Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.240
IF5.240
IF 5-year value: 5.768
IF 5-year
5.768
CiteScore value: 8.9
CiteScore
8.9
SNIP value: 1.713
SNIP1.713
IPP value: 5.53
IPP5.53
SJR value: 3.18
SJR3.18
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 51
h5-index51
Volume 10, issue 1
Geosci. Model Dev., 10, 127–154, 2017
https://doi.org/10.5194/gmd-10-127-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: The Transport Matrix Method (TMM) for ocean biogeochemical...

Geosci. Model Dev., 10, 127–154, 2017
https://doi.org/10.5194/gmd-10-127-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Methods for assessment of models 09 Jan 2017

Methods for assessment of models | 09 Jan 2017

Calibrating a global three-dimensional biogeochemical ocean model (MOPS-1.0)

Iris Kriest et al.

Related authors

One size fits all? Calibrating an ocean biogeochemistry model for different circulations
Iris Kriest, Paul Kähler, Wolfgang Koeve, Karin Kvale, Volkmar Sauerland, and Andreas Oschlies
Biogeosciences, 17, 3057–3082, https://doi.org/10.5194/bg-17-3057-2020,https://doi.org/10.5194/bg-17-3057-2020, 2020
Short summary
The effect of marine aggregate parameterisations on nutrients and oxygen minimum zones in a global biogeochemical model
Daniela Niemeyer, Iris Kriest, and Andreas Oschlies
Biogeosciences, 16, 3095–3111, https://doi.org/10.5194/bg-16-3095-2019,https://doi.org/10.5194/bg-16-3095-2019, 2019
Short summary
Calibration of a simple and a complex model of global marine biogeochemistry
Iris Kriest
Biogeosciences, 14, 4965–4984, https://doi.org/10.5194/bg-14-4965-2017,https://doi.org/10.5194/bg-14-4965-2017, 2017
Short summary
Evaluation of the transport matrix method for simulation of ocean biogeochemical tracers
Karin F. Kvale, Samar Khatiwala, Heiner Dietze, Iris Kriest, and Andreas Oschlies
Geosci. Model Dev., 10, 2425–2445, https://doi.org/10.5194/gmd-10-2425-2017,https://doi.org/10.5194/gmd-10-2425-2017, 2017
Short summary
Reviews and syntheses: parameter identification in marine planktonic ecosystem modelling
Markus Schartau, Philip Wallhead, John Hemmings, Ulrike Löptien, Iris Kriest, Shubham Krishna, Ben A. Ward, Thomas Slawig, and Andreas Oschlies
Biogeosciences, 14, 1647–1701, https://doi.org/10.5194/bg-14-1647-2017,https://doi.org/10.5194/bg-14-1647-2017, 2017
Short summary

Related subject area

Biogeosciences
Short-term forecasting of regional biospheric CO2 fluxes in Europe using a light-use-efficiency model (VPRM, MPI-BGC version 1.2)
Jinxuan Chen, Christoph Gerbig, Julia Marshall, and Kai Uwe Totsche
Geosci. Model Dev., 13, 4091–4106, https://doi.org/10.5194/gmd-13-4091-2020,https://doi.org/10.5194/gmd-13-4091-2020, 2020
Short summary
FLiES-SIF version 1.0: three-dimensional radiative transfer model for estimating solar induced fluorescence
Yuma Sakai, Hideki Kobayashi, and Tomomichi Kato
Geosci. Model Dev., 13, 4041–4066, https://doi.org/10.5194/gmd-13-4041-2020,https://doi.org/10.5194/gmd-13-4041-2020, 2020
Short summary
The importance of management information and soil moisture representation for simulating tillage effects on N2O emissions in LPJmL5.0-tillage
Femke Lutz, Stephen Del Grosso, Stephen Ogle, Stephen Williams, Sara Minoli, Susanne Rolinski, Jens Heinke, Jetse J. Stoorvogel, and Christoph Müller
Geosci. Model Dev., 13, 3905–3923, https://doi.org/10.5194/gmd-13-3905-2020,https://doi.org/10.5194/gmd-13-3905-2020, 2020
Short summary
Evaluation of CH4MODwetland and Terrestrial Ecosystem Model (TEM) used to estimate global CH4 emissions from natural wetlands
Tingting Li, Yanyu Lu, Lingfei Yu, Wenjuan Sun, Qing Zhang, Wen Zhang, Guocheng Wang, Zhangcai Qin, Lijun Yu, Hailing Li, and Ran Zhang
Geosci. Model Dev., 13, 3769–3788, https://doi.org/10.5194/gmd-13-3769-2020,https://doi.org/10.5194/gmd-13-3769-2020, 2020
Short summary
Simulating stable carbon isotopes in the ocean component of the FAMOUS general circulation model with MOSES1 (XOAVI)
Jennifer E. Dentith, Ruza F. Ivanovic, Lauren J. Gregoire, Julia C. Tindall, and Laura F. Robinson
Geosci. Model Dev., 13, 3529–3552, https://doi.org/10.5194/gmd-13-3529-2020,https://doi.org/10.5194/gmd-13-3529-2020, 2020
Short summary

Cited articles

Anderson, L.: On the hydrogen and oxygen content of marine phytoplankton, Deep-Sea Res. Pt. I, 42, 1675–1680, 1995.
Anderson, L. and Sarmiento, J.: Redfield ratios of remineralization determined by nutrient data analysis, Global Biogeochem. Cy., 8, 65–80, 1994.
Arnold, D. V.: Weighted multirecombination evolution strategies, Lect. Notes Comput. Sc., 361, 18–37, 2006.
Athias, V., Mazzega, P., and Jeandel, C.: Selecting a global optimization method to estimate the oceanic particle cycling rate constants, J. Mar. Res., 58, 675–707, 2000.
Auger, A., Brockhoff, D., and Hansen, N.: Benchmarking the local metamodel CMA-ES on the noiseless BBOB'2013 test bed, in: Genetic and Evolutionary Computation Conference, GECCO 2013, Amsterdam, the Netherlands, 6–10 July 2013, Companion Material Proceedings, 1225–1232, 2013.
Publications Copernicus
Download
Short summary
Global biogeochemical ocean models are subject to a high level of parametric uncertainty. This may be of consequence for their skill with respect to accurately describing features of the present ocean and their sensitivity to possible environmental changes. We present the first results from a framework that combines an offline biogeochemical tracer transport model with an estimation of distribution algorithm, calibrating six biogeochemical model parameters against observed oxygen and nutrients.
Global biogeochemical ocean models are subject to a high level of parametric uncertainty. This...
Citation