Articles | Volume 10, issue 2
https://doi.org/10.5194/gmd-10-903-2017
https://doi.org/10.5194/gmd-10-903-2017
Development and technical paper
 | 
23 Feb 2017
Development and technical paper |  | 23 Feb 2017

Implementation of the MEGAN (v2.1) biogenic emission model in the ECHAM6-HAMMOZ chemistry climate model

Alexandra-Jane Henrot, Tanja Stanelle, Sabine Schröder, Colombe Siegenthaler, Domenico Taraborrelli, and Martin G. Schultz

Related authors

The chemistry–climate model ECHAM6.3-HAM2.3-MOZ1.0
Martin G. Schultz, Scarlet Stadtler, Sabine Schröder, Domenico Taraborrelli, Bruno Franco, Jonathan Krefting, Alexandra Henrot, Sylvaine Ferrachat, Ulrike Lohmann, David Neubauer, Colombe Siegenthaler-Le Drian, Sebastian Wahl, Harri Kokkola, Thomas Kühn, Sebastian Rast, Hauke Schmidt, Philip Stier, Doug Kinnison, Geoffrey S. Tyndall, John J. Orlando, and Catherine Wespes
Geosci. Model Dev., 11, 1695–1723, https://doi.org/10.5194/gmd-11-1695-2018,https://doi.org/10.5194/gmd-11-1695-2018, 2018
Short summary

Related subject area

Atmospheric sciences
The MESSy DWARF (based on MESSy v2.55.2)
Astrid Kerkweg, Timo Kirfel, Duong H. Do, Sabine Griessbach, Patrick Jöckel, and Domenico Taraborrelli
Geosci. Model Dev., 18, 1265–1286, https://doi.org/10.5194/gmd-18-1265-2025,https://doi.org/10.5194/gmd-18-1265-2025, 2025
Short summary
An enhanced emission module for the PALM model system 23.10 with application for PM10 emission from urban domestic heating
Edward C. Chan, Ilona J. Jäkel, Basit Khan, Martijn Schaap, Timothy M. Butler, Renate Forkel, and Sabine Banzhaf
Geosci. Model Dev., 18, 1119–1139, https://doi.org/10.5194/gmd-18-1119-2025,https://doi.org/10.5194/gmd-18-1119-2025, 2025
Short summary
Identifying lightning processes in ERA5 soundings with deep learning
Gregor Ehrensperger, Thorsten Simon, Georg J. Mayr, and Tobias Hell
Geosci. Model Dev., 18, 1141–1153, https://doi.org/10.5194/gmd-18-1141-2025,https://doi.org/10.5194/gmd-18-1141-2025, 2025
Short summary
Sensitivity of predicted ultrafine particle size distributions in Europe to different nucleation rate parameterizations using PMCAMx-UF v2.2
David Patoulias, Kalliopi Florou, and Spyros N. Pandis
Geosci. Model Dev., 18, 1103–1118, https://doi.org/10.5194/gmd-18-1103-2025,https://doi.org/10.5194/gmd-18-1103-2025, 2025
Short summary
Explaining neural networks for detection of tropical cyclones and atmospheric rivers in gridded atmospheric simulation data
Tim Radke, Susanne Fuchs, Christian Wilms, Iuliia Polkova, and Marc Rautenhaus
Geosci. Model Dev., 18, 1017–1039, https://doi.org/10.5194/gmd-18-1017-2025,https://doi.org/10.5194/gmd-18-1017-2025, 2025
Short summary

Cited articles

Arneth, A., Niinemets, Ü., Pressley, S., Bäck, J., Hari, P., Karl, T., Noe, S., Prentice, I. C., Serça, D., Hickler, T., Wolf, A., and Smith, B.: Process-based estimates of terrestrial ecosystem isoprene emissions: incorporating the effects of a direct CO2-isoprene interaction, Atmos. Chem. Phys., 7, 31–53, https://doi.org/10.5194/acp-7-31-2007, 2007.
Arneth, A., Schurgers, G., Lathiere, J., Duhl, T., Beerling, D. J., Hewitt, C. N., Martin, M., and Guenther, A.: Global terrestrial isoprene emission models: sensitivity to variability in climate and vegetation, Atmos. Chem. Phys., 11, 8037–8052, https://doi.org/10.5194/acp-11-8037-2011, 2011.
Ashworth, K., Boissard, C., Folberth, G., Lathière, J., and Schurgers, G.: Global Modelling of Volatile Organic Compound Emissions, in: Biology, Controls and Models of Tree Volatile Organic Compound Emissions, edited by: Niinemets, U. and Monson, R. K., chap. 16, 451–489, Springer, Berlin, Germany, 2013.
Atkinson, R. and Arey, J.: Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review, Atmos. Environ., 37, 197–219, 2003.
Brovkin, V., Raddatz, T., Reick, C., Claussen, M., and Gayler, V.: Global biogeophysical interactions between forest and climate, Geophys. Res. Lett., 36, L07405, https://doi.org/10.1029/2009GL037543, 2009.
Download
Short summary
This paper describes the basic results of the biogenic emission scheme, based on MEGAN, integrated into the ECHAM6-HAMMOZ chemistry climate model. Sensitivity to vegetation and climate-dependent parameters is also analysed. This version of the model is now suitable for many tropospheric investigations concerning the impact of biogenic volatile organic compound emissions on the ozone budget, secondary aerosol formation, and atmospheric chemistry.
Share