Articles | Volume 10, issue 1
https://doi.org/10.5194/gmd-10-57-2017
https://doi.org/10.5194/gmd-10-57-2017
Methods for assessment of models
 | 
05 Jan 2017
Methods for assessment of models |  | 05 Jan 2017

ASoP (v1.0): a set of methods for analyzing scales of precipitation in general circulation models

Nicholas P. Klingaman, Gill M. Martin, and Aurel Moise

Related authors

Atmospheric convergence zones stemming from large-scale mixing
Gabriel M. P. Perez, Pier Luigi Vidale, Nicholas P. Klingaman, and Thomas C. M. Martin
Weather Clim. Dynam., 2, 475–488, https://doi.org/10.5194/wcd-2-475-2021,https://doi.org/10.5194/wcd-2-475-2021, 2021
Short summary
Effects of horizontal resolution and air–sea coupling on simulated moisture source for East Asian precipitation in MetUM GA6/GC2
Liang Guo, Ruud J. van der Ent, Nicholas P. Klingaman, Marie-Estelle Demory, Pier Luigi Vidale, Andrew G. Turner, Claudia C. Stephan, and Amulya Chevuturi
Geosci. Model Dev., 13, 6011–6028, https://doi.org/10.5194/gmd-13-6011-2020,https://doi.org/10.5194/gmd-13-6011-2020, 2020
Short summary
Boreal summer intraseasonal oscillation in a superparameterized general circulation model: effects of air–sea coupling and ocean mean state
Yingxia Gao, Nicholas P. Klingaman, Charlotte A. DeMott, and Pang-Chi Hsu
Geosci. Model Dev., 13, 5191–5209, https://doi.org/10.5194/gmd-13-5191-2020,https://doi.org/10.5194/gmd-13-5191-2020, 2020
Short summary
The effect of seasonally and spatially varying chlorophyll on Bay of Bengal surface ocean properties and the South Asian monsoon
Jack Giddings, Adrian J. Matthews, Nicholas P. Klingaman, Karen J. Heywood, Manoj Joshi, and Benjamin G. M. Webber
Weather Clim. Dynam., 1, 635–655, https://doi.org/10.5194/wcd-1-635-2020,https://doi.org/10.5194/wcd-1-635-2020, 2020
Short summary
The Indian summer monsoon in MetUM-GOML2.0: effects of air–sea coupling and resolution
Simon C. Peatman and Nicholas P. Klingaman
Geosci. Model Dev., 11, 4693–4709, https://doi.org/10.5194/gmd-11-4693-2018,https://doi.org/10.5194/gmd-11-4693-2018, 2018
Short summary

Related subject area

Climate and Earth system modeling
SASIEv.1: a framework for seasonal and multi-centennial Arctic sea ice emulation
Sian Megan Chilcott, Malte Meinshausen, and Dirk Notz
Geosci. Model Dev., 18, 4965–4982, https://doi.org/10.5194/gmd-18-4965-2025,https://doi.org/10.5194/gmd-18-4965-2025, 2025
Short summary
COSP-RTTOV-1.0: flexible radiation diagnostics to enable new science applications in model evaluation, climate change detection, and satellite mission design
Jonah K. Shaw, Dustin J. Swales, Sergio DeSouza-Machado, David D. Turner, Jennifer E. Kay, and David P. Schneider
Geosci. Model Dev., 18, 4935–4950, https://doi.org/10.5194/gmd-18-4935-2025,https://doi.org/10.5194/gmd-18-4935-2025, 2025
Short summary
Assessing modifications to the Abdul-Razzak and Ghan aerosol activation parameterization (version ARG2000) to improve simulated aerosol–cloud radiative effects in the UK Met Office Unified Model (UM version 13.0)
Pratapaditya Ghosh, Katherine J. Evans, Daniel P. Grosvenor, Hyun-Gyu Kang, Salil Mahajan, Min Xu, Wei Zhang, and Hamish Gordon
Geosci. Model Dev., 18, 4899–4913, https://doi.org/10.5194/gmd-18-4899-2025,https://doi.org/10.5194/gmd-18-4899-2025, 2025
Short summary
Correction of sea surface biases in the NEMO ocean general circulation model using neural networks
Andrea Storto, Sergey Frolov, Laura Slivinski, and Chunxue Yang
Geosci. Model Dev., 18, 4789–4804, https://doi.org/10.5194/gmd-18-4789-2025,https://doi.org/10.5194/gmd-18-4789-2025, 2025
Short summary
Representing lateral groundwater flow from land to river in Earth system models
Chang Liao, L. Ruby Leung, Yilin Fang, Teklu Tesfa, and Robinson Negron-Juarez
Geosci. Model Dev., 18, 4601–4624, https://doi.org/10.5194/gmd-18-4601-2025,https://doi.org/10.5194/gmd-18-4601-2025, 2025
Short summary

Cited articles

Bollasina, M. A. and Ming, Y.: The general circulation model precipitation bias over the southwestern equatorial Indian Ocean and its implications for simulating the South Asian monsoon, Clim. Dynam., 40, 823–838, 2013.
Brown, J. R., Jakob, C., and Haynes, J. M.: An evaluation of rainfall frequency and intensity over the Australian region in a global climate model, J. Climate, 23, 6504–6525, 2010.
Catto, J. L., Jakob, C., and Nicholls, N.: A global evaluation of fronts and precipitation in the ACCESS model, Aust. Meteorol. Oceanogr. Soc. J., 63, 191–203, 2013.
Dai, A.: Precipitation characteristics in eighteen coupled climate models, J. Climate, 19, 4606–4630, 2006.
Demory, M.-E., Vidale, P. L., Roberts, M. J., Berrisford, P., Strachan, J., Schiemann, R., and Mizielinski, M. S.: The role of horizontal resolution in simulating drivers of the global hydrological cycle, Clim. Dynam., 42, 2201–2225, 2014.
Download
Short summary
Weather and climate models show large errors in the frequency, intensity and persistence of daily rainfall, particularly in the tropics. We introduce a set of diagnostics to reveal the spatial and temporal scales of precipitation in models and compare them to satellite observations to inform development efforts. Although models show similar errors in 3 h precipitation, at the time step and gridpoint level some produce coherent precipitation and others exhibit worrying quasi-random behavior.
Share