Articles | Volume 10, issue 6
https://doi.org/10.5194/gmd-10-2425-2017
https://doi.org/10.5194/gmd-10-2425-2017
Model evaluation paper
 | 
29 Jun 2017
Model evaluation paper |  | 29 Jun 2017

Evaluation of the transport matrix method for simulation of ocean biogeochemical tracers

Karin F. Kvale, Samar Khatiwala, Heiner Dietze, Iris Kriest, and Andreas Oschlies

Related authors

Impact of iron fertilisation on atmospheric CO2 during the last glaciation
Himadri Saini, Katrin J. Meissner, Laurie Menviel, and Karin Kvale
Clim. Past, 19, 1559–1584, https://doi.org/10.5194/cp-19-1559-2023,https://doi.org/10.5194/cp-19-1559-2023, 2023
Short summary
Explicit silicate cycling in the Kiel Marine Biogeochemistry Model version 3 (KMBM3) embedded in the UVic ESCM version 2.9
Karin Kvale, David P. Keller, Wolfgang Koeve, Katrin J. Meissner, Christopher J. Somes, Wanxuan Yao, and Andreas Oschlies
Geosci. Model Dev., 14, 7255–7285, https://doi.org/10.5194/gmd-14-7255-2021,https://doi.org/10.5194/gmd-14-7255-2021, 2021
Short summary
One size fits all? Calibrating an ocean biogeochemistry model for different circulations
Iris Kriest, Paul Kähler, Wolfgang Koeve, Karin Kvale, Volkmar Sauerland, and Andreas Oschlies
Biogeosciences, 17, 3057–3082, https://doi.org/10.5194/bg-17-3057-2020,https://doi.org/10.5194/bg-17-3057-2020, 2020
Short summary
Phytoplankton calcifiers control nitrate cycling and the pace of transition in warming icehouse and cooling greenhouse climates
Karin F. Kvale, Katherine E. Turner, Angela Landolfi, and Katrin J. Meissner
Biogeosciences, 16, 1019–1034, https://doi.org/10.5194/bg-16-1019-2019,https://doi.org/10.5194/bg-16-1019-2019, 2019
Short summary
Primary production sensitivity to phytoplankton light attenuation parameter increases with transient forcing
Karin F. Kvale and Katrin J. Meissner
Biogeosciences, 14, 4767–4780, https://doi.org/10.5194/bg-14-4767-2017,https://doi.org/10.5194/bg-14-4767-2017, 2017
Short summary

Related subject area

Climate and Earth system modeling
Architectural insights into and training methodology optimization of Pangu-Weather
Deifilia To, Julian Quinting, Gholam Ali Hoshyaripour, Markus Götz, Achim Streit, and Charlotte Debus
Geosci. Model Dev., 17, 8873–8884, https://doi.org/10.5194/gmd-17-8873-2024,https://doi.org/10.5194/gmd-17-8873-2024, 2024
Short summary
Evaluation of global fire simulations in CMIP6 Earth system models
Fang Li, Xiang Song, Sandy P. Harrison, Jennifer R. Marlon, Zhongda Lin, L. Ruby Leung, Jörg Schwinger, Virginie Marécal, Shiyu Wang, Daniel S. Ward, Xiao Dong, Hanna Lee, Lars Nieradzik, Sam S. Rabin, and Roland Séférian
Geosci. Model Dev., 17, 8751–8771, https://doi.org/10.5194/gmd-17-8751-2024,https://doi.org/10.5194/gmd-17-8751-2024, 2024
Short summary
Evaluating downscaled products with expected hydroclimatic co-variances
Seung H. Baek, Paul A. Ullrich, Bo Dong, and Jiwoo Lee
Geosci. Model Dev., 17, 8665–8681, https://doi.org/10.5194/gmd-17-8665-2024,https://doi.org/10.5194/gmd-17-8665-2024, 2024
Short summary
Software sustainability of global impact models
Emmanuel Nyenah, Petra Döll, Daniel S. Katz, and Robert Reinecke
Geosci. Model Dev., 17, 8593–8611, https://doi.org/10.5194/gmd-17-8593-2024,https://doi.org/10.5194/gmd-17-8593-2024, 2024
Short summary
fair-calibrate v1.4.1: calibration, constraining, and validation of the FaIR simple climate model for reliable future climate projections
Chris Smith, Donald P. Cummins, Hege-Beate Fredriksen, Zebedee Nicholls, Malte Meinshausen, Myles Allen, Stuart Jenkins, Nicholas Leach, Camilla Mathison, and Antti-Ilari Partanen
Geosci. Model Dev., 17, 8569–8592, https://doi.org/10.5194/gmd-17-8569-2024,https://doi.org/10.5194/gmd-17-8569-2024, 2024
Short summary

Cited articles

Antonov, J., Seidov, D., Boyer, T. P., Locarnini, R. A., Mishonov, A., Garcia, H., Baranova, O., Zweng, M. M., and Johnson, D.: World Ocean Atlas 2009, Volume 2: Salinity, Tech. rep., NOAA Atlas NESDIS 69, U.S. Government Printing Office, Washington, DC, 2010.
Balay, S., Gropp, W. D., McInnes, L. C., and Smith, B. F.: PETSc Users Manual, Tech. Rep. ANL-95/11 – Revision 2.1.5, Argonne National Laboratory, 2003.
Coleman, T. F. and Moré, J. J.: Estimation of sparse Jacobian matrices and graph coloring problems, SIAM J. Numer. Anal., 20, 187–209, 1983.
Curtis, A. R., Powell, M. J. D., and Reid, J. K.: On the estimation of sparse Jacobian matrices, J. Inst. Math. Appl., 13, 117–119, 1974.
Duteil, O., Koeve, W., Oschlies, A., Bianchi, D., Galbraith, E., Kriest, I., and Matear, R.: A novel estimate of ocean oxygen utilisation points to a reduced rate of respiration in the ocean interior, Biogeosciences, 10, 7723–7738, https://doi.org/10.5194/bg-10-7723-2013, 2013.
Download
Short summary
Computer models of ocean biology and chemistry are becoming increasingly complex, and thus more expensive, to run. One solution is to approximate the behaviour of the ocean physics and store that information outside of the model. That offline information can then be used to calculate a steady-state solution from the model's biology and chemistry, without waiting for a traditional online integration to complete. We show this offline method reproduces online results and is 100 times faster.