Articles | Volume 10, issue 12
https://doi.org/10.5194/gmd-10-4367-2017
https://doi.org/10.5194/gmd-10-4367-2017
Model description paper
 | 
30 Nov 2017
Model description paper |  | 30 Nov 2017

SedFoam-2.0: a 3-D two-phase flow numerical model for sediment transport

Julien Chauchat, Zhen Cheng, Tim Nagel, Cyrille Bonamy, and Tian-Jian Hsu

Related authors

sedInterFoam 1.0: a three-phase numerical model for sediment transport applications with free surfaces
Antoine Mathieu, Yeulwoo Kim, Tian-Jian Hsu, Cyrille Bonamy, and Julien Chauchat
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-16,https://doi.org/10.5194/gmd-2024-16, 2024
Revised manuscript accepted for GMD
Short summary

Related subject area

Oceanography
DalROMS-NWA12 v1.0, a coupled circulation–ice–biogeochemistry modelling system for the northwest Atlantic Ocean: development and validation
Kyoko Ohashi, Arnaud Laurent, Christoph Renkl, Jinyu Sheng, Katja Fennel, and Eric Oliver
Geosci. Model Dev., 17, 8697–8733, https://doi.org/10.5194/gmd-17-8697-2024,https://doi.org/10.5194/gmd-17-8697-2024, 2024
Short summary
A revised ocean mixed layer model for better simulating the diurnal variation in ocean skin temperature
Eui-Jong Kang, Byung-Ju Sohn, Sang-Woo Kim, Wonho Kim, Young-Cheol Kwon, Seung-Bum Kim, Hyoung-Wook Chun, and Chao Liu
Geosci. Model Dev., 17, 8553–8568, https://doi.org/10.5194/gmd-17-8553-2024,https://doi.org/10.5194/gmd-17-8553-2024, 2024
Short summary
Evaluating an accelerated forcing approach for improving computational efficiency in coupled ice sheet–ocean modelling
Qin Zhou, Chen Zhao, Rupert Gladstone, Tore Hattermann, David Gwyther, and Benjamin Galton-Fenzi
Geosci. Model Dev., 17, 8243–8265, https://doi.org/10.5194/gmd-17-8243-2024,https://doi.org/10.5194/gmd-17-8243-2024, 2024
Short summary
An optimal transformation method for inferring ocean tracer sources and sinks
Jan D. Zika and Taimoor Sohail
Geosci. Model Dev., 17, 8049–8068, https://doi.org/10.5194/gmd-17-8049-2024,https://doi.org/10.5194/gmd-17-8049-2024, 2024
Short summary
PPCon 1.0: Biogeochemical-Argo profile prediction with 1D convolutional networks
Gloria Pietropolli, Luca Manzoni, and Gianpiero Cossarini
Geosci. Model Dev., 17, 7347–7364, https://doi.org/10.5194/gmd-17-7347-2024,https://doi.org/10.5194/gmd-17-7347-2024, 2024
Short summary

Cited articles

Aagaard, T., Black, K. P., and Greenwood, B.: Cross-shore suspended sediment transport in the surf zone: a field-based parameterization, Mar. Geol., 185, 283–302, 2002.
Amoudry, L. and Liu, P.-F.: Two-dimensional, two-phase granular sediment transport model with applications to scouring downstream of an apron, Coast. Eng., 56, 693–702, 2009.
Amoudry, L., Hsu, T. J., and Liu, P. L. F.: Two-phase model for sand transport in sheet flow regime, J. Geophys. Res., 113, C03011, https://doi.org/10.1029/2007JC004179, 2008.
Amoudry, L. O.: Extension of turbulence closure to two-phase sediment transport modelling: Application to oscillatory sheet flows, Adv. Water Resour., 72, 110–121, https://doi.org/10.1016/j.advwatres.2014.07.006, 2014.
Andreotti, B., Forterre, Y., and Pouliquen, O.: Granular Media: Between Fluid and Solid, Cambridge University Press, Cambridge, 2013.
Download
Short summary
This manuscript presents the development and validation of a two-phase flow Eulerian-Eulerian model based on OpenFOAM for sediment transport applications. The mathematical and numerical models are described in detail. The numerical implementation is demonstrated on four test cases: sedimentation of suspended particles, laminar bed load, sheet flow, and scour at an apron. These test cases illustrate the capabilities of SedFoam to deal with complex turbulent sediment transport problems.