Articles | Volume 11, issue 9
https://doi.org/10.5194/gmd-11-3587-2018
https://doi.org/10.5194/gmd-11-3587-2018
Model description paper
 | 
03 Sep 2018
Model description paper |  | 03 Sep 2018

FAME (v1.0): a simple module to simulate the effect of planktonic foraminifer species-specific habitat on their oxygen isotopic content

Didier M. Roche, Claire Waelbroeck, Brett Metcalfe, and Thibaut Caley

Related authors

Simulations of the Holocene climate in Europe using an interactive downscaling within the iLOVECLIM model (version 1.1)
Frank Arthur, Didier M. Roche, Ralph Fyfe, Aurélien Quiquet, and Hans Renssen
Clim. Past, 19, 87–106, https://doi.org/10.5194/cp-19-87-2023,https://doi.org/10.5194/cp-19-87-2023, 2023
Short summary
Internal climate variability and spatial temperature correlations during the past 2000 years
Pepijn Bakker, Hugues Goosse, and Didier M. Roche
Clim. Past, 18, 2523–2544, https://doi.org/10.5194/cp-18-2523-2022,https://doi.org/10.5194/cp-18-2523-2022, 2022
Short summary
Deglacial climate changes as forced by ice sheet reconstructions
Nathaelle Bouttes, Fanny Lhardy, Aurelien Quiquet, Didier Paillard, Hugues Goosse, and Didier M. Roche
EGUsphere, https://doi.org/10.5194/egusphere-2022-993,https://doi.org/10.5194/egusphere-2022-993, 2022
Short summary
Comparison of the green-to-desert Sahara transitions between the Holocene and the last interglacial
Huan Li, Hans Renssen, and Didier M. Roche
Clim. Past, 18, 2303–2319, https://doi.org/10.5194/cp-18-2303-2022,https://doi.org/10.5194/cp-18-2303-2022, 2022
Short summary
Climate and ice sheet evolutions from the last glacial maximum to the pre-industrial period with an ice-sheet–climate coupled model
Aurélien Quiquet, Didier M. Roche, Christophe Dumas, Nathaëlle Bouttes, and Fanny Lhardy
Clim. Past, 17, 2179–2199, https://doi.org/10.5194/cp-17-2179-2021,https://doi.org/10.5194/cp-17-2179-2021, 2021
Short summary

Related subject area

Climate and Earth system modeling
UKESM1.1: development and evaluation of an updated configuration of the UK Earth System Model
Jane P. Mulcahy, Colin G. Jones, Steven T. Rumbold, Till Kuhlbrodt, Andrea J. Dittus, Edward W. Blockley, Andrew Yool, Jeremy Walton, Catherine Hardacre, Timothy Andrews, Alejandro Bodas-Salcedo, Marc Stringer, Lee de Mora, Phil Harris, Richard Hill, Doug Kelley, Eddy Robertson, and Yongming Tang
Geosci. Model Dev., 16, 1569–1600, https://doi.org/10.5194/gmd-16-1569-2023,https://doi.org/10.5194/gmd-16-1569-2023, 2023
Short summary
Porting the WAVEWATCH III (v6.07) wave action source terms to GPU
Olawale James Ikuyajolu, Luke Van Roekel, Steven R. Brus, Erin E. Thomas, Yi Deng, and Sarat Sreepathi
Geosci. Model Dev., 16, 1445–1458, https://doi.org/10.5194/gmd-16-1445-2023,https://doi.org/10.5194/gmd-16-1445-2023, 2023
Short summary
Yeti 1.0: a generalized framework for constructing bottom-up emission inventories from traffic sources at road-link resolutions
Edward C. Chan, Joana Leitão, Andreas Kerschbaumer, and Timothy M. Butler
Geosci. Model Dev., 16, 1427–1444, https://doi.org/10.5194/gmd-16-1427-2023,https://doi.org/10.5194/gmd-16-1427-2023, 2023
Short summary
Analysis of systematic biases in tropospheric hydrostatic delay models and construction of a correction model
Haopeng Fan, Siran Li, Zhongmiao Sun, Guorui Xiao, Xinxing Li, and Xiaogang Liu
Geosci. Model Dev., 16, 1345–1358, https://doi.org/10.5194/gmd-16-1345-2023,https://doi.org/10.5194/gmd-16-1345-2023, 2023
Short summary
A new precipitation emulator (PREMU v1.0) for lower-complexity models
Gang Liu, Shushi Peng, Chris Huntingford, and Yi Xi
Geosci. Model Dev., 16, 1277–1296, https://doi.org/10.5194/gmd-16-1277-2023,https://doi.org/10.5194/gmd-16-1277-2023, 2023
Short summary

Cited articles

Anand, P., Elderfield, H., and Conte, M. H.: Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series, Paleoceanography, 18, 1–16, https://doi.org/10.1029/2002PA000846, 2003. a, b
Bauch, D., Carstens, J., and Wefer, G.: Oxygen isotope composition of living Neogloboquadrina pachyderma (sin.) in the Arctic Ocean, Earth Planet. Sci. Lett., 146, 47–58, https://doi.org/10.1016/S0012-821X(96)00211-7, 1997. a, b
Bauch, D., Erlenkeuser, H., Winckler, G., Pavlova, G., and Thiede, J.: Carbon isotopes and habitat of polar planktic foraminifera in the Okhotsk Sea: the ‘carbonate ion effect’ under natural conditions, Marine Micropaleontology, 45, 83–99, https://doi.org/10.1016/S0377-8398(02)00038-5, 2002. a, b
Bé, A. W. H. and Tolderlund, D. S.: Distribution and ecology of living planktonic foraminifera in surface waters of the Atlantic and Indian Oceans, in: The Micropaleontology of Oceans, edited by: Funnel, B. M. and Riedel, W. R., 105–149, Cambridge University Press, Cambridge, United Kingdom, 1971. a
Bemis, B. E., Spero, H. J., Bijma, J., and Lea, D. W.: Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised paleotemperature equations, Paleoceanography, 13, 150–160, https://doi.org/10.1029/98PA00070, 1998. a
Download
Short summary
The oxygen-18 signal recorded in fossil planktonic foraminifers has been used for over 50 years in many geoscience applications. However, different planktonic foraminifer species from the same sediment core generally yield distinct oxygen-18 signals, as a consequence of their specific living habitat in the water column and along the year. To explicitly take into account this variability for five common planktonic species, we developed the portable module FAME (Foraminifers As Modeled Entities).