Articles | Volume 10, issue 11
Geosci. Model Dev., 10, 4187–4205, 2017
https://doi.org/10.5194/gmd-10-4187-2017
Geosci. Model Dev., 10, 4187–4205, 2017
https://doi.org/10.5194/gmd-10-4187-2017

Development and technical paper 17 Nov 2017

Development and technical paper | 17 Nov 2017

Numerical framework for the computation of urban flux footprints employing large-eddy simulation and Lagrangian stochastic modeling

Mikko Auvinen et al.

Related authors

Sensitivity analysis of the PALM model system 6.0 in the urban environment
Michal Belda, Jaroslav Resler, Jan Geletič, Pavel Krč, Björn Maronga, Matthias Sühring, Mona Kurppa, Farah Kanani-Sühring, Vladimír Fuka, Kryštof Eben, Nina Benešová, and Mikko Auvinen
Geosci. Model Dev., 14, 4443–4464, https://doi.org/10.5194/gmd-14-4443-2021,https://doi.org/10.5194/gmd-14-4443-2021, 2021
Short summary
A nested multi-scale system implemented in the large-eddy simulation model PALM model system 6.0
Antti Hellsten, Klaus Ketelsen, Matthias Sühring, Mikko Auvinen, Björn Maronga, Christoph Knigge, Fotios Barmpas, Georgios Tsegas, Nicolas Moussiopoulos, and Siegfried Raasch
Geosci. Model Dev., 14, 3185–3214, https://doi.org/10.5194/gmd-14-3185-2021,https://doi.org/10.5194/gmd-14-3185-2021, 2021
Short summary
Implementation of the sectional aerosol module SALSA2.0 into the PALM model system 6.0: model development and first evaluation
Mona Kurppa, Antti Hellsten, Pontus Roldin, Harri Kokkola, Juha Tonttila, Mikko Auvinen, Christoph Kent, Prashant Kumar, Björn Maronga, and Leena Järvi
Geosci. Model Dev., 12, 1403–1422, https://doi.org/10.5194/gmd-12-1403-2019,https://doi.org/10.5194/gmd-12-1403-2019, 2019
Short summary
Sensitivity analysis of the meteorological preprocessor MPP-FMI 3.0 using algorithmic differentiation
John Backman, Curtis R. Wood, Mikko Auvinen, Leena Kangas, Hanna Hannuniemi, Ari Karppinen, and Jaakko Kukkonen
Geosci. Model Dev., 10, 3793–3803, https://doi.org/10.5194/gmd-10-3793-2017,https://doi.org/10.5194/gmd-10-3793-2017, 2017
Short summary
EXTRACTING URBAN MORPHOLOGY FOR ATMOSPHERIC MODELING FROM MULTISPECTRAL AND SAR SATELLITE IMAGERY
S. Wittke, K. Karila, E. Puttonen, A. Hellsten, M. Auvinen, and M. Karjalainen
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-1-W1, 425–431, https://doi.org/10.5194/isprs-archives-XLII-1-W1-425-2017,https://doi.org/10.5194/isprs-archives-XLII-1-W1-425-2017, 2017

Related subject area

Atmospheric sciences
Black carbon modeling in urban areas: investigating the influence of resuspension and non-exhaust emissions in streets using the Street-in-Grid model for inert particles (SinG-inert)
Lya Lugon, Jérémy Vigneron, Christophe Debert, Olivier Chrétien, and Karine Sartelet
Geosci. Model Dev., 14, 7001–7019, https://doi.org/10.5194/gmd-14-7001-2021,https://doi.org/10.5194/gmd-14-7001-2021, 2021
Short summary
Evaluation of global EMEP MSC-W (rv4.34) WRF (v3.9.1.1) model surface concentrations and wet deposition of reactive N and S with measurements
Yao Ge, Mathew R. Heal, David S. Stevenson, Peter Wind, and Massimo Vieno
Geosci. Model Dev., 14, 7021–7046, https://doi.org/10.5194/gmd-14-7021-2021,https://doi.org/10.5194/gmd-14-7021-2021, 2021
Short summary
The CHIMERE v2020r1 online chemistry-transport model
Laurent Menut, Bertrand Bessagnet, Régis Briant, Arineh Cholakian, Florian Couvidat, Sylvain Mailler, Romain Pennel, Guillaume Siour, Paolo Tuccella, Solène Turquety, and Myrto Valari
Geosci. Model Dev., 14, 6781–6811, https://doi.org/10.5194/gmd-14-6781-2021,https://doi.org/10.5194/gmd-14-6781-2021, 2021
Short summary
Verification of boundary layer wind patterns in COSMO-REA2 using clear-air radar echoes
Sebastian Buschow and Petra Friederichs
Geosci. Model Dev., 14, 6765–6780, https://doi.org/10.5194/gmd-14-6765-2021,https://doi.org/10.5194/gmd-14-6765-2021, 2021
Short summary
Object-based analysis of simulated thunderstorms in Switzerland: application and validation of automated thunderstorm tracking with simulation data
Timothy H. Raupach, Andrey Martynov, Luca Nisi, Alessandro Hering, Yannick Barton, and Olivia Martius
Geosci. Model Dev., 14, 6495–6514, https://doi.org/10.5194/gmd-14-6495-2021,https://doi.org/10.5194/gmd-14-6495-2021, 2021
Short summary

Cited articles

Anderson, W.: Amplitude modulation of streamwise velocity fluctuations in the roughness sublayer: Evidence from large-eddy simulations, J. Fluid Mech., 789, 567–588, https://doi.org/10.1017/jfm.2015.744, 2016.
Aubinet, M., Vesala, T., and Papale, D. (Eds.): Eddy covariance. A Practical Guide to Measurement and Data Analysis, Springer, 2012.
Christen, A., Coops, N., Crawford, B., Kellett, R., Liss, K., Olchovski, I., Tooke, T., van der Laan, M., and Voogt, J.: Validation of modeled carbon-dioxide emissions from an urban neighborhood with direct eddy-covariance measurements, Atmos. Environ., 45, 6057–6069, 2011.
Deardorff, J.: Stratoculumus-capped mixed layers derived from a three-dimensional model, Bound-Lay. Meteorol., 18, 495–527, 1980.
Giometto, M., Christen, A., Meneveau, C., Fang, J., Krafczyk, M., and Parlange, M.: Spatial Characteristics of Roughness Sublayer Mean Flow and Turbulence Over a Realistic Urban Surface, Bound.-Lay. Meteorol., 160, 425–452, https://doi.org/10.1007/s10546-016-0157-6, 2016.
Download
Short summary
Correct spatial interpretation of a micrometeorological measurement requires the determination of its effective source area, or footprint. In urban areas the use of analytical models becomes highly questionable. This work introduces a computational methodology that enables the generation of footprints for complex urban sites. The methodology is based on conducting high-resolution flow and particle analysis on a model that features a detailed topographic description of a real city environment.