Articles | Volume 10, issue 2
https://doi.org/10.5194/gmd-10-977-2017
https://doi.org/10.5194/gmd-10-977-2017
Development and technical paper
 | 
27 Feb 2017
Development and technical paper |  | 27 Feb 2017

On the numerical stability of surface–atmosphere coupling in weather and climate models

Anton Beljaars, Emanuel Dutra, Gianpaolo Balsamo, and Florian Lemarié

Related authors

A biogenic CO2 flux adjustment scheme for the mitigation of large-scale biases in global atmospheric CO2 analyses and forecasts
Anna Agustí-Panareda, Sébastien Massart, Frédéric Chevallier, Gianpaolo Balsamo, Souhail Boussetta, Emanuel Dutra, and Anton Beljaars
Atmos. Chem. Phys., 16, 10399–10418, https://doi.org/10.5194/acp-16-10399-2016,https://doi.org/10.5194/acp-16-10399-2016, 2016
Short summary
Tropospheric chemistry in the Integrated Forecasting System of ECMWF
J. Flemming, V. Huijnen, J. Arteta, P. Bechtold, A. Beljaars, A.-M. Blechschmidt, M. Diamantakis, R. J. Engelen, A. Gaudel, A. Inness, L. Jones, B. Josse, E. Katragkou, V. Marecal, V.-H. Peuch, A. Richter, M. G. Schultz, O. Stein, and A. Tsikerdekis
Geosci. Model Dev., 8, 975–1003, https://doi.org/10.5194/gmd-8-975-2015,https://doi.org/10.5194/gmd-8-975-2015, 2015
Short summary
ERA-Interim/Land: a global land surface reanalysis data set
G. Balsamo, C. Albergel, A. Beljaars, S. Boussetta, E. Brun, H. Cloke, D. Dee, E. Dutra, J. Muñoz-Sabater, F. Pappenberger, P. de Rosnay, T. Stockdale, and F. Vitart
Hydrol. Earth Syst. Sci., 19, 389–407, https://doi.org/10.5194/hess-19-389-2015,https://doi.org/10.5194/hess-19-389-2015, 2015
Short summary
Forecasting global atmospheric CO2
A. Agustí-Panareda, S. Massart, F. Chevallier, S. Boussetta, G. Balsamo, A. Beljaars, P. Ciais, N. M. Deutscher, R. Engelen, L. Jones, R. Kivi, J.-D. Paris, V.-H. Peuch, V. Sherlock, A. T. Vermeulen, P. O. Wennberg, and D. Wunch
Atmos. Chem. Phys., 14, 11959–11983, https://doi.org/10.5194/acp-14-11959-2014,https://doi.org/10.5194/acp-14-11959-2014, 2014
Short summary
Evaluating the potential of large-scale simulations to predict carbon fluxes of terrestrial ecosystems over a European Eddy Covariance network
M. Balzarolo, S. Boussetta, G. Balsamo, A. Beljaars, F. Maignan, J.-C. Calvet, S. Lafont, A. Barbu, B. Poulter, F. Chevallier, C. Szczypta, and D. Papale
Biogeosciences, 11, 2661–2678, https://doi.org/10.5194/bg-11-2661-2014,https://doi.org/10.5194/bg-11-2661-2014, 2014

Related subject area

Climate and Earth system modeling
Assessing modifications to the Abdul-Razzak and Ghan aerosol activation parameterization (version ARG2000) to improve simulated aerosol–cloud radiative effects in the UK Met Office Unified Model (UM version 13.0)
Pratapaditya Ghosh, Katherine J. Evans, Daniel P. Grosvenor, Hyun-Gyu Kang, Salil Mahajan, Min Xu, Wei Zhang, and Hamish Gordon
Geosci. Model Dev., 18, 4899–4913, https://doi.org/10.5194/gmd-18-4899-2025,https://doi.org/10.5194/gmd-18-4899-2025, 2025
Short summary
Correction of sea surface biases in the NEMO ocean general circulation model using neural networks
Andrea Storto, Sergey Frolov, Laura Slivinski, and Chunxue Yang
Geosci. Model Dev., 18, 4789–4804, https://doi.org/10.5194/gmd-18-4789-2025,https://doi.org/10.5194/gmd-18-4789-2025, 2025
Short summary
Representing lateral groundwater flow from land to river in Earth system models
Chang Liao, L. Ruby Leung, Yilin Fang, Teklu Tesfa, and Robinson Negron-Juarez
Geosci. Model Dev., 18, 4601–4624, https://doi.org/10.5194/gmd-18-4601-2025,https://doi.org/10.5194/gmd-18-4601-2025, 2025
Short summary
FINAM is not a model (v1.0): a new Python-based model coupling framework
Sebastian Müller, Martin Lange, Thomas Fischer, Sara König, Matthias Kelbling, Jeisson Javier Leal Rojas, and Stephan Thober
Geosci. Model Dev., 18, 4483–4498, https://doi.org/10.5194/gmd-18-4483-2025,https://doi.org/10.5194/gmd-18-4483-2025, 2025
Short summary
The Detection and Attribution Model Intercomparison Project (DAMIP v2.0) contribution to CMIP7
Nathan P. Gillett, Isla R. Simpson, Gabi Hegerl, Reto Knutti, Dann Mitchell, Aurélien Ribes, Hideo Shiogama, Dáithí Stone, Claudia Tebaldi, Piotr Wolski, Wenxia Zhang, and Vivek K. Arora
Geosci. Model Dev., 18, 4399–4416, https://doi.org/10.5194/gmd-18-4399-2025,https://doi.org/10.5194/gmd-18-4399-2025, 2025
Short summary

Cited articles

Beljaars, A., Bechtold, P., Koehler, M., Morcrette, J.-J., Tompkins, A., Viterbo, P., and Wedi, N.: The numerics of physical parametrization, in: Proc. of ECMWF Seminar on Recent developments in numerical methods for atmosphere and ocean modelling, 113–134, ECMWF, Reading, UK, 2004.
Best, M., Beljaars, A., Polcher, J., and Viterbo, P.: A proposed structure for coupling tiled surfaces with the planetary boundary layer, J. Hydrometeor., 5, 1271–1278, 2004.
Brutsaert, W.: Evaporation into the atmosphere, Springer, 1982.
Carslaw, H. and Jaeger, J.: Conduction of heat in solids, Springer, 1959.
Dutra, E., Balsamo, G., Viterbo, P., Miranda, P., Beljaars, A., Schär, C., and Elder, K.: An improved snow scheme for the ECMWF land surface model: description and offline validation, J. Hydrometeor., 11, 899–916, 2010.
Download
Short summary
Coupling an atmospheric model with snow and sea ice modules presents numerical stability challenges in integrations with long time steps as commonly used for weather prediction and climate simulations. Explicit flux coupling is often applied for simplicity. In this paper a simple method is presented to stabilize the coupling without having to introduce fully implicit coupling. A formal stability analysis confirms that the method is unconditionally stable.
Share