Articles | Volume 10, issue 11
Methods for assessment of models
24 Nov 2017
Methods for assessment of models |  | 24 Nov 2017

Source apportionment and sensitivity analysis: two methodologies with two different purposes

Alain Clappier, Claudio A. Belis, Denise Pernigotti, and Philippe Thunis

Related authors

Emission ensemble approach to improve the development of multi-scale emission inventories
Philippe Thunis, Jeroen Kuenen, Enrico Pisoni, Bertrand Bessagnet, Manjola Banja, Lech Gawuc, Karol Szymankiewicz, Diego Guizardi, Monica Crippa, Susana Lopez-Aparicio, Marc Guevara, Alexander De Meij, Sabine Schindlbacher, and Alain Clappier
EGUsphere,,, 2023
Short summary
A multi-pollutant and multi-sectorial approach to screening the consistency of emission inventories
Philippe Thunis, Alain Clappier, Enrico Pisoni, Bertrand Bessagnet, Jeroen Kuenen, Marc Guevara, and Susana Lopez-Aparicio
Geosci. Model Dev., 15, 5271–5286,,, 2022
Short summary
Why is the city's responsibility for its air pollution often underestimated? A focus on PM2.5
Philippe Thunis, Alain Clappier, Alexander de Meij, Enrico Pisoni, Bertrand Bessagnet, and Leonor Tarrason
Atmos. Chem. Phys., 21, 18195–18212,,, 2021
Short summary
Non-linear response of PM2.5 to changes in NOx and NH3 emissions in the Po basin (Italy): consequences for air quality plans
Philippe Thunis, Alain Clappier, Matthias Beekmann, Jean Philippe Putaud, Cornelis Cuvelier, Jessie Madrazo, and Alexander de Meij
Atmos. Chem. Phys., 21, 9309–9327,,, 2021
Short summary

Related subject area

Atmospheric sciences
MEXPLORER 1.0.0 – a mechanism explorer for analysis and visualization of chemical reaction pathways based on graph theory
Rolf Sander
Geosci. Model Dev., 17, 2419–2425,,, 2024
Short summary
Advances and prospects of deep learning for medium-range extreme weather forecasting
Leonardo Olivetti and Gabriele Messori
Geosci. Model Dev., 17, 2347–2358,,, 2024
Short summary
An overview of the Western United States Dynamically Downscaled Dataset (WUS-D3)
Stefan Rahimi, Lei Huang, Jesse Norris, Alex Hall, Naomi Goldenson, Will Krantz, Benjamin Bass, Chad Thackeray, Henry Lin, Di Chen, Eli Dennis, Ethan Collins, Zachary J. Lebo, Emily Slinskey, Sara Graves, Surabhi Biyani, Bowen Wang, Stephen Cropper, and the UCLA Center for Climate Science Team
Geosci. Model Dev., 17, 2265–2286,,, 2024
Short summary
cloudbandPy 1.0: an automated algorithm for the detection of tropical–extratropical cloud bands
Romain Pilon and Daniela I. V. Domeisen
Geosci. Model Dev., 17, 2247–2264,,, 2024
Short summary
PyRTlib: an educational Python-based library for non-scattering atmospheric microwave radiative transfer computations
Salvatore Larosa, Domenico Cimini, Donatello Gallucci, Saverio Teodosio Nilo, and Filomena Romano
Geosci. Model Dev., 17, 2053–2076,,, 2024
Short summary

Cited articles

Belis, C. A., Karagulian, F., Larsen, B. R., and Hopke, P. K.: Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe, Atmos. Environ., 69, 94–108, 2013.
Bhave, P. V., Pouliot, G. A., and Zheng, M.: Diagnostic model evaluation for carbonaceous PM2.5 using organic markers measured in the southeastern U.S., Environ. Sci. Technol., 41, 1577–1583, 2007.
Blanchard, C. L.: Methods for attributing ambient air pollutants to emission sources, Annu. Rev. Ener. Env., 24, 329–365, 1999.
Burr, M. J. and Zhang, Y.: Source-apportionment of fine particulate matter over the Eastern U.S. Part II: source apportionment simulations using CAMx/PSAT and comparisons with CMAQ source sensitivity simulations, Atmos. Pollut. Res., 2, 318–336, 2011a.
Burr, M. J. and Zhang, Y.: Source-apportionment of fine particulate matter over the Eastern U.S. Part II: source sensitivity simulations using CMAQ with the Brute Force method, Atmos. Pollut. Res., 2, 300–317, 2011b.
Short summary
This work demonstrates that when the relationship between emissions and concentrations is nonlinear, sensitivity approaches, generally used for air quality planning, are not suitable to retrieve source contributions and source apportionment methods are not appropriate to evaluate the impact of abatement strategies on air quality. A simple theoretical example is used highlighting differences and potential implications for policy.