land use regions
Huilin Huang, Yun Qian, Gautam Bisht, Jiali Wang, Tirthankar Chakraborty, Dalei Hao, Jianfeng Li, Travis Thurber, Balwinder Singh, Zhao Yang, Ye Liu, Pengfei Xue, William J. Sacks, Ethan Coon, and Robert Hetland
Geosci. Model Dev., 18, 1427–1443, https://doi.org/10.5194/gmd-18-1427-2025,https://doi.org/10.5194/gmd-18-1427-2025, 2025
Short summary

Cited articles

Arnold, N. S., Rees, W. G., Hodson, A. J., and Kohler, J.: Topographic controls on the surface energy balance of a high Arctic valley glacier, J. Geophys. Res.-Earth Surf., 111, F02011, https://doi.org/10.1029/2005JF000426, 2006. a, b
Bahadory, T. and Tarasov, L.: LCice 1.0: A generalized Ice Sheet Systems Model coupler for LOVECLIM version 1.3, Zenodo, available at: http://doi.org/10.5281/zenodo.1409282, last access: 21 September 2018. 
Balmaseda, M. A., Vidard, A., and Anderson, D. L. T.: The ECMWF Ocean Analysis System: ORA-S3, Mon. Weather Rev., 136, 3018–3034, https://doi.org/10.1175/2008MWR2433.1, 2008. a, b
Bassford, R., Siegert, M., and Dowdeswell, J.: Quantifying the mass balance of ice caps on Severnaya Zemlya, Russian High Arctic. II: Modeling the flow of the Vavilov Ice Cap under the present climate, Arct. Antarct. Alpine Res., 38, 13–20, 2006a. a
Bassford, R., Siegert, M., Dowdeswell, J., Oerlemans, J., Glazovsky, A., and Macheret, Y.: Quantifying the mass balance of ice caps on Severnaya Zemlya, Russian High Arctic. I: Climate and mass balance of the Vavilov Ice Cap, Arct. Antarct. Alpine Res., 38, 1–12, 2006b. a
Download
Short summary
We describe a new coupling between the Glacial Systems Model and the LOVECLIM intermediate complexity climate model. The coupling is distinguished from that of previous studies by greater completeness and accuracy, with the intent of capturing the major feedbacks between ice sheets and climate on glacial cycle timescales. The fully coupled model will be used to examine the ice/climate phase space of past glacial cycles.
Share