Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.240 IF 5.240
  • IF 5-year value: 5.768 IF 5-year
    5.768
  • CiteScore value: 8.9 CiteScore
    8.9
  • SNIP value: 1.713 SNIP 1.713
  • IPP value: 5.53 IPP 5.53
  • SJR value: 3.18 SJR 3.18
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 71 Scimago H
    index 71
  • h5-index value: 51 h5-index 51
Volume 10, issue 11
Geosci. Model Dev., 10, 4285–4305, 2017
https://doi.org/10.5194/gmd-10-4285-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 10, 4285–4305, 2017
https://doi.org/10.5194/gmd-10-4285-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Methods for assessment of models 27 Nov 2017

Methods for assessment of models | 27 Nov 2017

The Cloud Feedback Model Intercomparison Project (CFMIP) Diagnostic Codes Catalogue – metrics, diagnostics and methodologies to evaluate, understand and improve the representation of clouds and cloud feedbacks in climate models

Yoko Tsushima et al.

Related authors

The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6
Mark J. Webb, Timothy Andrews, Alejandro Bodas-Salcedo, Sandrine Bony, Christopher S. Bretherton, Robin Chadwick, Hélène Chepfer, Hervé Douville, Peter Good, Jennifer E. Kay, Stephen A. Klein, Roger Marchand, Brian Medeiros, A. Pier Siebesma, Christopher B. Skinner, Bjorn Stevens, George Tselioudis, Yoko Tsushima, and Masahiro Watanabe
Geosci. Model Dev., 10, 359–384, https://doi.org/10.5194/gmd-10-359-2017,https://doi.org/10.5194/gmd-10-359-2017, 2017
Short summary

Related subject area

Climate and Earth System Modeling
Superparameterised cloud effects in the EMAC general circulation model (v2.50) – influences of model configuration
Harald Rybka and Holger Tost
Geosci. Model Dev., 13, 2671–2694, https://doi.org/10.5194/gmd-13-2671-2020,https://doi.org/10.5194/gmd-13-2671-2020, 2020
Short summary
The Flexible Ocean and Climate Infrastructure version 1 (FOCI1): mean state and variability
Katja Matthes, Arne Biastoch, Sebastian Wahl, Jan Harlaß, Torge Martin, Tim Brücher, Annika Drews, Dana Ehlert, Klaus Getzlaff, Fritz Krüger, Willi Rath, Markus Scheinert, Franziska U. Schwarzkopf, Tobias Bayr, Hauke Schmidt, and Wonsun Park
Geosci. Model Dev., 13, 2533–2568, https://doi.org/10.5194/gmd-13-2533-2020,https://doi.org/10.5194/gmd-13-2533-2020, 2020
Short summary
Investigating the sensitivity to resolving aerosol interactions in downscaling regional model experiments with WRFv3.8.1 over Europe
Vasileios Pavlidis, Eleni Katragkou, Andreas Prein, Aristeidis K. Georgoulias, Stergios Kartsios, Prodromos Zanis, and Theodoros Karacostas
Geosci. Model Dev., 13, 2511–2532, https://doi.org/10.5194/gmd-13-2511-2020,https://doi.org/10.5194/gmd-13-2511-2020, 2020
Short summary
Correcting a bias in a climate model with an augmented emulator
Doug McNeall, Jonny Williams, Richard Betts, Ben Booth, Peter Challenor, Peter Good, and Andy Wiltshire
Geosci. Model Dev., 13, 2487–2509, https://doi.org/10.5194/gmd-13-2487-2020,https://doi.org/10.5194/gmd-13-2487-2020, 2020
Short summary
Improving climate model coupling through a complete mesh representation: a case study with E3SM (v1) and MOAB (v5.x)
Vijay S. Mahadevan, Iulian Grindeanu, Robert Jacob, and Jason Sarich
Geosci. Model Dev., 13, 2355–2377, https://doi.org/10.5194/gmd-13-2355-2020,https://doi.org/10.5194/gmd-13-2355-2020, 2020
Short summary

Cited articles

Anderberg, M.: Cluster analysis for applications, Academic Press, New York, 359 pp., 1973.
Barnes, E. and Polvani, L.: Response of the Midlatitude Jets, and of Their Variability, to Increased Greenhouse Gases in the CMIP5 Models, J. Climate, 26, 7117–7135, https://doi.org/10.1175/JCLI-D-12-00536.1, 2013.
Bennhold, F. and Sherwood, S.: Erroneous relationships among humidity and cloud forcing variables in three global climate models, J. Climate, 21, 4190–4206, https://doi.org/10.1175/2008JCLI1969.1, 2008.
Bodas-Salcedo, A., Webb, M., Bony, S., Chepfer, H., Dufresne, J., Klein, S., Zhang, Y., Marchand, R., Haynes, J., Pincus, R., and John, V.: COSP Satellite simulation software for model assessment, B. Am. Meteorol. Soc., 92, 1023–1043, https://doi.org/10.1175/2011BAMS2856.1, 2011.
Bodas-Salcedo, A., Williams, K., Field, P., and Lock, A.: The Surface Downwelling Solar Radiation Surplus over the Southern Ocean in the Met Office Model: The Role of Midlatitude Cyclone Clouds, J. Climate, 25, 7467–7486, https://doi.org/10.1175/JCLI-D-11-00702.1, 2012.
Publications Copernicus
Download
Short summary
Cloud feedback is the largest uncertainty associated with estimates of climate sensitivity. Diagnostics have been developed to evaluate cloud processes in climate models. For this understanding to be reflected in better estimates of cloud feedbacks, it is vital to continue to develop such tools and to exploit them fully during the model development process. Code repositories have been created to store and document the programs which will allow climate modellers to compute these diagnostics.
Cloud feedback is the largest uncertainty associated with estimates of climate sensitivity....
Citation