Articles | Volume 10, issue 12
https://doi.org/10.5194/gmd-10-4367-2017
https://doi.org/10.5194/gmd-10-4367-2017
Model description paper
 | 
30 Nov 2017
Model description paper |  | 30 Nov 2017

SedFoam-2.0: a 3-D two-phase flow numerical model for sediment transport

Julien Chauchat, Zhen Cheng, Tim Nagel, Cyrille Bonamy, and Tian-Jian Hsu

Related authors

sedExnerFoam 2412: A 3D Exner-based sediment transport and morphodynamics model
Matthias Renaud, Olivier Bertrand, Cyrille Bonamy, and Julien Chauchat
EGUsphere, https://doi.org/10.5194/egusphere-2025-2375,https://doi.org/10.5194/egusphere-2025-2375, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
sedInterFoam 1.0: a three-phase numerical model for sediment transport applications with free surfaces
Antoine Mathieu, Yeulwoo Kim, Tian-Jian Hsu, Cyrille Bonamy, and Julien Chauchat
Geosci. Model Dev., 18, 1561–1573, https://doi.org/10.5194/gmd-18-1561-2025,https://doi.org/10.5194/gmd-18-1561-2025, 2025
Short summary

Related subject area

Oceanography
Wave forecast investigations on downscaling, source terms, and tides for Aotearoa New Zealand
Rafael Santana, Richard Gorman, Emily Lane, Stuart Moore, Cyprien Bosserelle, Glen Reeve, and Christo Rautenbach
Geosci. Model Dev., 18, 4877–4898, https://doi.org/10.5194/gmd-18-4877-2025,https://doi.org/10.5194/gmd-18-4877-2025, 2025
Short summary
Impacts of the CICE sea ice model and ERA atmosphere on an Antarctic MetROMS ocean model, MetROMS-UHel-v1.0
Cecilia Äijälä, Yafei Nie, Lucía Gutiérrez-Loza, Chiara De Falco, Siv Kari Lauvset, Bin Cheng, David Anthony Bailey, and Petteri Uotila
Geosci. Model Dev., 18, 4823–4853, https://doi.org/10.5194/gmd-18-4823-2025,https://doi.org/10.5194/gmd-18-4823-2025, 2025
Short summary
Comparing an idealized deterministic–stochastic model (SUP model, version 1) of the tide- and wind-driven sea surface currents in the Gulf of Trieste to high-frequency radar observations
Sofia Flora, Laura Ursella, and Achim Wirth
Geosci. Model Dev., 18, 4685–4712, https://doi.org/10.5194/gmd-18-4685-2025,https://doi.org/10.5194/gmd-18-4685-2025, 2025
Short summary
PIBM 1.0: an individual-based model for simulating phytoplankton acclimation, diversity, and evolution in the ocean
Iria Sala and Bingzhang Chen
Geosci. Model Dev., 18, 4155–4182, https://doi.org/10.5194/gmd-18-4155-2025,https://doi.org/10.5194/gmd-18-4155-2025, 2025
Short summary
An effective communication topology for performance optimization: a case study of the finite-volume wave modeling (FVWAM)
Renbo Pang, Fujiang Yu, Yuanyong Gao, Ye Yuan, Liang Yuan, and Zhiyi Gao
Geosci. Model Dev., 18, 4119–4136, https://doi.org/10.5194/gmd-18-4119-2025,https://doi.org/10.5194/gmd-18-4119-2025, 2025
Short summary

Cited articles

Aagaard, T., Black, K. P., and Greenwood, B.: Cross-shore suspended sediment transport in the surf zone: a field-based parameterization, Mar. Geol., 185, 283–302, 2002.
Amoudry, L. and Liu, P.-F.: Two-dimensional, two-phase granular sediment transport model with applications to scouring downstream of an apron, Coast. Eng., 56, 693–702, 2009.
Amoudry, L., Hsu, T. J., and Liu, P. L. F.: Two-phase model for sand transport in sheet flow regime, J. Geophys. Res., 113, C03011, https://doi.org/10.1029/2007JC004179, 2008.
Amoudry, L. O.: Extension of turbulence closure to two-phase sediment transport modelling: Application to oscillatory sheet flows, Adv. Water Resour., 72, 110–121, https://doi.org/10.1016/j.advwatres.2014.07.006, 2014.
Andreotti, B., Forterre, Y., and Pouliquen, O.: Granular Media: Between Fluid and Solid, Cambridge University Press, Cambridge, 2013.
Download
Short summary
This manuscript presents the development and validation of a two-phase flow Eulerian-Eulerian model based on OpenFOAM for sediment transport applications. The mathematical and numerical models are described in detail. The numerical implementation is demonstrated on four test cases: sedimentation of suspended particles, laminar bed load, sheet flow, and scour at an apron. These test cases illustrate the capabilities of SedFoam to deal with complex turbulent sediment transport problems.
Share