Articles | Volume 10, issue 6
Geosci. Model Dev., 10, 2425–2445, 2017
https://doi.org/10.5194/gmd-10-2425-2017

Special issue: The Transport Matrix Method (TMM) for ocean biogeochemical...

Geosci. Model Dev., 10, 2425–2445, 2017
https://doi.org/10.5194/gmd-10-2425-2017
Model evaluation paper
29 Jun 2017
Model evaluation paper | 29 Jun 2017

Evaluation of the transport matrix method for simulation of ocean biogeochemical tracers

Karin F. Kvale et al.

Related authors

Explicit silicate cycling in the Kiel Marine Biogeochemistry Model version 3 (KMBM3) embedded in the UVic ESCM version 2.9
Karin Kvale, David P. Keller, Wolfgang Koeve, Katrin J. Meissner, Christopher J. Somes, Wanxuan Yao, and Andreas Oschlies
Geosci. Model Dev., 14, 7255–7285, https://doi.org/10.5194/gmd-14-7255-2021,https://doi.org/10.5194/gmd-14-7255-2021, 2021
Short summary
One size fits all? Calibrating an ocean biogeochemistry model for different circulations
Iris Kriest, Paul Kähler, Wolfgang Koeve, Karin Kvale, Volkmar Sauerland, and Andreas Oschlies
Biogeosciences, 17, 3057–3082, https://doi.org/10.5194/bg-17-3057-2020,https://doi.org/10.5194/bg-17-3057-2020, 2020
Short summary
Phytoplankton calcifiers control nitrate cycling and the pace of transition in warming icehouse and cooling greenhouse climates
Karin F. Kvale, Katherine E. Turner, Angela Landolfi, and Katrin J. Meissner
Biogeosciences, 16, 1019–1034, https://doi.org/10.5194/bg-16-1019-2019,https://doi.org/10.5194/bg-16-1019-2019, 2019
Short summary
Primary production sensitivity to phytoplankton light attenuation parameter increases with transient forcing
Karin F. Kvale and Katrin J. Meissner
Biogeosciences, 14, 4767–4780, https://doi.org/10.5194/bg-14-4767-2017,https://doi.org/10.5194/bg-14-4767-2017, 2017
Short summary
Explicit planktic calcifiers in the University of Victoria Earth System Climate Model
K. F. Kvale, K. J. Meissner, D. P. Keller, M. Eby, and A. Schmittner
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-7-1709-2014,https://doi.org/10.5194/gmdd-7-1709-2014, 2014
Revised manuscript not accepted

Related subject area

Climate and Earth system modeling
A derivative-free optimisation method for global ocean biogeochemical models
Sophy Oliver, Coralia Cartis, Iris Kriest, Simon F. B Tett, and Samar Khatiwala
Geosci. Model Dev., 15, 3537–3554, https://doi.org/10.5194/gmd-15-3537-2022,https://doi.org/10.5194/gmd-15-3537-2022, 2022
Short summary
Empirical values and assumptions in the convection schemes of numerical models
Anahí Villalba-Pradas and Francisco J. Tapiador
Geosci. Model Dev., 15, 3447–3518, https://doi.org/10.5194/gmd-15-3447-2022,https://doi.org/10.5194/gmd-15-3447-2022, 2022
Short summary
Precipitation over southern Africa: is there consensus among global climate models (GCMs), regional climate models (RCMs) and observational data?
Maria Chara Karypidou, Eleni Katragkou, and Stefan Pieter Sobolowski
Geosci. Model Dev., 15, 3387–3404, https://doi.org/10.5194/gmd-15-3387-2022,https://doi.org/10.5194/gmd-15-3387-2022, 2022
Short summary
On the impact of dropsondes on the ECMWF Integrated Forecasting System model (CY47R1) analysis of convection during the OTREC (Organization of Tropical East Pacific Convection) field campaign
Stipo Sentić, Peter Bechtold, Željka Fuchs-Stone, Mark Rodwell, and David J. Raymond
Geosci. Model Dev., 15, 3371–3385, https://doi.org/10.5194/gmd-15-3371-2022,https://doi.org/10.5194/gmd-15-3371-2022, 2022
Short summary
Assessment of the sea surface temperature diurnal cycle in CNRM-CM6-1 based on its 1D coupled configuration
Aurore Voldoire, Romain Roehrig, Hervé Giordani, Robin Waldman, Yunyan Zhang, Shaocheng Xie, and Marie-Nöelle Bouin
Geosci. Model Dev., 15, 3347–3370, https://doi.org/10.5194/gmd-15-3347-2022,https://doi.org/10.5194/gmd-15-3347-2022, 2022
Short summary

Cited articles

Antonov, J., Seidov, D., Boyer, T. P., Locarnini, R. A., Mishonov, A., Garcia, H., Baranova, O., Zweng, M. M., and Johnson, D.: World Ocean Atlas 2009, Volume 2: Salinity, Tech. rep., NOAA Atlas NESDIS 69, U.S. Government Printing Office, Washington, DC, 2010.
Balay, S., Gropp, W. D., McInnes, L. C., and Smith, B. F.: PETSc Users Manual, Tech. Rep. ANL-95/11 – Revision 2.1.5, Argonne National Laboratory, 2003.
Coleman, T. F. and Moré, J. J.: Estimation of sparse Jacobian matrices and graph coloring problems, SIAM J. Numer. Anal., 20, 187–209, 1983.
Curtis, A. R., Powell, M. J. D., and Reid, J. K.: On the estimation of sparse Jacobian matrices, J. Inst. Math. Appl., 13, 117–119, 1974.
Duteil, O., Koeve, W., Oschlies, A., Bianchi, D., Galbraith, E., Kriest, I., and Matear, R.: A novel estimate of ocean oxygen utilisation points to a reduced rate of respiration in the ocean interior, Biogeosciences, 10, 7723–7738, https://doi.org/10.5194/bg-10-7723-2013, 2013.
Download
Short summary
Computer models of ocean biology and chemistry are becoming increasingly complex, and thus more expensive, to run. One solution is to approximate the behaviour of the ocean physics and store that information outside of the model. That offline information can then be used to calculate a steady-state solution from the model's biology and chemistry, without waiting for a traditional online integration to complete. We show this offline method reproduces online results and is 100 times faster.