Articles | Volume 11, issue 8
https://doi.org/10.5194/gmd-11-3299-2018
https://doi.org/10.5194/gmd-11-3299-2018
Model description paper
 | 
16 Aug 2018
Model description paper |  | 16 Aug 2018

Veros v0.1 – a fast and versatile ocean simulator in pure Python

Dion Häfner, René Løwe Jacobsen, Carsten Eden, Mads R. B. Kristensen, Markus Jochum, Roman Nuterman, and Brian Vinter

Related authors

Sensitivity of the tropical Atlantic to vertical mixing in two ocean models (ICON-O v2.6.6 and FESOM v2.5)
Swantje Bastin, Aleksei Koldunov, Florian Schütte, Oliver Gutjahr, Marta Agnieszka Mrozowska, Tim Fischer, Radomyra Shevchenko, Arjun Kumar, Nikolay Koldunov, Helmuth Haak, Nils Brüggemann, Rebecca Hummels, Mia Sophie Specht, Johann Jungclaus, Sergey Danilov, Marcus Dengler, and Markus Jochum
EGUsphere, https://doi.org/10.5194/egusphere-2024-2281,https://doi.org/10.5194/egusphere-2024-2281, 2024
Short summary
Transient Attracting Profiles in the Great Pacific Garbage Patch
Luca Kunz, Alexa Griesel, Carsten Eden, Rodrigo Duran, and Bruno Sainte-Rose
EGUsphere, https://doi.org/10.5194/egusphere-2024-1215,https://doi.org/10.5194/egusphere-2024-1215, 2024
Short summary
Downscaling system for modeling of atmospheric composition on regional, urban and street scales
Roman Nuterman, Alexander Mahura, Alexander Baklanov, Bjarne Amstrup, and Ashraf Zakey
Atmos. Chem. Phys., 21, 11099–11112, https://doi.org/10.5194/acp-21-11099-2021,https://doi.org/10.5194/acp-21-11099-2021, 2021
Short summary
Enviro-HIRLAM online integrated meteorology–chemistry modelling system: strategy, methodology, developments and applications (v7.2)
Alexander Baklanov, Ulrik Smith Korsholm, Roman Nuterman, Alexander Mahura, Kristian Pagh Nielsen, Bent Hansen Sass, Alix Rasmussen, Ashraf Zakey, Eigil Kaas, Alexander Kurganskiy, Brian Sørensen, and Iratxe González-Aparicio
Geosci. Model Dev., 10, 2971–2999, https://doi.org/10.5194/gmd-10-2971-2017,https://doi.org/10.5194/gmd-10-2971-2017, 2017
Short summary

Related subject area

Oceanography
An optimal transformation method for inferring ocean tracer sources and sinks
Jan D. Zika and Taimoor Sohail
Geosci. Model Dev., 17, 8049–8068, https://doi.org/10.5194/gmd-17-8049-2024,https://doi.org/10.5194/gmd-17-8049-2024, 2024
Short summary
PPCon 1.0: Biogeochemical-Argo profile prediction with 1D convolutional networks
Gloria Pietropolli, Luca Manzoni, and Gianpiero Cossarini
Geosci. Model Dev., 17, 7347–7364, https://doi.org/10.5194/gmd-17-7347-2024,https://doi.org/10.5194/gmd-17-7347-2024, 2024
Short summary
Experimental design for the Marine Ice Sheet–Ocean Model Intercomparison Project – phase 2 (MISOMIP2)
Jan De Rydt, Nicolas C. Jourdain, Yoshihiro Nakayama, Mathias van Caspel, Ralph Timmermann, Pierre Mathiot, Xylar S. Asay-Davis, Hélène Seroussi, Pierre Dutrieux, Ben Galton-Fenzi, David Holland, and Ronja Reese
Geosci. Model Dev., 17, 7105–7139, https://doi.org/10.5194/gmd-17-7105-2024,https://doi.org/10.5194/gmd-17-7105-2024, 2024
Short summary
Development of a total variation diminishing (TVD) sea ice transport scheme and its application in an ocean (SCHISM v5.11) and sea ice (Icepack v1.3.4) coupled model on unstructured grids
Qian Wang, Yang Zhang, Fei Chai, Y. Joseph Zhang, and Lorenzo Zampieri
Geosci. Model Dev., 17, 7067–7081, https://doi.org/10.5194/gmd-17-7067-2024,https://doi.org/10.5194/gmd-17-7067-2024, 2024
Short summary
Spurious numerical mixing under strong tidal forcing: a case study in the south-east Asian seas using the Symphonie model (v3.1.2)
Adrien Garinet, Marine Herrmann, Patrick Marsaleix, and Juliette Pénicaud
Geosci. Model Dev., 17, 6967–6986, https://doi.org/10.5194/gmd-17-6967-2024,https://doi.org/10.5194/gmd-17-6967-2024, 2024
Short summary

Cited articles

Amante, C. and Eakins, B. W.: ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis, US Department of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service, National Geophysical Data Center, Marine Geology and Geophysics Division Colorado, 2009. a
Anderson, E., Bai, Z., Bischof, C., Blackford, L. S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., and Sorensen, D.: LAPACK Users' guide, SIAM, https://doi.org/10.1137/1.9780898719604, 1999. a
Arakawa, A. and Lamb, V. R.: Computational design of the basic dynamical processes of the UCLA general circulation model, Methods in Computational Physics, 17, 173–265, 1977. a, b
Balay, S., Gropp, W. D., McInnes, L. C., and Smith, B. F.: Efficient Management of Parallelism in Object Oriented Numerical Software Libraries, in: Modern Software Tools in Scientific Computing, edited by: Arge, E., Bruaset, A. M., and Langtangen, H. P., 163–202, Birkhäuser Press, 1997. a, b
Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D., and Smith, K.: Cython: The Best of Both Worlds, Comput. Sci. Eng., 13, 31–39, https://doi.org/10.1109/MCSE.2010.118, 2011. a
Download
Short summary
Well-performing, easy-to-use ocean models are a central ingredient to further the understanding of our Earth and climate. Veros, the versatile ocean simulator, is the first full-blown ocean model entirely written in the high-level programming language Python. It is considerably more approachable than traditional Fortran models and leverages modern best practices; at the same time, thanks to the Bohrium framework, Veros is about half as fast as a reference implementation in Fortran 90.