Articles | Volume 11, issue 8
https://doi.org/10.5194/gmd-11-3131-2018
https://doi.org/10.5194/gmd-11-3131-2018
Methods for assessment of models
 | 
03 Aug 2018
Methods for assessment of models |  | 03 Aug 2018

Fast sensitivity analysis methods for computationally expensive models with multi-dimensional output

Edmund Ryan, Oliver Wild, Apostolos Voulgarakis, and Lindsay Lee

Related authors

Modeling soil CO2 production and transport with dynamic source and diffusion terms: testing the steady-state assumption using DETECT v1.0
Edmund M. Ryan, Kiona Ogle, Heather Kropp, Kimberly E. Samuels-Crow, Yolima Carrillo, and Elise Pendall
Geosci. Model Dev., 11, 1909–1928, https://doi.org/10.5194/gmd-11-1909-2018,https://doi.org/10.5194/gmd-11-1909-2018, 2018
Short summary

Related subject area

Climate and Earth system modeling
The ensemble consistency test: from CESM to MPAS and beyond
Teo Price-Broncucia, Allison Baker, Dorit Hammerling, Michael Duda, and Rebecca Morrison
Geosci. Model Dev., 18, 2349–2372, https://doi.org/10.5194/gmd-18-2349-2025,https://doi.org/10.5194/gmd-18-2349-2025, 2025
Short summary
Presentation, calibration and testing of the DCESS II Earth system model of intermediate complexity (version 1.0)
Esteban Fernández Villanueva and Gary Shaffer
Geosci. Model Dev., 18, 2161–2192, https://doi.org/10.5194/gmd-18-2161-2025,https://doi.org/10.5194/gmd-18-2161-2025, 2025
Short summary
Synthesizing global carbon–nitrogen coupling effects – the MAGICC coupled carbon–nitrogen cycle model v1.0
Gang Tang, Zebedee Nicholls, Alexander Norton, Sönke Zaehle, and Malte Meinshausen
Geosci. Model Dev., 18, 2193–2230, https://doi.org/10.5194/gmd-18-2193-2025,https://doi.org/10.5194/gmd-18-2193-2025, 2025
Short summary
Historical trends and controlling factors of isoprene emissions in CMIP6 Earth system models
Ngoc Thi Nhu Do, Kengo Sudo, Akihiko Ito, Louisa K. Emmons, Vaishali Naik, Kostas Tsigaridis, Øyvind Seland, Gerd A. Folberth, and Douglas I. Kelley
Geosci. Model Dev., 18, 2079–2109, https://doi.org/10.5194/gmd-18-2079-2025,https://doi.org/10.5194/gmd-18-2079-2025, 2025
Short summary
Investigating carbon and nitrogen conservation in reported CMIP6 Earth system model data
Gang Tang, Zebedee Nicholls, Chris Jones, Thomas Gasser, Alexander Norton, Tilo Ziehn, Alejandro Romero-Prieto, and Malte Meinshausen
Geosci. Model Dev., 18, 2111–2136, https://doi.org/10.5194/gmd-18-2111-2025,https://doi.org/10.5194/gmd-18-2111-2025, 2025
Short summary

Cited articles

Ahtikoski, A., Heikkilä, J., Alenius, V., and Siren, M.: Economic viability of utilizing biomass energy from young stands – the case of Finland, Biomass Bioenerg., 32, 988–996, 2008. 
Ba, S., Myers, W. R., and Brenneman, W. A.: Optimal sliced Latin hypercube designs, Technometrics, 57, 479–487, 2015. 
Bailis, R., Ezzati, M., and Kammen, D. M.: Mortality and greenhouse gas impacts of biomass and petroleum energy futures in Africa, Science, 308, 98–103, 2005. 
Bastos, L. S. and O'Hagan, A.: Diagnostics for Gaussian process emulators, Technometrics, 51, 425–438, 2009. 
Campbell, J. E., Carmichael, G. R., Chai, T., Mena-Carrasco, M., Tang, Y., Blake, D., Blake, N., Vay, S. A., Collatz, G. J., and Baker, I.: Photosynthetic control of atmospheric carbonyl sulfide during the growing season, Science, 322, 1085–1088, 2008. 
Download
Short summary
Global sensitivity analysis (GSA) identifies which parameters of a model most affect its output. We performed GSA using statistical emulators as surrogates of two slow-running atmospheric chemistry transport models. Due to the high dimension of the model outputs, we considered two alternative methods: one that reduced the output dimension and one that did not require an emulator. The alternative methods accurately performed the GSA but were significantly faster than the emulator-only method.
Share