Articles | Volume 10, issue 11
https://doi.org/10.5194/gmd-10-4285-2017
https://doi.org/10.5194/gmd-10-4285-2017
Methods for assessment of models
 | 
27 Nov 2017
Methods for assessment of models |  | 27 Nov 2017

The Cloud Feedback Model Intercomparison Project (CFMIP) Diagnostic Codes Catalogue – metrics, diagnostics and methodologies to evaluate, understand and improve the representation of clouds and cloud feedbacks in climate models

Yoko Tsushima, Florent Brient, Stephen A. Klein, Dimitra Konsta, Christine C. Nam, Xin Qu, Keith D. Williams, Steven C. Sherwood, Kentaroh Suzuki, and Mark D. Zelinka

Related authors

The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6
Mark J. Webb, Timothy Andrews, Alejandro Bodas-Salcedo, Sandrine Bony, Christopher S. Bretherton, Robin Chadwick, Hélène Chepfer, Hervé Douville, Peter Good, Jennifer E. Kay, Stephen A. Klein, Roger Marchand, Brian Medeiros, A. Pier Siebesma, Christopher B. Skinner, Bjorn Stevens, George Tselioudis, Yoko Tsushima, and Masahiro Watanabe
Geosci. Model Dev., 10, 359–384, https://doi.org/10.5194/gmd-10-359-2017,https://doi.org/10.5194/gmd-10-359-2017, 2017
Short summary

Related subject area

Climate and Earth system modeling
An emulation-based approach for interrogating reactive transport models
Angus Fotherby, Harold J. Bradbury, Jennifer L. Druhan, and Alexandra V. Turchyn
Geosci. Model Dev., 16, 7059–7074, https://doi.org/10.5194/gmd-16-7059-2023,https://doi.org/10.5194/gmd-16-7059-2023, 2023
Short summary
A sub-grid parameterization scheme for topographic vertical motion in CAM5-SE
Yaqi Wang, Lanning Wang, Juan Feng, Zhenya Song, Qizhong Wu, and Huaqiong Cheng
Geosci. Model Dev., 16, 6857–6873, https://doi.org/10.5194/gmd-16-6857-2023,https://doi.org/10.5194/gmd-16-6857-2023, 2023
Short summary
Technology to aid the analysis of large-volume multi-institute climate model output at a central analysis facility (PRIMAVERA Data Management Tool V2.10)
Jon Seddon, Ag Stephens, Matthew S. Mizielinski, Pier Luigi Vidale, and Malcolm J. Roberts
Geosci. Model Dev., 16, 6689–6700, https://doi.org/10.5194/gmd-16-6689-2023,https://doi.org/10.5194/gmd-16-6689-2023, 2023
Short summary
A diffusion-based kernel density estimator (diffKDE, version 1) with optimal bandwidth approximation for the analysis of data in geoscience and ecological research
Maria-Theresia Pelz, Markus Schartau, Christopher J. Somes, Vanessa Lampe, and Thomas Slawig
Geosci. Model Dev., 16, 6609–6634, https://doi.org/10.5194/gmd-16-6609-2023,https://doi.org/10.5194/gmd-16-6609-2023, 2023
Short summary
Monte Carlo drift correction – quantifying the drift uncertainty of global climate models
Benjamin S. Grandey, Zhi Yang Koh, Dhrubajyoti Samanta, Benjamin P. Horton, Justin Dauwels, and Lock Yue Chew
Geosci. Model Dev., 16, 6593–6608, https://doi.org/10.5194/gmd-16-6593-2023,https://doi.org/10.5194/gmd-16-6593-2023, 2023
Short summary

Cited articles

Anderberg, M.: Cluster analysis for applications, Academic Press, New York, 359 pp., 1973.
Barnes, E. and Polvani, L.: Response of the Midlatitude Jets, and of Their Variability, to Increased Greenhouse Gases in the CMIP5 Models, J. Climate, 26, 7117–7135, https://doi.org/10.1175/JCLI-D-12-00536.1, 2013.
Bennhold, F. and Sherwood, S.: Erroneous relationships among humidity and cloud forcing variables in three global climate models, J. Climate, 21, 4190–4206, https://doi.org/10.1175/2008JCLI1969.1, 2008.
Bodas-Salcedo, A., Webb, M., Bony, S., Chepfer, H., Dufresne, J., Klein, S., Zhang, Y., Marchand, R., Haynes, J., Pincus, R., and John, V.: COSP Satellite simulation software for model assessment, B. Am. Meteorol. Soc., 92, 1023–1043, https://doi.org/10.1175/2011BAMS2856.1, 2011.
Bodas-Salcedo, A., Williams, K., Field, P., and Lock, A.: The Surface Downwelling Solar Radiation Surplus over the Southern Ocean in the Met Office Model: The Role of Midlatitude Cyclone Clouds, J. Climate, 25, 7467–7486, https://doi.org/10.1175/JCLI-D-11-00702.1, 2012.
Short summary
Cloud feedback is the largest uncertainty associated with estimates of climate sensitivity. Diagnostics have been developed to evaluate cloud processes in climate models. For this understanding to be reflected in better estimates of cloud feedbacks, it is vital to continue to develop such tools and to exploit them fully during the model development process. Code repositories have been created to store and document the programs which will allow climate modellers to compute these diagnostics.