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Abstract. Coupling the atmosphere with the underlying sur-
face presents numerical stability challenges in cost-effective
model integrations used for operational weather prediction
or climate simulations. These are due to the choice of large
integration time steps compared to the physical timescale of
the problem, aiming at reducing computational burden, and
to an explicit flux coupling formulation, often preferred for
its simplicity and modularity. Atmospheric models therefore
use the surface-layer temperatures (representative of the up-
permost soil, snow, ice, water, etc.) at the previous integra-
tion time step in all surface–atmosphere heat-flux calcula-
tions and prescribe fluxes to be used in the surface model
integrations. Although both models may use implicit formu-
lations for the time steps, the explicit flux coupling can still
lead to instabilities.

In this study, idealized simulations with a fully coupled
implicit system are performed to derive an empirical relation
between surface heat flux and surface temperature at the new
time level. Such a relation mimics the fully implicit formu-
lation by allowing one to estimate the surface temperature
at the new time level without solving the surface heat dif-
fusion problem. It is based on similarity reasoning and ap-
plies to any medium with constant heat diffusion and heat
capacity parameters. The advantage is that modularity of the
code is maintained and that the heat flux can be computed
in the atmospheric model in such a way that instabilities in
the snow or ice code are avoided. Applicability to snow–ice–
soil models with variable density is discussed, and the loss
of accuracy turns out to be small. A formal stability analy-
sis confirms that the parametrized implicit-flux coupling is
unconditionally stable.

1 Introduction

Coupling atmospheric models to the underlying surface
model involves both scientific and technical issues. Models
of the atmospheric circulation tend to be computer intensive
and therefore often employ long time steps (up to 1 h), which
is a challenge for stability and accuracy (Beljaars et al., 2004;
Lemarié et al., 2015). The turbulent diffusion part of these
codes provides the coupling to the surface, has short physi-
cal timescales near the surface and therefore needs implicit
numerics for stability. The surface may be vegetation, soil,
snow, ice, or a combination of these in a tile scheme. Best
et al. (2004) proposed a coupling strategy to the surface that
has a clean interface between atmosphere and surface code,
and allows one to include the surface or the top part of the
surface in the implicit computations. This is often necessary
for stability if the physical timescale of, e.g., vegetation, soil,
snow, or ice surface is short compared to the model time step.

The ideal solution for stability is to combine the boundary
layer heat diffusion and, e.g., the snow or ice layer diffusion
in a single implicit solver. This has been demonstrated in a
series of papers describing developments in the ORCHIDEE
model (Polcher et al., 1998; Ryder et al., 2016; Wang et al.,
2013). The same method was used by Schulz et al. (2001) in
the Hamburg model. However, not all models do have suffi-
cient modularity of the code to make it practical. The compli-
cation of processes like phase changes and water percolation
also require implementation of conserved variables to sup-
port full implicitness (Wang et al., 2013). The standard so-
lution is to compute fluxes at the surface on the basis of the
old time level surface temperature. It is often called “explicit
flux coupling”. To improve stability and accuracy West et al.
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(2016) recently proposed to move the flux coupling level one
level down, i.e. just below the surface. This has the advantage
of including the fast responding surface layer in the fully im-
plicit computations, which is beneficial for stability and ac-
curacy.

Ongoing work at ECMWF on snow modelling raised sim-
ilar issues. The existing single layer snow model (see e.g.
Dutra et al., 2010), has already a minor stability issue when
the snow layer becomes very thin, e.g. during the first snow-
fall in the season and at the final melt. This was addressed
by introducing some empirical implicitness in the coupling
by making an educated guess of the future snow tempera-
ture. Initial experimentation with a multilayer snow model
(Dutra et al., 2012) showed even more frequent instabilities;
therefore, more implicitness in the coupling is required for
stability.

In this paper, we propose a solution, that has the simplicity
and modularity of the explicit flux coupling, but still has the
stability of the fully implicit system. To derive simple solu-
tions, the fully implicit coupled system is used as a reference.
It is shown that the tri-diagonal set of equations correspond-
ing to the discretized diffusion equation (for snow, ice, or
soil) can be converted to a relation between temperature and
heat flux at the surface. The coefficients in this relation are
then parametrized depending on properties of the medium,
time step, and vertical discretization. The coefficients are
put in dimensionless form, which makes the empirical co-
efficients universal and applicable to any medium and any
discretization.

The experimental environment in this paper is a simple
model of a near-surface air layer coupled to a snowpack by
turbulent exchange. The atmosphere (e.g. at a height of 10 m,
typical for atmospheric models) is assumed to have a diurnal
cycle, and the response of temperature in the snowpack is
considered. Although the following sections refer to snow
only, the dimensionless framework ensures that the outcome
is valid for any medium.

The following two sections (2 and 3) describe the equa-
tions for the discretized snow layer and the turbulent cou-
pling between atmosphere and snow. Sections 4, 5, and 6 de-
scribe the numerical solution for an idealized diurnal cycle,
the parametrization of the coefficients that relate heat flux
and top layer snow temperature and the testing of the pro-
posed scheme. Finally, the results and their applicability are
briefly discussed in the concluding section. Also the impli-
cations of non-uniform snow density are discussed. The nu-
merical solver and a formal stability analysis are described
in Appendices A and B respectively.

2 Implicit numerical solution of the diffusion equation

We consider the diffusion equation for temperature in snow

ρC
∂T

∂t
=
∂G

∂z
, (1)

Figure 1. The numerical grid is defined by the position of the half
levels, i.e. the thickness of the layers. The full levels are in the mid-
dle of the layers, i.e. zj = (zj−1/2+ zj+1/2)/2. The surface is at
z= 0. The bottom level is defined by the accumulated depth of all
the layers. The temperature is defined on full levels and the heat
fluxes are defined on half levels.

G=K
∂T

∂z
, (2)

where ρ (kg m−3) is density, C (J kg−1 K−1) is heat ca-
pacity, T (K) is temperature, G (W m−2) is heat flux, and
K (W m−1 K−1) is the diffusion coefficient for heat. The
boundary conditions are

G=G0 for z= 0 , (3)
G= 0 for z→−∞ . (4)

For numerical stability with long time steps it is necessary
to use an implicit scheme. With a vertical grid defined as in
Fig. 1, the equation can be discretized as follows:

(ρC)j
T n+1
j − T nj

1t
=

1
1zj

(
Kj−1/2

T n+1
j−1 − T

n+1
j

1zj−1/2

−Kj+1/2
T n+1
j − T n+1

j+1

1zj+1/2

)
, (5)

with the boundary conditions

(ρC)1
T n+1

1 − T n1
1t

=

1
1z1

(
G0−K1+1/2

T n+1
1 − T n+1

2
1z1+1/2

)
, (6)
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(ρC)NL
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n

NL
1t

=

−
1

1zNL

(
KNL−1/2

T n+1
NL−1− T

n+1
NL

1zNL−1/2

)
. (7)

This set of equations forms a tri-diagonal system, with di-
agonals A, B, and C (the coefficients are defined in Ap-
pendix A). The matrix equations can be solved by successive
elimination from the bottom upward such that the C coeffi-
cients are replaced by zeros. At the same time, the equations
are scaled to obtain B coefficients that are equal to 1. Arriv-
ing at the top, it provides a solution for T n+1

1 . The solution
for the other layers can be found by successive back sub-
stitution of the temperatures going from top to bottom (see
Appendix A for more details).

In case G0 is not known, the elimination provides a linear
relation between G0 and T n+1

1

T n+1
1 = αG0+β . (8)

This relation can be used to achieve fully implicit coupling
with the air–surface interaction formulation.

3 Coupling to the lowest model level of the atmosphere

To focus on stability of the atmosphere surface coupling,
it is assumed that the evolution of the near atmospheric
temperature is known, e.g. as in stand-alone simulations of
the land surface. However, this is not a limitation in full
three-dimensional (3-D) models that typically use an implicit
solver for the turbulent diffusion. In that case the atmospheric
model will perform the downward elimination process (the
same way as described in Appendix B). The result is a linear
relation between the n+ 1 temperature at the lowest atmo-
spheric level and the surface heat flux, which can be used
with the air–land interaction formulae described below to
achieve fully implicit coupling.

With a prescribed air temperature, the heat flux into the
snow layer can be related to the air–surface temperature dif-
ference in the following way:

G0 = ρacpCH |U |(Ta− Tsk) , (9)

whereG0 is the heat flux into the snowpack, ρa is air density,
cp is air heat capacity, CH is the transfer coefficient between
the atmospheric level and the surface, |U | is absolute wind
speed, Ta is air temperature, and Tsk is temperature of the
snow surface (skin temperature).

The coupling through a transfer coefficient is standard and
represents the integral profile function according to Monin–
Obukhov (MO) similarity (see e.g. Brutsaert, 1982). The
transfer coefficient in neutral conditions is related to the
height of the atmospheric level, and the surface roughness
lengths of momentum and heat:

CH =
κ2

ln(za/zom) ln(za/zoh)
, (10)

where κ is the von Karman constant (0.4), za is the height of
the atmospheric level, zom is the surface roughness length for
momentum, and zoh is the surface roughness length for heat.
Stability can be included by extending the logarithmic terms
with the integral MO stability functions.

In the vertically discretized snow (see Fig. 1), the temper-
ature of layer 1 is assumed to be at the mid-point, which is
different from the skin temperature. Therefore, the total con-
ductivity between the atmosphere and the first snow layer
(λt) is composed of two components: the turbulent transfer
in the air above the surface (λa) and the conductivity of half
of the top snow layer (λsk). The two conductivities are in par-
allel, because the inverse of conductivities (resistances) are in
series, leading to the following formulation for the heat flux
into the snow:

G0 = λt(Ta− T1) , (11)
with

λt =
λa λsk

λa+ λsk
,

λa = ρacpCH |U | ,

λsk =
2K1−1/2

1z1
.

Two different time stepping procedures are considered.

i. Explicit flux coupling. This is the traditional approach
where the expression for the surface flux uses the previ-
ous time level of the surface temperature leading to the
following discretization of Eq. (11)

G0 = λt(T
n+1
a − T n1 ) . (12)

With the explicit specification of the flux at the surface
flux, the tri-diagonal system can be solved directly.

ii. Implicit flux coupling. The discretization of Eq. (11)
reads

G0 = λt(T
n+1

a − T n+1
1 ) , (13)

With this fully implicit formulation, the surface heat
flux cannot be specified explicitly, and therefore it has to
be found as part of the coupled atmosphere–surface sys-
tem. For that purpose the tri-diagonal problem is solved
in two steps. First, the elimination part is performed re-
sulting in a solution for α and β in Eq. (8). Together
with Eq. (13), T n+1

1 and G0 can be computed:

T n+1
1 =

αλtT
n+1
a +β

1+αλt
, (14)

G0 =
λt(T

n+1
a −β)

1+αλt
. (15)

Finally, the entire temperature profile can be resolved
by performing the back substitution in the tri-diagonal
solver.
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Table 1. List of parameters used in the idealized simulation of a snow layer.

Parameter Description Value Units

ρ snow density 150 kg m−3

ρice ice density 920 kg m−3

C snow (and ice) heat capacity 2228 J kg−1 K−1

Kice ice heat diffusion coefficient 2.2 W m−1 K−1

K snow heat diffusion coefficient Kice(ρ/ρice)
1.88 W m−1 K−1

ρa air density 1.2 kg m−3

cp air heat capacity 1005 J kg−1 K−1

|U | absolute wind speed 4 m s−1

zom roughness length for momentum 0.0001 m
zoh roughness length for heat 0.0001 m
za height atmospheric forcing level 10 m
κ von Karman constant 0.4 −

D total depth of snow layer 1 m

4 Solutions with a simple multilayer snow model

In this section, solutions are considered for a 1 m thick snow
layer with constant heat capacity and heat diffusion coeffi-
cients. Idealized temperature forcing from the atmosphere is
prescribed as a sinusoidal diurnal cycle. The choice of con-
stants is documented in Table 1. The initial temperature pro-
file at t = 0 is set to −5 ◦C, and a single sinusoidal diurnal
cycle with an amplitude of 1 ◦C is imposed at the 10 m level
in the atmosphere

T10 =−5+ sin
(

2πt
3600× 24

)
. (16)

The simulations are performed with different uniform verti-
cal discretizations and different time steps. Figure 2 shows
time series of the snow-skin temperature (left column) and
the ground heat flux (right column), with the two schemes.
The fairly long time step of 3600 s is selected to illustrate
stability and time truncation issues, and a short time step of
100 s for comparison. In the latter case time truncation errors
are small for both schemes (convergence was verified). The
three rows in Fig. 2 are for different vertical discretizations:
0.2, 0.02, and 0.002 m.

The first thing to note is that amplitude and phase of the
skin temperature diurnal cycle only have a small dependence
on vertical resolution. This is surprising because the ampli-
tude of diurnal cycle of layer 1 with1z= 0.2 m is only 20 %
of the amplitude with 1z= 0.02 m. The reason that the skin
temperature is still reasonable is due to the conductivity be-
tween the middle of the layer and the top (much lower with
1z= 0.2 m than with 1z= 0.02 m). Therefore, at low ver-
tical resolution, a substantial part of the temperature signal
at the snow skin is due to the “interpolation” between air
and middle of the first snow layer, making use of the air
conductivity (λa) and the snow conductivity of half the top
layer (λsk). One might interpret this result as a justification
for rather low vertical resolution. However, it should be re-

alized that the forcing has the diurnal timescale only. With
faster timescales, e.g., due to moving clouds and frontal pas-
sages, a relatively thick near-surface layer will not be able to
respond.

Although it is impossible to draw general conclusions
about accuracy from limited experimentation, we note that
the fully implicit solution with 1t = 3600 s is very close to
the short time step solution with 1t = 100 s; therefore, the
long time step does not compromise accuracy in this case,
although the time stepping is first-order accurate only. How-
ever, the solution with explicit coupling deviates visibly from
the implicit and very short time step solutions (compare the
red solid curve in middle/left panel of Fig. 2 with the blue
curve). Apparently, it is the mismatch of time levels in the
flux computation that is detrimental to accuracy. The error is
particularly visible as a phase error.

Finally, the explicit coupling turns out to be unstable for
very thin snow layers (see lower panels in Fig. 2) for 1z=
0.002. Furthermore, for this case the long time step solution
with implicit coupling is fairly accurate as it is very close to
the short time step solution. These experimental results are
confirmed by a formal stability analysis in Appendix B. The
explicit flux coupling is unstable for a particular parameter
range and the implicit flux coupling is unconditionally stable.

Because of the good stability and accuracy characteristics,
we develop in the next section a parametric form of α and β
in Eq. (8).

5 Scaling relations for α and β

As suggested above, it is desirable to have all the flux for-
mulations (also for the atmosphere–surface exchange) at the
new time level n+1. This implies the fully implicit option as
suggested by Polcher et al. (1998) and described in Sects. 2
and 3. It also requires to perform the elimination part of the
tri-diagonal solver to find the relation between T n+1

1 and G0
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Figure 2. Diurnal cycle time series of snow skin temperature (left column) and surface heat flux (right column). The simulations were made
with 0.2, 0.02, and 0.002 m vertical resolution (top, middle, and bottom panels). The blue curves refer to the fully implicit solution (IMPL);
the red curves indicate the solutions with explicit flux coupling (EXPFLX). The solid curves are with a time step of 3600 s and the dashed
curves with 100 s.

according to Eq. (8). For code technical reasons, it is often
desirable to compute the heat flux into the snow, before the
snow code is actually executed. Therefore, an educated guess
is made of the coefficients α and β in Eq. (8) without solving
the tri-diagonal system; i.e. α and β are parametrized.

For that purpose, we make use of similarity theory for the
diffusion equation with constant coefficients. If we think of
an infinite medium (thick snow layer) with uniform temper-
ature To and make a jump at the surface to Tnew at t = 0, we
have to consider the following basic variables: the tempera-
ture change T −T0 at time t , Tnew−T0,K/(ρC), and depth z.
According to the Buckingham Pi Theorem (Stull, 1988), five
variables with three dimensions (m, s, andK) lead to two in-
dependent dimensionless groups: (T − T0)/(Tnew− T0) and
z/δ, where

δ =

(
Kt

ρC

)1/2

. (17)

Length-scale δ is the natural length scale of the medium for
timescale t after which the temperature change at the sur-
face was applied. From the physical point of view, δ is the
typical depth to which the perturbation of the surface tem-
perature has propagated at time t . The implication is that
(T − T0)/(Tnew− T0) is a universal function of z/δ. At this
stage we do not care about the form, although the solu-

tion can be found easily by transforming the equation to the
new coordinate z/δ, which allows one to separate the time
dependence and the depth dependence leading to an ordi-
nary differential equations, which can be solved analytically
(Carslaw and Jaeger, 1959).

Similarly, we can apply an external forcing by suddenly
applying a heat flux G0 at time 0 and look for the temper-
ature response. Instead of scaling the temperature with the
temperature jump, we make the temperature change dimen-
sionless with G0 and obtain

K(T − T0)

δG0
= h

(z
δ

)
, or T =

δG0

K
h
(z
δ

)
+ T0 , (18)

where h is a universal function. For z= 0, Eq. (18) is of the
form of Eq. (8). With timescale 1t and substitution of the
expression for δ, we therefore expect the following scaling
behaviour for α

α ∼

(
1t

K ρC

)1/2

. (19)

It indicates the surface temperature response to a 1 W m2

heat-flux forcing over a finite time step 1t .
The scaling arguments above apply to the continuous sys-

tem. For the discretized system, the scaling behaviour of α
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Figure 3. Dimensionless function f = α(K ρC/1t)1/2 as a func-
tion of x = δ/1z. The circles and triangles are for different combi-
nations of1z and1t . The blue line is the asymptotic limit for small
δ/1z. The green curve is the empirical fit according to Eq. (22).

also depends on 1z, which introduces a dependence on the
dimensionless variable 1z/δ. For a very fine grid (1z� δ),
the discrete system behaves like the continuous system and
equation (19) applies. For a very thick top layer (1z� δ),
the heat flux is simply distributed over the top layer and the
following applies:

α =
1t

1zρC
. (20)

In general the dimensionless α should be a universal function
of δ/1z, i.e.

α

(
K ρC

1t

)1/2

= f

(
δ

1z

)
= f

(
(K1t)1/2

1z(ρC)1/2

)
. (21)

The empirical function can be “measured” by running the nu-
merical model as in the previous section for a range of time
steps and vertical discretizations. Note that α remains con-
stant during the time stepping and does not depend on the
temperature profile. It is just a property of the tri-diagonal
matrix, which only contains properties of the medium, the
time step, and the level thickness. The results are shown in
Fig. 3. Time steps range from 100 to 3600 s, and layer thick-
nesses are used from 0.002 to 0.2 m, with a total snow depth
of 1 m for all simulations

For small ratios of δ/1z, the universal function should
scale with Eq. (20) and for large values with Eq. (19). Sur-
prisingly, coefficient h0 turns out to be 1. An empirical fit
is proposed that makes a smooth transition between the two
regimes according to (see Fig. 3)

f (x)=
x

(1+ x1.3)1/1.3
. (22)

Figure 4. Empirical estimates of parameter β as a function of the
value found from the tri-diagonal solver. The red curve represents
the estimate according to T n1 and the blue curve is the temperature
at z=−δ, also at the previous time level n. The symbols (connected
by lines) indicate the successive time steps in the diurnal cycle. Re-
sults are plotted for vertical resolutions of 0.2, 0.02, and 0.002 m.

The exponent of 1.3 has been optimized to obtain a reason-
able representation of the numerical data in the transition
regime.

The second parameter for which an empirical formula-
tion is needed is β. The physical meaning of β is clear from
Eq. (8); it is the temperature of the top snow layer at the new
time level T n+1

1 in case of zero heat flux. A simple approx-
imation would be to select the temperature of the previous
time level, but this is only valid for a uniform temperature
profile. For a non-uniform temperature profile, heat diffusion
will homogenize temperature, which will make β different
from T n1 at the old time level. Following the scaling argu-
ments above, we know that information propagates vertically
over a distance δ during time step 1. Therefore, we conjec-
ture that the temperature of the old profile at depth δ is a
better approximation for β than the temperature at level 1;
i.e. T nδ is better than T n1 . Figure 4 indeed confirms that the
temperature at depth δ is a reasonable approximation. The
temperature at z=−δ has been obtained by linear interpo-
lation between levels, except when δ < 0.51z. In the latter
case, temperature T n1 is selected. Note that, unlike α, β does
change with temperature and does evolve during the integra-
tion.

From Figs. 3 and 4, it is concluded that reasonable esti-
mates can be made of α and β without actually solving the
tri-diagonal matrix. Depth-scale δ and the thickness of the
top layer 1z are crucial scales to characterize the tempera-
ture evolution of the top snow layer over a time step.
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Figure 5. Diurnal cycle series of skin temperature (left columns and) and surface heat flux (right columns). The simulations were made with
0.2, 0.02, and 0.002 m resolution (top, middle, and bottom panels). The blue curve refers to the fully implicit solution (IMPL); the black solid
curve is the solution with parametrized α and β. The black dashes curve refers to the solution where α is parametrized and β is set equal to
the temperature of level 1 at the previous time (n). The time step is 3600 s.

6 Simulations with the empirical formulation

With the empirical formulations for α and β, it is possible
now to repeat the simulations of Sect. 4. Instead of generating
the fully implicit solution by solving the tri-diagonal matrix
in the standard way, α and β are replaced by the empirical
formulation between the elimination and back-substitution
phase. If the formulation is perfect, the solution should be
the same as the fully implicit solution. Results are shown
in Fig. 5 for the skin temperature and the heat flux. Layer
thicknesses of 0.2, 0.02, and 0.002 m are shown as different
rows in Fig. 5. The figure confirms that the diurnal temper-
ature cycle of the fully implicit solution (blue curve; fully
implicit solution: IMPL) is well reproduced by the solution
with parametrized α and β (black solid cure; parametrized
implicit flux coupling: IMPPAR). The differences between
blue and black curves are very small.

Finally, the scheme was further simplified by using the
parametric form for α only and estimating β by putting it
equal to T n1 . The advantage is that no interpolation to z=−δ
is needed, but that stability of the coupling is still maintained.
However, it is clear that numerical errors are increased for
thin snow layers (see dashed black curve). Such errors have
to be seen in the context of other model errors; therefore, the

use of a parametrized α only, to ensure stability, may still be
sufficient for many applications.

7 Discussion and conclusion

Numerical stability is a critical issue for atmospheric models
that are coupled to a fast responding surface, e.g., through
a thin snow or ice layer. Very thin snow layers can occur in
early winter after the first snow fall and during melt in spring.
A fine discretization may also be desirable to allow for a fast
response of the surface temperature to changes in radiation.
Formal stability analysis confirms that unconditional stability
can be achieved by a fully implicit coupling between atmo-
sphere and surface.

Fully implicit coupling leads to a tri-diagonal problem in
which atmosphere and surface are solved simultaneously. In
practice, often explicit flux coupling is applied; the atmo-
spheric model uses the surface temperature of the previous
time level to compute the surface heat flux, which is used
later as boundary condition for the heat diffusion in the sur-
face. Explicit surface coupling puts stability limits on the
thickness of the top snow layer and on the time step. Ex-
plicit flux coupling is often applied, because existing codes
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Figure 6. Dimensionless α as in Fig. 3, but for non-uniform snow
density. The snow density is 150 kg m−3 at the surface, increases
linearly to 250 kg m−3 at a depth of 0.5 m, and remains constant
below 0.5 m.

do not necessarily have sufficient modularity to support fully
implicit coupling.

Although the atmosphere–surface heat diffusion leads to
a single tri-diagonal matrix problem, one can also break it
up in different steps. It is shown that the elimination part
of the solver of the snow heat diffusion problem leads to a
linear relation between surface temperature and surface heat
flux. This relation can be used together with the atmosphere–
surface interaction formulation to solve for the surface heat
flux.

A simple method has been developed to approximate the
coefficients in this linear relation. The coefficients are scaled
with the characteristic scales of the diffusion equation. This
makes the result universal and applicable to an arbitrary
medium, e.g. snow, ice, or soil. The depth scale that char-
acterizes the penetration of a perturbation over a time step,
turns out to play a crucial role. In this paper the relevant em-
pirical function is “measured” by solving the diffusion equa-
tion for a range of vertical resolutions and time steps.

Finally, the empirical functions are used to solve for the
coupled diffusion problem and compared with the fully im-
plicit computations. The results are very close. The advan-
tage of the method is that the surface fluxes can be computed
without calling any surface code, and behaves like explicit
flux coupling. The only difference is that the surface heat-
flux expression has a damping term depending on the time
step. This damping term is the result of the change of surface
temperature related to the heat flux, and stabilizes the result.

The scaling argument used above only applies for a diffu-
sion equation with constant properties of the medium. How-
ever, in reality there may be a profile of, e.g., snow density
as snow becomes more and more compact in deeper layers,
or vertical resolution may be variable. The latter is numeri-

Figure 7. Dimensionless β as in Fig. 4, but for non-uniform snow
density. The snow density is 150 kg m−3 at the surface, increases
linearly to 250 kg m−3 at a depth of 0.5 m, and remains constant
below 0.5 m.

cally equivalent to a variable diffusion coefficient1. As a sim-
ple test, a case was selected where the profile of density is
150 kg m−3 at the surface, increases linearly to 250 kg m−3

at a depth of 0.5 m, and remains constant below 0.5 m. The
characteristic depth is again computed as in Sect. 5, and to
non-dimensionalize, the snow properties are taken from the
middle of the top snow layer. For this case the dimensionless
α and characteristic temperature β are shown in Figs. 6 and
7. They are very close to the figures for constant snow prop-
erties (Figs. 3 and 4), which suggests that the sensitivity to
snow properties is fairly small. In general, it is to be expected
that the snow properties very close to the surface control the
relation between flux and temperature over a short time step,
because the penetration depth δ is small.

We conclude that making an estimate of the relation be-
tween heat flux and surface temperature is a practical solu-
tion to support explicit flux coupling and to combine numer-
ical stability for long time steps with a modular code struc-
ture. A formal stability analysis in Appendix B confirms un-
conditional stability of the proposed coupling method. The
similarity framework makes the method applicable to any
medium, e.g. snow, ice, or soil. It is also worth noting that
the method does not compromise conservation; the heat flux
that is computed by the atmospheric model is later used by
the surface model as boundary condition.

1In fact the aerodynamic coupling between atmosphere and
snow can be interpreted as a big jump in the properties of the
medium
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8 Data availability

The data that are used in this paper has been produced with a
dedicated stand-alone Fortran program. ECMWF’s data pol-
icy does not allow open access to software. However, the
code can be obtained from the first author, subject to license.
The license implies non-commercial use, i.e. for research and
education only.
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Appendix A: Solving the tri-diagonal matrix equations

The set of equations discussed in Sect. 2 leads to the follow-
ing tri-diagonal system

B1 C1 0 0 · · · 0
A2 B2 C2 0 · · · 0
0 A3 B3 C3 · · · 0
. . .

. . .
. . .

. . .
. . .

. . .

0 · · · ANL−2 BNL−2 CNL−2 0
0 · · · 0 ANL−1 BNL−1 CNL−1
0 · · · 0 0 ANL BNL




T n+1
1
T n+1

2
T n+1

3
...

T n+1
NL−2
T n+1

NL−1
T n+1

NL


=



R1
R2
R3
...

RNL−2
RNL−1
RNL


, (A1)

where

Aj =−
Kj−1/2

1zj 1zj−1/2
,

Bj =
(ρC)j

1t
+

Kj−1/2

1zj 1zj−1/2
+

Kj+1/2

1zj 1zj+1/2
, (A2)

Cj =−
Kj+1/2

1zj 1zj+1/2
,

Rj =
(ρC)j

1t
T nj ,

with boundary condition at the surface

A1 = 0 ,

B1 =
(ρC)1

1t
+

K1+1/2

1z11z1+1/2
, (A3)

C1 =−
K1+1/2

1z11z1+1/2
,

R1 =
G0

1z1
+
(ρC)1

1t
T n1 ,

and the no-flux condition at the bottom

ANL =−
KNL−1/2

1zNL1zNL−1/2
,

BNL =
(ρC)NL

1t
+

KNL−1/2

1zNL1zNL−1/2
, (A4)

CNL = 0 ,

RNL =
(ρC)NL

1t
T nNL .

The tri-diagonal system is solved in two steps by standard
Gaussian elimination. The first step is an upward sweep to

eliminate the C coefficients. It starts at level NL by rescal-
ing coefficient ANL to 1. The new coefficients identified by
superscript * are

A∗NL = 1 , B∗NL =
BNL

ANL
, R∗NL =

RNL

ANL
. (A5)

Next, coefficient CNL−1 is eliminated by multiplying
A, B, C, and R for level NL−1 by B∗NL, the new coefficients
for level NL with CNL−1 (i.e. from Eq. A5), subtracting the
two equations and rescaling the result to have 1 at the posi-
tion of ANL−1. The new A, B, C and R for level NL−1 are

A∗NL−1 = 1 , B∗NL−1 =
BNL−1B

∗
NL−CNL−1

ANL−1B
∗
NL

,

C∗NL−1 = 0 , R∗NL−1 =
RNL−1B

∗
NL−CNL−1R

∗
NL

ANL−1B
∗
NL

. (A6)

This process is repeated to the top, which results in a matrix
where the A diagonals are all 1 and the C diagonal contains
zeros. If the surface heat flux is specified, the top line of the
matrix contains the solution for T n+1

1 . The temperatures of
all the other levels can be computed in a downward sweep,
where the temperature of level j is used to find the solution
for level j + 1 with the equation for level j + 1.

If the surface heat flux is not known, the first line of the
matrix equation contains a linear relation between T n−1

1 and
G0, which can be written in the form of Eq. (8).

Appendix B: Stability analysis of the coupling schemes

In this section we present the stability properties of the three
coupling methods introduced in the present study, namely
the explicit flux coupling (EXPFLX), the implicit flux cou-
pling (IMPFLX), and the parametrized implicit flux coupling
(IMPPAR). Since the numerical stability is expected to be
greatly influenced by the numerical treatment of the surface
boundary condition, a classical von Neumann stability analy-
sis, which assumes periodic boundary conditions, would not
be adequate. For this reason our study is based on a matrix
stability analysis (e.g. Oishi et al., 2008). Assuming a con-
stant grid spacing and diffusion coefficients, the results are
shown in terms of the dimensionless coefficients σ and γ de-
fined as

σ =

(
δ

1z

)2

=
K1t

(ρC)1z2 γ =
λt1t

(ρC)1z
, (B1)

where λt and δ are respectively defined in Eqs. (11) and (17),
with t =1t . The typical value of those parameters for the
numerical simulations discussed in Sects. 4 and 6 are given
in Table B1.

B1 Numerical treatment of the surface boundary
condition

Without loss of generality, we consider in the following that
Ta = 0 in the computation of the surface boundary condition
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Table B1. Values of γ and σ defined in Eq. (B1) for various time steps 1t and vertical discretizations 1z, for ρ = 150 kg m−3, C =
2228 J kg−1 K−1, and K =Kice(ρ/ρice)

1.88
≈ 7.27× 10−2 W m−1 K−1.

1t [s] 100 3600 100 3600 100 3600
1z [m] 0.2 0.2 0.02 0.02 0.002 0.002
λt [W m−2 K−1

] 0.65 0.65 3.23 3.23 5.39 5.39

γ [–] 9.6× 10−4 3.48× 10−2 4.81× 10−2 1.74 0.8 29
σ [–] 5.44× 10−4 1.96× 10−2 5.44× 10−2 1.96 5.44 195.8

Figure B1. Spectral radius of the matrix M= A−1B (defined in Eqs. B7, B8) associated to the explicit flux coupling (EXPFLX), parametrized
implicit flux coupling (IMPPAR), and implicit flux coupling (IMPFLX) with respect to the dimensionless coefficients γ and σ . Gray shaded
areas correspond to regions where the spectral radius is larger than 1.

G0 defined in Eq. (11) as well as thatK ,1z, and ρC are held
constant. The only difference between the three coupling al-
gorithms considered here is in the treatment of the surface
boundary condition (i.e. for the vertical index j = 1):

– Explicit flux coupling: the surface temperature involved
in the computation of G0 is T n1 , thus leading to the fol-
lowing counterpart of Eq. (6)

(1+ σ)T n+1
1 − σT n+1

2 = (1− γ )T n1 , (B2)

– Implicit flux coupling: the surface temperature at time
level n+ 1 is used to compute G0

(1+ σ + γ )T n+1
1 − σT n+1

2 = T n1 . (B3)

– Parametrized implicit flux coupling: the temperature at
time level n+ 1 is diagnosed as T n1 /(1+αλt)

(1+ σ)T n+1
1 − σT n+1

2 =

(
1−

γ

1+αλt

)
T n1 , (B4)

where α is defined in Eq. (21). Using Eq. (22) it can
readily be seen that

γ

1+αλt
=

γ

1+ γ (1+
√
σ

1.3
)−1/1.3

, (B5)

which shows that the parametrized implicit flux cou-
pling can be interpreted as a limiter acting on the value
of γ of the explicit flux coupling, indeed γ (1+αλt)

−1
≤

γ .

B2 Matrix stability analysis

As shown in Appendix A, the Euler implicit scheme applied
to the diffusion equation can be written in a general matrix
form

ATn+1
= BTn, T= (T1, . . .,TNL)

t , (B6)

with

A=
1+ σ + θ(2θ − 1)γ −σ 0 0 . . .

−σ 1+ 2σ −σ 0 . . .

0
. . .

. . .
. . . 0

. . . 0 −σ 1+ 2σ −σ

. . . 0 0 −σ 1+ σ

 , (B7)

B=


1+ (θ − 1)(1+ 2

1−αλt
1+αλt

θ)γ 0 0 . . . 0

0 1 0 . . . 0

0
. . .

. . .
. . . 0

. . . 0 0 1 0

. . . 0 0 0 1

 , (B8)
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Figure B2. Maximum value of γ with respect to the parabolic
Courant number σ to guarantee stability of the explicit flux coupling
(solid gray), which roughly behaves like γ (σ )= 2+

√
σ

1.1 (doted
black line). The parametrized implicit flux coupling replaces γ by
γ̃ , which is always smaller than γ̃max = (1+

√
σ

1.3
)1/1.3 (solid

black line). Since the solid black line is below the solid gray line,
the implicit flux parametrization is unconditionally stable.

where θ = 0 corresponds to the explicit flux coupling, θ = 1
to the implicit flux coupling, and θ = 1/2 to the parametrized
implicit flux coupling. The general implicit scheme (B6) is
stable if all the eigenvalues of the matrix M= A−1B do not
exceed 1 in magnitude. Therefore, the stability analysis re-
quires the computation of the spectral radius of matrix M,
i.e. its larger eigenvalue in magnitude. For γ ≥ 0 it can be
shown that the smallest eigenvalue of A is larger or equal2

to 1 meaning that this matrix is invertible for θ ∈ {0,1/2,1}.
In Fig. B1, values of the spectral radius of M obtained over
a range of values of γ and σ are shown for each coupling
algorithm3. Gray shaded areas coincide with regions where
the spectral radius is larger than 1, thus indicating parame-
ter values for which the corresponding scheme is unstable.
From those results, the only algorithm that turns out to be
conditionally stable is the explicit flux coupling, whereas the
implicit and parametrized implicit flux coupling are uncon-
ditionally stable. The results are thus consistent with the nu-
merical experiments discussed in Sects. 4 and 6.

2For the special cases θ = 0 and θ = 1/2, the eigenvalues λA
k

of

matrix A are given by λA
k
= 1+2σ

(
1+ cos kπNL

)
for k = 1, . . .,NL;

therefore, λA
min = 1,∀σ ≥ 0.

3Numerical results are obtained for NL= 50 after checking that
an increased number of vertical levels does not change the results
significantly. The use of very few vertical levels (N ≤ 10) could
lead to different stability results because only very few eigenmodes
will be properly resolved. However, in this case we do not expect
major stability issues since the values of σ and γ are very small; see
Table B1.

Empirically, it can be found that the stability condition for
the explicit flux coupling roughly behaves like γ ≤ 2+

√
σ

1.1

(see Fig. B2). For the parametrized implicit flux coupling,
γ is replaced by γ̃ (σ )= γ

1+γ (1+
√
σ

1.3
)−1/1.3

, which is always

smaller than γ̃max = (1+
√
σ

1.3
)1/1.3. As shown in Fig. B2,

∀σ ≥ 0, γ̃max ≤ 2+
√
σ

1.1 meaning that for the particular
choice of f (

√
σ) given in Eq. (22) the parametrized implicit

flux coupling is unconditionally stable because it always sat-
isfies the stability constraint of the explicit flux coupling.
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