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Abstract. Global biogeochemical ocean models contain a
variety of different biogeochemical components and often
much simplified representations of complex dynamical in-
teractions, which are described by many (≈ 10 to ≈ 100)
parameters. The values of many of these parameters are em-
pirically difficult to constrain, due to the fact that in the mod-
els they represent processes for a range of different groups of
organisms at the same time, while even for single species pa-
rameter values are often difficult to determine in situ. There-
fore, these models are subject to a high level of parametric
uncertainty. This may be of consequence for their skill with
respect to accurately describing the relevant features of the
present ocean, as well as their sensitivity to possible environ-
mental changes.

We here present a framework for the calibration of global
biogeochemical ocean models on short and long timescales.
The framework combines an offline approach for transport
of biogeochemical tracers with an estimation of distribution
algorithm (Covariance Matrix Adaption Evolution Strategy,
CMA-ES). We explore the performance and capability of
this framework by five different optimizations of six bio-
geochemical parameters of a global biogeochemical model,
simulated over 3000 years. First, a twin experiment explores
the feasibility of this approach. Four optimizations against
a climatology of observations of annual mean dissolved nu-
trients and oxygen determine the extent to which different
setups of the optimization influence model fit and parame-
ter estimates. Because the misfit function applied focuses on
the large-scale distribution of inorganic biogeochemical trac-
ers, parameters that act on large spatial and temporal scales
are determined earliest, and with the least spread. Parameters

more closely tied to surface biology, which act on shorter
timescales, are more difficult to determine. In particular, the
search for optimum zooplankton parameters can benefit from
a sound knowledge of maximum and minimum parameter
values, leading to a more efficient optimization. It is encour-
aging that, although the misfit function does not contain any
direct information about biogeochemical turnover, the opti-
mized models nevertheless provide a better fit to observed
global biogeochemical fluxes.

1 Introduction

Global ocean models that simulate biogeochemical interac-
tions are subject to many uncertainties, among them those
related to initial conditions, forcing, and parameterizations
of physical and biological processes, as well as the adequacy
of the chosen model complexity with respect to the scientific
problem under investigation. It is generally assumed that all
these “input” factors affect the simulation results in ways that
may be different for different models, but a thorough under-
standing of how uncertainties in input map onto model output
(residuals, i.e., deviations from the true state) is still lacking.
Quantitative estimates of the effect of model uncertainty on
model residuals are generally obtained from individual sensi-
tivity studies and model intercomparison or model ensemble
studies, where the spread of model results is regarded as a
measure of model uncertainty. This procedure is, for exam-
ple, followed in the assessment reports of the Intergovern-
mental Project of Climate Change (IPCC). The Ocean Car-
bon Model Intercomparison Project (OCMIP) applied a strict

Published by Copernicus Publications on behalf of the European Geosciences Union.



128 I. Kriest et al.: Calibrating a global biogeochemical ocean model

protocol regarding the description of biogeochemical pro-
cesses to a suite of different ocean circulation models to show
that the effect of uncertainties in the simulated circulation on
biogeochemical tracer distributions and their residuals can be
considerable (Orr et al., 2001; Najjar et al., 2007). However,
the effect of uncertainties in the formulation of biogeochem-
ical models on simulated biogeochemical tracers and fluxes
can be of similar magnitude (Kriest et al., 2010) and is of-
ten difficult to disentangle from other sources of uncertainty
(e.g., Cabre et al., 2015; Seferian et al., 2016). One reason
for diverging results of global biogeochemical models can
be related to the uncertainty with respect to biological con-
stants and equations. In addition to often poorly constrained
parameters, it is, so far, not even clear how complex a biogeo-
chemical model should be (e.g., what state variables it should
contain) in order to realistically reproduce observed global
tracer distributions (Kriest et al., 2012). As a consequence,
the diversity of biogeochemical models ranges from simple,
“nutrient-only” models to far more complex ones, compris-
ing different elemental cycles and biological components.

Uncertainties in biogeochemical model setup partly arise
from sparse observations, particularly in the open ocean and
during winter season in the high latitudes (Kriest et al.,
2010). Further, the combined effects of shallow and deep
biogeochemistry and ocean circulation introduce a variety of
timescales, from minutes to millennia, hampering a complete
and thorough investigation of the combined effects of the dif-
ferent process parameterizations. Finally, even quite simple
biogeochemical models are often characterized by nonlinear
interactions, complicating the a posteriori analysis of model
results. By performing a relatively “coarse sweep” of the
multidimensional model parameter space, Kriest et al. (2010,
2012) illustrated the impact of different model complexities
and parameter sets on simulated tracers and their fit to ob-
servations. This first attempt to systematically explore the
impacts of biogeochemical parameter uncertainty in global
models may well have missed optimal regions in parameter
space, making it difficult to decide whether a model performs
badly due to ill-chosen parameters, or due to an inappropriate
model structure. The development of automatic optimization
of global ocean biogeochemical models that is the goal of
this study should enable a more thorough search for “best”
parameters, and thus facilitate inter-model comparison.

An under-sampled ocean, together with a large variety of
timescales and space scales and a high level of structural
model complexity, poses a challenge for optimization, and
for a full, and dense enough, scan of the parameter space
on a global scale. Therefore, optimization of marine biogeo-
chemical models has mostly been carried out in a local, zero-
or one-dimensional setting (e.g., Fasham and Evans, 1995;
Athias et al., 2000; Rückelt et al., 2010; Ward et al., 2010).
The variability of biogeochemical processes has been ad-
dressed by simultaneous optimization at different sites (and
physical forcings) in the North Atlantic by Schartau and Os-
chlies (2003a, b). Given the high computational demands,

and the sparsity of biogeochemical data on a global scale,
attempts to address the indeterminacy of global simulations
of ocean biogeochemistry via optimization have resorted to
rather simple biogeochemical systems (Kwon and Primeau,
2006, 2008) or to rather coarse physical model resolution
(Tjiputra et al., 2007). To constrain parameters related to dis-
solved organic matter production and decay on short and long
timescales, Letscher et al. (2015) alternated between a sim-
plified biogeochemical system and a more complex model,
which is limited in terms of spinup time. Recent attempts
have begun to combine complex, local models and a de-
tailed three-dimensional global environment for optimization
(Hemmings et al., 2015). To our knowledge, however, the
experiments presented here are the first ones that, for a state-
of-the-art global biogeochemical ocean model, carry out a
parameter optimization that targets parameters relevant for
biogeochemical processes on both large and small scales in
the full spatio-temporal domain.

In this paper we first test the global biogeochemical model
optimization against synthetic data, derived from a previous
model experiment with perturbed model parameters in so-
called twin experiments. We then present four optimizations
against a global, synoptic data set of observed phosphate, ni-
trate, and oxygen.

2 Methods

2.1 Biogeochemical ocean model

2.1.1 Circulation framework

For easy and generic coupling between different biogeo-
chemical models and circulation fields, as well as fast
and efficient computation, we use the Transport Matrix
Method (TMM), developed by Samar Khatiwala (Khati-
wala, 2007), and available via Github (https://github.com/
samarkhatiwala/tmm). This efficient “offline” method for
ocean passive tracer transport represents advection and mix-
ing in the form of transport matrices that have been calcu-
lated from an ocean circulation model simulation prior to the
biogeochemical simulations performed here.

For optimization, we use the TMM with monthly mean
transport matrices derived from a 2.8◦ global configuration of
the MIT ocean model with 15 levels in the vertical (Marshall
et al., 1997). Using this rather coarse spatial grid, a time step
length of 1/2 day for tracer transport and 1/16 day for bio-
geochemical interactions, each biogeochemical model setup
with seven tracers has been simulated for 3000 years, after
which most of the tracers approach steady state.

2.1.2 Biogeochemical model

The biogeochemical model employed as representative of
current state-of-the-art models is the same as presented
by Kriest and Oschlies (2015, hereafter called MOPS –
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Model of Oceanic Pelagic Stoichiometry), and we only de-
scribe it briefly here. Based on phosphorus, it consists of
seven tracers, namely phosphate, dissolved inorganic ni-
trogen (hereafter termed and compared to nitrate), phy-
toplankton, zooplankton, detritus, dissolved organic mat-
ter (DOM), and oxygen. For conversion between the dif-
ferent elements we apply a constant global stoichiometry
of R−O2 :P = 170 mmol O2 : mmol P for the ratio between
O2 : P, and 16 mmol N : mmol P for the N : P ratio of particu-
lar and dissolved organic matter. The stoichiometry of aero-
bic and anaerobic remineralization is based on Paulmier et al.
(2009). Remineralization of detritus and DOM is parameter-
ized via a constant nominal remineralization rate, r = 0.05
(d−1). However, aerobic remineralization is restricted to re-
gions with sufficient oxygen. If oxygen declines, nitrate is
used as electron acceptor, thereby mimicking denitrifica-
tion. If both oxygen and nitrate are depleted, remineraliza-
tion of organic matter is suppressed in the model. Aerobic
and anaerobic remineralization are parameterized as satura-
tion (Monod-type) curves that regulate the rates of these pro-
cesses using either oxidant, as well as the inhibition of den-
itrification by oxygen. Thus, the actual remineralization rate
may differ from r , depending on oxidant availability. Tem-
perature dependent nitrogen fixation resupplies fixed nitro-
gen lost through denitrification via relaxation at the sea sur-
face to the stoichiometric ratio of 16. Thus, while the total
phosphate inventory is conserved, the oxygen and fixed ni-
trogen inventory may change during the course of the simu-
lation, with the long-term, steady-state inventory depending
on physics and biogeochemistry (Kriest and Oschlies, 2015).

Sinking of detritus is simulated using a sinking speed in-
creasing with depthw = a z (d−1). Assuming a constant rem-
ineralization rate r , equilibrium conditions, and the absence
of horizontal or vertical advection, this would result in a par-
ticle flux profile defined by F(z)∝ z−b, where b = r/a (see
also Kriest and Oschlies, 2008). For better comparison to
observed particle flux profiles (e.g., Martin et al., 1987), in
the following we express the sinking speed via the parame-
ter b = r/a (see Kriest and Oschlies, 2008). The model also
includes burial of particulate organic phosphorus and nitro-
gen arriving at the sea floor, which is resupplied globally as
phosphate and nitrate via river runoff (Kriest and Oschlies,
2013).

Simulating both surface (primary production, grazing,
egestion and excretion by zooplankton) as well as deep (sink-
ing and decay of organic matter) processes before the back-
ground of ocean circulation and seasonally varying forcing,
the model thus encompasses processes that act on a variety
of timescales, from the order of hours to days (surface) to
months and years.

2.2 The CMA-ES optimization algorithm

2.2.1 Population based search heuristics

The TMM as described above is fast enough to be used to-
gether with meta-heuristic methods for parameter optimiza-
tion, such as Evolutionary Algorithms (EAs) or Estimation
of Distribution Algorithms (EDAs). Although these methods
require more function evaluations to converge to some local
optimum than gradient based methods, they are of advantage
in complicated, irregular “search landscapes” with local op-
tima (which might be far worse than the global optimum), or
discontinuities.

The common goal of such population based meta-
heuristics is to strike a good balance of both search prop-
erties, exploration (search for promising solutions in a wide
area of the search space), and exploitation (search within
small regions around good solutions to quickly reach local
optima). Classical evolutionary algorithms as depicted on the
left of Fig. 1 mimic principles of natural evolution to pursue
that goal. They use randomized procedures to select, com-
bine, mutate, and reinsert candidate solutions (individuals)
from/into a given solution set (population). In each iteration,
these mechanisms (red operations in Fig. 1) indirectly imply
a probability distribution on the search space with respect to
which individuals are likely to appear in the next “genera-
tion”. The implied probability distribution changes in each
generation, tending to increase the probabilities of good so-
lutions and to decrease the probabilities of poor solutions due
to the survival-of-the-fittest principle.

In contrast to classical EAs, Estimation of Distribution Al-
gorithms (sketched on the right of Fig. 1) use an explicit (pa-
rameterized) probability distribution from which candidate
solutions are sampled directly. In each iteration, the probabil-
ity distribution is also updated directly by utilizing good so-
lutions of the current iteration. Good solutions of preceding
iterations are (optionally) considered by involving preceding
probability distributions into the update process using auxil-
iary variables. Evolutionary frameworks use operators (EAs)
and probability distributions (EDAs) that are appropriate for
the search space under consideration. For example, so-called
quantum inspired evolutionary algorithms (QiEA) have been
shown to be very suitable EDAs for binary problems (e.g.,
Kliemann et al., 2013; Patvardhan et al., 2015, 2016). QiEA
versions for continuous problems have also been investigated
in the literature (Babu et al., 2009).

Here we use a state-of-the-art EDA for optimization of
(firstly) six parameters. Our task can be classified as a con-
tinuous optimization problem with bound constraints, i.e.,
boundaries for the parameters. One appropriate EA/EDA
tool is the Covariance Matrix Adaption Evolution Strategy
(CMA-ES; Hansen and Ostermeier, 2001; Hansen, 2006),
which has shown good performance with respect to quality
and efficiency (in terms of function evaluations) in similar
applications. Hansen et al. (2010) compare 31 algorithms on
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Figure 1. A general EA (left) and EDA (right) schematic. Cycles represent sets of solutions (vectors of BGC parameters in our case) or an
explicit probability distribution from which new solutions can be drawn. Rectangle symbols depict operations. Operations displayed in red
font depend on random decisions. EA: a set of candidate solutions (population) is iteratively updated. In each generation, candidate solutions
compete to form a mating pool which is realized by a random selection operator. Offspring solutions are produced by recombining mates
and/or introducing some mutation. Finally, there is a fitness based insertion back into the population, which is usually trimmed to a predefined
population size. The random operators selection, recombination, and mutation imply an implicit probability distribution on the search space
with respect to which solutions are likely to appear in the next generation. EDA: candidate solutions of the current iteration’s population are
used to update an explicit probability distribution such that the likelihood to sample good solutions increases. New candidate solutions are
directly sampled from the probability distribution. Usually, the realization of the probability distribution update ensures that information of
former solutions fades out slowly, resisting for several iterations. Therefore, the population may be smaller as an EA population and even be
replaced with the entire set of new samples, which is the case for the CMA-ES algorithm we use.

a test bed of 24 continuous benchmark functions presented
in Hansen et al. (2009a), finding CMA-ES versions to per-
form well, particularly on multi-modal test functions. CMA-
ES is invariant regarding both order-preserving transforma-
tions of the objective function and rotations and translations
of the search space. Invariances of a strategy justify general-
izations of empirical results, which encouraged us to choose
CMA-ES for our application.

We essentially follow the description of the (µ/µw,λ)–
CMA-ES in Hansen (2016). In Sect. 2.2.2, we illustrate how
the distribution is sampled and modified. For the sake of
completeness, we present the guiding ideas behind the ex-
act procedures in Sect. 2.2.3–2.2.6. The algorithm outline
can be found in Sect. 2.3. This basic version does not con-
sider bound constraints. We therefore use a penalty function
based boundary handling (Hansen et al., 2009b) which we
will briefly explain in Sect. 2.2.7.

2.2.2 Normal distributions

In CMA-ES the distribution from which candidate solutions
(BGC parameter vectors in our application) are sampled is
a multi-variate normal distribution. It generalizes the usual
normal distribution, also known as Gaussian distribution,
from R to the vector space Rn with arbitrary dimension n,
given by the number of biogeochemical parameters to be es-
timated. The position and the shape of the one-dimensional

normal distribution (more precisely, its density function) is
uniquely defined by its mean and its variance, respectively.

A measure of the “diversity” of a probability distribution
is the so-called (differential) entropy. For a given variance,
the normal distribution has the maximum entropy amongst
all distributions with the same variance (Cover and Thomas,
2006; Hansen, 2016). Entropy is used as an index of diversity,
though it does not directly mean the same as diversity (Jost,
2006).

An EDA that works with Gaussian distributions is sup-
posed to carefully update both defining distribution param-
eters mean and variance, in order to balance its exploration
and exploitation ability. This update process is illustrated
in Fig. 2. The left side shows a run of the CMA-ES algo-
rithm on a uni-variate test function (a misuse to some de-
gree, as CMA-ES is actually not suggested to be applied
with problem dimensions less than 5). The test function has
many local optima in which a gradient based search might
get stuck. From the distributions (the blue density functions),
we draw 10 samples per iteration (some samples more than
the suggested default number, which depends on the prob-
lem dimension; cf. Sect. 2.3.1). Each sample together with
its function value is marked with a dot. The distribution is
updated by involving the better half (CMA-ES default por-
tion) of the samples (blue dots). Drawing more samples per
iteration generally improves the exploration capability of the
algorithm but requires correspondingly more function eval-
uations. We can observe that the mean of the distribution is
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Figure 2. Iterations of the CMA-ES applied to test functions. Left: a uni-variate Griewank-type function f (grey curve). In each iteration we
draw λ= 10 samples from the normal distribution (blue curve). For each sample xi , the pair (xi ,f (xi)) is marked with a dot. The µ= λ

2 = 5
better samples (blue dots) are involved in the normal distribution update for the next iteration. Right: two-dimensional sphere function. Here,
samples are marked with dots, while function values are indicated by the grey levels in the counter plots; the ith grey level represents the
range

[
i−1

2 , i2

)
. More samples (50) than necessary are used to update the distribution, which is indicated by its standard deviation ellipse

(black), here. Distributions tend to elongate into directions of descent (iteration 2). For the convex example function, the algorithm converges
after a few iterations.

attracted towards the good samples, then. Also, the distribu-
tion shape widens, after good samples had some distance to
each other and/or some distance to the current mean. Vice
versa, if all good samples are close to the mean, the shape
will narrow, again. Now, the mean of the distribution is sup-
posed to drift towards the global optimum and should then
start to narrow more and more. This behavior is observed in
iterations 16, 22, and 28. So, when necessary, the procedure
is supposed to become less exploring but more exploiting.

Similarly to the definition of the uni-variate Gaussian dis-
tribution by mean and variance, a multi-variate normal dis-
tribution can be uniquely identified by a mean vector x and
a positive definite matrix C of covariances, respectively, and
is denoted by N (x,C). Again, the mean defines the center
of the distribution, while the covariance matrix defines its
shape. The area of 1 standard deviation which is an inter-
val [x−σ,x+σ ] in the one-dimensional case becomes an n-
dimensional ellipsoid, now (cf. the ellipses on the right side
of Fig. 2 for n= 2). It can be shown that the principal axes of
the ellipsoid correspond to C’s eigenvalues and eigenvectors,
respectively. More precisely, an eigenvector defines the ori-
entation of a principal axis and the square root of the corre-
sponding eigenvalue defines the length of that principal axis.

2.2.3 Sampling the distribution

Sampling a multi-variate normal distributionN (x,C) can be
practically implemented using an eigendecomposition C=
BD2BT, where D2 is a diagonal matrix of eigenvalues of C
and B is a matrix of corresponding orthonormal eigenvec-

tors of C. One sample x ∈ Rn of N (x,C) can be realized by
drawing n independent random numbers from the uni-variate
standard normal distributionN (0,1) to be the components of
a random vector z ∈ Rn and setting x = x+BDz.

Note that for our problem there are bound constraints on
the parameters such that samples of a normal distribution
might be infeasible, regardless of whether the distribution
mean is feasible or not. However, a boundary handling proce-
dure (see Sect. 2.2.7) will ensure that the optimization result
of CMA-ES is feasible.

2.2.4 Updating the distribution: basic principle

Empirical (re)estimates xemp and Cemp of the distribution pa-
rameters can be calculated from a set S = {x1, . . .,xλ} of λ
samples, such that the expectation of xemp is x and the ex-
pectation of Cemp is C:

xemp = 1
λ

λ∑
i=1

xi,

Cemp = 1
λ− 1

λ∑
i=1
(xi − xemp)(xi − xemp)

T.

Note that each vector v in this work is a column vector and
its transposed vector vT is a row vector. The products under
the sum in the second formula are therefore n-by-n matrices.

Clearly, the estimates become more reliable the larger λ
is. We may assume that the population S is increasingly
ordered (ranked) with respect to the considered objective
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Table 1. Operational constants of the CMA-ES algorithm (cf. the initialization in Algorithm 1).

Selection and recombination Step size control Covariance matrix adaption

λ= 4+b3lognc χ =√n
(

1− 1
4n + 1

21n2

)
cc = 4+µeff/n

n+4+2µeff/n

µ= bλ2 c cσ = µeff+2
n+µeff+5 cµ =min

(
1− c1, 2µeff+1/µeff−2

(n+2)2+µeff

)
wi = log(µ+0.5)−log(i)∑µ

j=1 log(µ+0.5)−log(j)
c1 = 2

(n+1.3)2+µeff

µeff =
(∑µ

i=1wi
)2∑µ

i=1w
2
i

= 1∑µ
i=1w

2
i

function f : Rn −→ R, that is, f (x1)≤ f (x2). . .≤ f (xλ).
Now, by involving only the better half of µ= bλ2 c sam-
ples, their distribution estimateN (xµ,Cµ) with correspond-
ing parameters xµ and Cµ will be biased towards reproduc-
ing µ samples with higher probability than the other λ–µ
samples. CMA-ES uses positive values w1 ≥ w2 ≥ . . .≥ wµ
with

∑n
i=1wi = 1 to give solutions a rank dependent weight

in the updating process of both, xµ and Cµ. The exact CMA-
ES formula for the w values and information about its back-
ground is found in Sect. 2.3.1. The new mean is, thus, cal-
culated as xµ =∑µ

i=1wixi . A subtlety is the choice of the
reference mean value used for estimating Cµ. Instead of the
new empirical mean xµ, the mean x of the former distribu-
tion is chosen and yields

Cµ =
µ∑
i=1

wi(xi − x)(xi − x)T. (1)

It has the effect that the new distribution is elongated into
directions of descent (see iteration 2 in the right example of
Fig. 2).

2.2.5 Updating the distribution: reliability with small
populations

As mentioned above, reliable distribution estimates require
a sufficiently large number of samples. However, for a com-
petitive computational performance we must get along with a
rather small number of samples. CMA-ES therefore involves
the information of former populations by updating the co-
variance matrix C to be a (convex) combination of both the
current C and its estimate Cµ, that is,

C ← (1− cµ)C+ cµCµ. (2)

Using this formula, it can be shown that 37 % of the current
matrix C’s information dates back at least b 1

cµ
c generations;

that is, the choice of the smoothing factor cµ decides the
backward time horizon of the update procedure. The smaller
the factor cµ in Eq. (2) is, the more former samples contribute
to the current distribution estimate, slowing down learning
but being more reliable, with fewer samples per iteration.
For example, the experiments in this paper use n= 6 param-
eters and λ= 10 samples per generation. Using Eq. (2) to

update C and the (compromise) cµ value defined for CMA-
ES (see Table 1), the samples of the last 23 iterations would
contribute roughly 63 % of the overall information in C.

Another feature that facilitates small population sizes λ is
to calculate and update a vector pc that represents iteration-
averaged changes of the distribution mean and to use pc for
a so-called rank-one estimate C1 = pcp

T
c of the covariance

matrix. The idea behind this approach is that, using Cµ, dis-
tribution elongations into directions of descent do not dis-
tinguish for the sign of the directions. The use of the vector
pc (called the evolution path) mitigates this effect. Consecu-
tive changes of the distribution mean into opposite directions
would cancel out each other. Similar to the smoothing with
factor cµ in the update of C, above, the update of pc is done
with a smoothing factor cc. With a further smoothing fac-
tor c1 for the rank-one estimate C1, the combined covariance
matrix update reads

C ← (1− cµ− c1)C+ cµCµ+ c1C1.

While Cµ efficiently involves information from the current
population in the update process, C1 exploits correlations be-
tween generations. The former is important in large popula-
tions; the latter is particularly important in small populations.

2.2.6 Step size control

Finally, there is an additional explicit adaption of the overall
scale (the step size) of the distribution by adapting a scal-
ing factor σ , actually using N (x,σ 2C) instead of N (x,C).
Similar to the evolution path pc for the rank-one covari-
ance matrix estimates above, the adaption of the scale σ in-
volves an evolution path pσ that mirrors cumulative changes
in the mean. The difference between the update formulas of
both evolution paths pσ and pc is that for pσ each change
is re-scaled (normalized) with respect to the isotropic nor-
mal distribution N (0,I). Since covariances are always re-
estimated with respect to the mean of the former iteration
(cf. Eq. 1), the expected normalized change of the distribu-
tion mean per iteration is therefore the expected length of a
sample of N (0,I), which is

χ := E(‖N (0,I)‖)≈√n
(

1− 1
4n
+ 1

21n2

)
.
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Now, a rather small length ‖ pσ ‖ compared to χ indicates
that consecutive normalized moves of the mean canceled
each other out, meaning that the overall scale of the dis-
tribution should be reduced with σ . Vice versa, an evolu-
tion path pσ longer than χ indicates consecutive distribution
drifts into correlated directions, which justifies a larger over-
all scale of the distribution.

2.2.7 Boundary handling

In order to consider boundary constraints, we use the pro-
cedure proposed in Hansen et al. (2009b, Sect. IV B) for
CMA-ES. It applies if the distribution mean runs out of
bounds. In this case, the fitness of an unfeasible sample x
becomes the sum of the fitness of its closest feasible point
xfeas and a weighted quadratic penalty function of its dis-
tance ‖ x−xfeas ‖ to the feasible box (to xfeas). Feasible sam-
ples are not penalized; i.e., the penalty function is 0 within
the feasible box. Thus, the minimum of the sum of the actual
fitness function and the penalty function is taken inside the
feasible box or on its boundary. The quadratic penalty func-
tion has coordinate-wise weights γi

ξi
, where ξi scales the out-

of-bounds distance in the ith coordinate with regard to the
shape of the current distribution. The γi are suitably initial-
ized with the range of former (unpenalized) objective func-
tion values and is multiplied by a constant > 1 in every iter-
ation in which xi is more than 3 standard deviations off its
bounds.

In our implementation of CMA-ES, the feasible box we
operate on is the unit cube [0,1]n ⊆ Rn. The samples are
then linearly transformed (encoded) with respect to the ac-
tual bound constraints before evaluating the objective (misfit)
function.

2.3 Implementation of the optimization algorithm

2.3.1 Algorithm outline

The CMA-ES approach described in Sect. 2.2 allows for reli-
able covariance matrix estimates with a relatively small pop-
ulation size. The default population size of λ= 4+ 3log(n)
individuals and all further operational constants are succes-
sively derived from the problem dimension n as outlined in
Table 1.

Here, µ counts the good portion of individuals that are se-
lected from the λ samples in each iteration and used to up-
date the probability distribution. As mentioned in Sect. 2.2.4,
sampled individuals are always sorted with respect to their
function values (f (x1)≤ . . .≤ f (xλ)).

The µ recombination weights wi sum up to 1 and are
monotonically decreasing in order to give better selected
samples a higher weight in the updating formulas. Hansen
(2016) suggests using the value µeff as a quality measure for

the weights and states that

µeff = λ4 (3)

indicates a good choice. Indeed, Eq. (3) is approximately sat-
isfied by the given weighting scheme. We can only briefly
sketch the history behind the suggestion: with equal weights
1
µ

in the distribution update, all the best µ independent sam-
ples would count with the same influence. For this case it
has been shown with an exemplary uni-modal function (the
infinite-dimensional sphere function) that the setting µ=
0.27·λ is optimal in the sense that the “expected progress per
sample” towards the global optimum is maximized (Hansen
et al., 2015, Sect. 4.2.2) (cf. Beyer, 2001, Chap. 3.1.1 and
3.2.1.2). Hansen considers the value µeff to be a general-
ization of the number of selected independent samples that
influence the distribution, consequently using the similar
Eq. (3) for the case of rank dependent weights. Note that µeff
takes its maximum µ with equal weights and its minimum
1 if all but one weight are zero. Actually, theoretically opti-
mal non-equal weights and, thus, the optimal value for µeff,
are also known for the infinite-dimensional sphere function
(Arnold, 2006, Sect. 3.2). These include non-zero weights
for all λ samples and negative weights for the worse λ

2 sam-
ples (hence doubling the value of µeff). However, negative
weights are not considered to be a robust enough practical
choice.

Together with the problem dimension n, the generalized
number of independent selected samples µeff appears in
the calculation of the four smoothing constants cσ ,cc,cµ,c1
used in the update formulas of both the evolution paths and
the covariance matrix. Their dependence on n and µeff has
been derived empirically. The constant χ (cf. Sect. 2.2.6) is
approximately the expected norm of the n-dimensional stan-
dard normal distribution N (0,I).

The algorithm details are summarized in Algorithm 1.
It starts with the identity matrix I for the covariances, that

is, with an isotropic distribution. Assuming the optimum so-
lution to reside within the unit cube [0,1]n ⊆ Rn, the mean
x and the overall scale σ are initialized according to Hansen
(2016). Actually, having bound constraints (cf. Sect. 2.2.7),
we operate on the unit cube and shift and scale obtained
samples into their real bounds before calculating their objec-
tive function values. New samples are drawn as described in
Sect. 2.2.3. The yk correspond to the xk−x considered there,
divided by the step size σ . The new x is calculated accord-
ing to xµ in Sect. 2.2.4. Note that y is the σ -adjusted move of
the mean, while y∗ adjusts the move of the mean with respect
to the (isotropic) standard normal distribution. The evolution
paths which cumulate the drifts of the distribution mean (ad-
justed with regard to the overall scale and with regard to
isotropy, respectively) are updated using the corresponding
smoothing factors. Here, the factors before y and y∗ act as
normalization constants (Hansen, 2016). Finally, the over-
all step size and the covariances are updated as described
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in Sect. 2.2.6 and 2.2.5, respectively. For the given weights
w the factor cσ

1+cσ in the update formula of σ is equal to a
more general formulation used, e.g., in the CMA-ES tutorial
(Hansen, 2016). We stop either after the predefined number
of iterations or if the current population shows a flat misfit
distribution, i.e., if the fitness of the better 70 % of the indi-
viduals deviates less than ε = 10−5 from the very best one.
8 I. Kriest et al.: Calibrating a global biogeochemical ocean model

Algorithm 1 The (µ/µw,λ)-CMA-ES

Initialization:
Set λ, µ, w, µeff, χ, cσ , cc, cµ, c1 according to Table 1
Set x = ( 1

2 , . . . , 1
2 )T

Set pσ = pc = 0, C= B= D= I and σ = 0.5
while stopping criterion∗) is not met do

Sample probability distribution:
for k = 1, . . . ,λ do

Sample zk ∈ Rn fromN (0,I) by sampling its entries
fromN (0,1)

Set yk = BDzk and xk = x+ σyk

end for
Update probability distribution:

Update mean:
x ← ∑µ

k=1 wkxk

Set y =∑µ
k=1 wkyk and y∗ = BD−1BTy

Update evolution paths:
pσ ← (1− cσ )pσ +

√
cσ (2− cσ )µeff y∗

pc ← (1− cc)pc+
√

cc(2− cc)µeff y

Update covariances and scaling:
σ ← σ · exp

(
cσ

1+cσ

( ‖pσ ‖
χ − 1

))
Set Cµ =

∑µ
k=1 wkyky

T
k

and C1 = pcp
T
c

C ← (1− cµ− c1)C+ c1C1+ cµCµ

Determine B and D from eigendecomposition
C= BD2BT

end while
∗) our stopping criterion is that either a predefined number of
iterations is reached or the fitness distribution is flat (see text)

nally, the overall step size and the covariances are updated
as described in Sect. 2.2.6 and 2.2.5, respectively. For the
given weighs w the factor cσ

1+cσ
in the update formula of σ is

equal to a more general formulation used, e.g., in the CMA-
ES tutorial (Hansen, 2016). We stop either after the prede-5

fined number of iterations or if the current population shows
a flat misfit distribution, i.e., if the fitness of the better 70 %
of the individuals deviate less than ε = 10−5 from the very
best one.

2.3.2 Algorithm parallelization10

Our current technical implementation of the parallel frame-
work can be easily transferred to other EAs/EDAs. The iter-
ative optimization process is carried out via a series of chain
jobs, where short serial jobs (the actual optimizer) that up-
date the population of model evaluations (“individuals”; i.e.15

parameter sets for biogeochemistry) alternate with parallel
jobs of function evaluations (“generations”), i.e. forward in-
tegrations of the coupled ocean model with different param-
eter sets. Parameters of the optimizer are population size λ

and the termination criterion for convergence, additionally a20

maximum number of iterations.
As noted above, the framework presented here is set up

such that a serial script serial.job calls the optimization
routine (in our case CMA-ES), which computes a popula-

tion of size= λ of parameter vectors, stored in ASCII files. 25

The same script then calls a parallel script parallel.job,
which starts λ model simulations. During these simulations,
the parameter files are read, and a spinup is carried out for
each individual setup. The individual model runs then output
the misfit function to specified files. When all jobs are fin- 30

ished, script parallel.job invokes script serial.job
again, etc. Thus, communication between both alternating
steps (creation of parameter vectors and computation of re-
sulting misfit function) is carried out by these parameter and
misfit files. In addition, file nIter.txt keeps track of the 35

progress of optimization, and provides the information which
generation is to be computed; it also contains the runtime
parameters for the optimizer, CMA-ES. See the information
in supplement for more details on how this setup works,
and how to specify biogeochemical and optimizer parame- 40

ters used, e.g., in the work presented here.

2.4 Misfit function

As a first approach to optimization, we have calculated the
root-mean-square error RMSE between simulated and ob-
served (or twin) annual mean phosphate, nitrate, and oxy- 45

gen concentrations on a global scale, weighted by the vol-
ume Vi of each individual grid box, expressed as fraction of
total ocean volume, VT. To sum the three different compo-
nents of the misfit function we have to divide them by some
typical value. Here we use the global mean concentration of 50

observed tracers. The resulting misfit function J thus reads:

J =
3∑

j=1

1
oj

√√√√ N∑
i=1

(mi,j − oi,j )2 Vi

VT
(4)

for the annual mean concentrations of three tracers phosphate
(j = 1), nitrate (j = 2) and oxygen (j = 3), at N = 52 749
locations (model grid boxes) of the model domain. oj is the 55

global average observed (or twin) concentration of the re-
spective tracer. mi,j and oi,j are model and observations (or
twin results), respectively. By weighting the model mismatch
with volume, we put some emphasis on the deep ocean,
down-weighting deviations in surface grid boxes relative to 60

those of deep boxes. Thus, our misfit function serves more
as a long time-scale geochemical estimator, in contrast to a
function that focuses on (rather fast) turnover in the surface
layer.

2.5 Parameters to be estimated 65

Although the model contains more than 20 parameters (even
more, if we consider the empirically derived parameters for
benthic burial, nitrogen fixation, denitrification and air-sea
gas exchange; see Kriest and Oschlies, 2013, 2015), for
this first approach we only consider six parameters for op- 70

timization. As a stringent test for the framework we chose
parameters that encompass a large range of time and space
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2.3.2 Algorithm parallelization

Our current technical implementation of the parallel frame-
work can be easily transferred to other EAs/EDAs. The iter-
ative optimization process is carried out via a series of chain
jobs, where short serial jobs (the actual optimizer) that up-
date the population of model evaluations (“individuals”; i.e.,
parameter sets for biogeochemistry) alternate with parallel
jobs of function evaluations (“generations”), i.e., forward in-
tegrations of the coupled ocean model with different param-
eter sets. Parameters of the optimizer are population size λ
and the termination criterion for convergence; additionally, a
maximum number of iterations.

As noted above, the framework presented here is set up
such that a serial script serial.job calls the optimization
routine (in our case CMA-ES), which computes a popula-
tion of size= λ of parameter vectors, stored in ASCII files.
The same script then calls a parallel script parallel.job,
which starts λ model simulations. During these simulations,

the parameter files are read, and a spinup is carried out for
each individual setup. The individual model runs then output
the misfit function to specified files. When all jobs are fin-
ished, script parallel.job invokes script serial.job
again, etc. Thus, communication between both alternating
steps (creation of parameter vectors and computation of the
resulting misfit function) is carried out by these parameter
and misfit files. In addition, file nIter.txt keeps track of
the progress of optimization, and provides the information on
which generation is to be computed; it also contains the run-
time parameters for the optimizer, CMA-ES. See the infor-
mation in the Supplement for more details on how this setup
works, and how to specify the biogeochemical and optimizer
parameters used, e.g., in the work presented here.

2.4 Misfit function

As a first approach to optimization, we have calculated the
root-mean-square error RMSE between simulated and ob-
served (or twin) annual mean phosphate, nitrate, and oxygen
concentrations on a global scale, weighted by the volume Vi
of each individual grid box, expressed as a fraction of total
ocean volume, VT. To sum the three different components of
the misfit function, we have to divide them by some typi-
cal value. Here we use the global mean concentration of ob-
served tracers. The resulting misfit function J thus reads as

J =
3∑
j=1

1
oj

√√√√ N∑
i=1
(mi,j − oi,j )2 Vi

VT
(4)

for the annual mean concentrations of three tracers phosphate
(j = 1), nitrate (j = 2), and oxygen (j = 3), at N = 52 749
locations (model grid boxes) of the model domain. oj is the
global average observed (or twin) concentration of the re-
spective tracer. mi,j and oi,j are model and observations (or
twin results), respectively. By weighting the model mismatch
with volume, we put some emphasis on the deep ocean,
down-weighting deviations in surface grid boxes relative to
those of deep boxes. Thus, our misfit function serves more
as a long timescale geochemical estimator, in contrast to a
function that focuses on (rather fast) turnover in the surface
layer.

2.5 Parameters to be estimated

Although the model contains more than 20 parameters (even
more, if we consider the empirically derived parameters for
benthic burial, nitrogen fixation, denitrification, and air–sea
gas exchange; see Kriest and Oschlies, 2013, 2015), for this
first approach we only consider six parameters for optimiza-
tion. As a stringent test for the framework we chose param-
eters that encompass a large range of timescales and space
scales, and reflect different trophic levels and dependencies
between internal (interactions between compartments) and
external (dependence on light) factors. We aimed to avoid si-
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Table 2. Experimental setup of optimization. “low” and “high” indicate boundary constraints of the optimizations, respectively.

Name R−O2 :P Ic KPHY µZOO κZOO b∗

low high low high low high low high low high low high

TWIN 150 200 4.0 48 0.0001 0.5 0.1 4.0 0.0 10.0 0.4 1.8
OBS-WIDE 150 200 4.0 48 0.0001 0.5 0.1 4.0 0.0 10.0 0.4 1.8
OBS-WIDE-20 150 200 4.0 48 0.0001 0.5 0.1 4.0 0.0 10.0 0.4 1.8
OBS-NARR 150 200 4.0 48 0.0001 0.5 1.0 3.0 1.6 4.8 0.4 1.8
OBS-NARR-R 150 200 4.0 48 0.0001 0.5 1.0 3.0 1.6 4.8 0.4 1.8

∗ Note that from b (the optimized parameter) in the model we calculate the rate of vertical increase in sinking speed a, always assuming a
nominal detrital remineralization of r = 0.05 d−1. The resulting values for a are 0.058275 (target (twin)), 0.125 (high), and 0.027778 (low).

multaneous optimization of parameters that are obviously re-
lated to each other, such as maximum growth rates and half-
saturation constants, or sinking speed and remineralization
rate.

Four parameters are more relevant for biological interac-
tions at the sea surface. Phytoplankton growth is controlled
by the half-saturation for light (Ic, in W m−2) and phosphate
(KPHY, in mmol P m−3). For optimization of zooplankton pa-
rameters we chose its maximum grazing rate (µZOO, in d−1)
and quadratic mortality rate (κZOO, in (mmol P m−3)−1 d−1).
Two parameters are of importance for the transport and decay
of particulate organic matter to/in the deep ocean, namely the
ratio of oxygen consumption to phosphate release during aer-
obic remineralization (R−O2 :P, mmol O2 : mmol P) and the
parameter for vertical increase in sinking speed of organic
matter, a (d−1). Note that, as stated above, in the follow-
ing, and during optimization, we express this last parameter
through b = r/a, with r held constant at r = 0.05 d−1.

For each parameter we initially chose a rather wide range
of possible parameter values (Table 2). The lower value of
R−O2 :P was set to 150 mmol O2 : mmol P (Anderson, 1995),
while its upper value is at the upper end of observed values
(Boulahdid and Minster, 1989), and closer to values used in
previous model studies (Paulmier et al., 2009). b is allowed
to vary between low values observed mainly in oxygen min-
imum zones (Van Mooy et al., 2002), and twice the global
open ocean composite derived by Martin et al. (1987); its
range is slightly larger than the range applied in previous
modeling studies (Kwon and Primeau, 2006; Kriest and Os-
chlies, 2008; Kriest et al., 2012), or the range of b determined
from in situ observations (e.g., Martin et al., 1987; Buesseler
et al., 2007). It agrees with the range of b derived from indi-
rect estimates of b (Henson et al., 2012; Marsay et al., 2015).

Ranges of parameters related to surface processes were
more difficult to assign. Due to the highly aggregated form
of the organic biological components in the model, these pa-
rameters are supposed to reflect a variety of processes such
as species shift and adaptation (e.g., half-saturation constants
for nitrate uptake may vary over several orders of magnitude;
see Collos et al., 2005). We therefore initially assigned very
wide boundaries for Ic,KPHY, µZOO, and κZOO, which allow

the optimization to pick parameters that virtually may shut
down certain biological fluxes and processes. The choice of
these wide boundaries, its consequences for optimization and
model performance, and the effects of narrower boundaries
will be examined and discussed below.

2.6 Setup and performance of optimization

Using the combined framework described above, i.e.,
TMM+MOPS+CMA-ES, we carried out five different full
optimizations, with the aim of determining the four param-
eters related to surface biology and two parameters more
closely tied to the deep biogeochemistry mentioned above.
The experiments differ with respect to the observations used
for the misfit function (model output, climatologies of obser-
vations), population size λ of CMA-ES (10 or 20 individu-
als per generation), parameter boundaries, and the sampling
strategy of CMA-ES. They are explained in detail below.

2.6.1 TWIN experiment

First we tested the ability of CMA-ES to recover known pa-
rameters of a model simulation that applied the same biogeo-
chemical parameters as MOPS-RemHigh of Kriest and Os-
chlies (2015, setup “base”, i.e., with a particle flux described
by b = 0.858, or a = 0.058275, and a high affinity of oxic
and suboxic remineralization to oxidants). This is done by
optimization against its simulated annual average phosphate,
nitrate, and oxygen of year 3000. We refer to this experiment
as “TWIN”. TWIN applies rather wide boundaries for all pa-
rameters (see Table 2), and a population size for CMA-ES
of λ= 10, which was deemed sufficient for six parameters,
given the default configuration of the CMA-ES (see above).

2.6.2 Optimizations against observed tracers

Four further optimizations were carried out against ob-
servations of annual mean phosphate, nitrate, and oxygen
(Garcia et al., 2006a, b), gridded onto the model geometry.
These are referred to as OBS-WIDE, OBS-WIDE-20, OBS-
NARR, and OBS-NARR-R. To investigate the robustness of
CMA-ES with respect to different setups of the algorithm it-
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Table 3. Optimization results (evaluations, i.e., number of individuals, λ, times number of generations, N ), best model misfitMopt, optimum
parameters, and their uncertainties. For each model and parameter, the first line gives the optimum parameter, followed by pmin and maximum
pmax of all individuals, for which the misfitMi is (Mi−Mopt)/Mopt ≤ 0.001. The third line additionally presents in parentheses the percent
of individuals for which this criterion holds, as well as the range of optimum parameters as a percent of the average parameter of the last
generation. We also give the misfit and parameters of the reference run, against which the twin experiment was optimized.

Experiment λ×N Mopt R−O2 :P Ic KPHY µZOO κZOO b

Reference 1 0.529 170.0 24.0 0.03125 2.0 3.2 0.858

TWIN 2000 0.0003 170.0 24.0 0.034 2.0 3.20 0.858
170 24 0.033–0.035 2.0 3.19–3.20 0.858

(< 1) (< 1) (< 1) (5) (< 1) (< 1) (< 1)

OBS-WIDE 950 0.477 179.5 48.0 0.12 0.28 6.15 1.10
176–182 46–49 0.09–0.13 0.24–0.32 4.79–3.37 1.08–1.12

(31) (3) (6) (32) (28) (26) (4)

OBS-WIDE-20 3460 0.450 167.7 9.9 0.5 2.05 5.83 1.34
165–171 9.6–10.8 0.39–0.57 2.00–2.52 5.37–10.0 1.31–1.37

(64) (3) (12) (34) (25) (79) (5)

OBS-NARR 1820 0.450 167.0 9.7 0.5 1.89 4.57 1.34
165–170 9.0–10.3 0.39–0.53 1.57–2.02 2.95–4.66 1.30–1.36

(39) (3) (14) (28) (23) (37) (4)

OBS-NARR-R 1400 0.450 166.7 9.6 0.5 1.76 3.82 1.34
165–169 8.7–10.1 0.44–0.54 1.57–1.79 2.77–3.90 1.31–1.36

(50) (2) (14) (19) (13) (30) (3)

self, the experiments differ in the upper and lower boundaries
of the search space for zooplankton parameters, the popula-
tion size λ of CMA-ES, and its sampling strategy. This is
done in a stepwise fashion.

Experiment OBS-WIDE differs from TWIN only with re-
spect to the observations that enter the misfit function. In
OBS-WIDE we encountered an unlikely (with respect to bi-
ological tracer concentrations) solution, pointing towards a
potential local minimum in the misfit function. We therefore
set up two experiments to investigate strategies to improve
the performance of CMA-ES with respect to more plausible
solutions. The experiments both increase the search density
in the parameter space with respect to OBS-WIDE. In experi-
ment OBS-WIDE-20 search density is increased by doubling
the population size of CMA-ES to λ= 20. Otherwise, its
setup is the same as OBS-WIDE. In experiment OBS-NARR
we keep λ= 10 of OBS-WIDE, but restrict the boundaries
for zooplankton parameters to ±50 % of the value of the ref-
erence run of MOPS.

Because optimization OBS-NARR showed the best results
with respect to misfit function, biogeochemical fluxes, and
optimization performance (see below; Tables 3 and 4), in ex-
periment “OBS-NARR-R” we finally evaluate the robustness
of optimization OBS-NARR by repeating this optimization
with a different random selection of the parameter values
from the distribution calculated by CMA-ES.

2.6.3 Performance

The internal termination criterion of CMA-ES was reached
after 95, 173, 182, and 140 generations for OBS-WIDE,
OBS-WIDE-20, OBS-NARR, and OBS-NARR-R, respec-
tively. For the twin experiment, we restricted the maxi-
mum number of generations to 200, at which TWIN had
approached the target parameters, the misfit declined to
< 0.0004 (i.e., on average less that 0.2 ‰ of global mean
tracer concentrations; see Eq. 4) and fitness variance declined
to < 10−9. As presented above, in each “generation” we
computed 10 (20) different “individuals” (model simulations
over 3000 years) in parallel. One simulation of each genera-
tion on average took≈ 1.25 h, on 40 (80) nodes of Intel Xeon
IvyBridge or Intel Xeon Haswell at the North-German Su-
percomputing Alliance (HLRN). We note that tests on either
hardware (two iterations of the coupled code, started from
generations 80 and 160 of experiment TWIN) did not re-
veal any differences in the estimated fitness. The CMA-ES
– which, due to its very short runtime, is not parallelized –
was always computed on one core of Intel Xeon IvyBridge.

3 Results

3.1 Twin experiment (TWIN)

The optimization starts with a wide range of potential param-
eters (see Fig. 3), with individual parameters sometimes even
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Table 4. Global annual fluxes of primary production (PP), grazing (GRAZ), aerobic and anaerobic remineralization of detritus and DOM to
nutrients (REM), excretion by zooplankton (EXCR) export production (F120, flux through 120 m), flux through 2030 m (F2030), and benthic
burial (BUR), in Pg N year−1, for the reference experiment, OBS-WIDE, OBS-WIDE-20, and OBS-NARR (two repeated experiments with
different configurations of CMA-ES). We also show some globally derived, observed estimates. Conversion between different elements was
carried out via N : P= 16 and C : P= 122.

Experiment PP GRAZ REM EXCR F120 F2030 BUR

Reference 5.44 3.52 4.72 0.80 0.92 0.11 0.05
OBS-WIDE 6.20 1.24 5.94 0.25 0.81 0.06 0.02
OBS-WIDE-20 7.45 4.68 6.66 1.00 1.10 0.06 0.02
OBS-NARR 7.52 4.74 6.65 1.10 1.10 0.06 0.02
OBS-NARR-R 7.58 4.77 6.65 1.19 1.10 0.06 0.02
Observed∗ 7.68–8.09 4.79, 5.71 – – 0.29–1.53 0.03–0.07 0.02

∗ Observed fluxes are from Carr et al. (2006, primary production), Honjo et al. (2008, particle flux), Lutz et al. (2007, particle
flux), Dunne et al. (2007, particle flux), Schmoker et al. (2013, primary production, zooplankton grazing excluding/including
mesozooplankton grazing) and Wallmann (2010, burial; without shelf and slope region).

Figure 3. Optimization trajectory for six parameters of the twin experiment. The thick black line shows the average parameter of all 10
individuals of a generation. Red lines indicate their maximum and minimum parameter values. Horizontal black lines indicate the target
parameter. Note that we restrict the y-axis to the maximum and minimum boundaries.

exceeding the prescribed boundaries. This results in high
maximum and minimum misfits (Fig. 4), and this high vari-
ability is maintained over about 10–20 generations. The tra-
jectory of transient average parameter values and their vari-
ance depend strongly on the parameter itself: while the two
parameters associated with rather long timescales, namely
the stoichiometric ratio R−O2 :P and exponent b describ-
ing particle sinking, approach their target values quite early
(about generation 20–40), parameters associated with sur-
face biogeochemistry stay far away from their target value
for ≈ 80 generations (Ic, KPHY, κZOO) or oscillate around

it (µZOO). After ≈ 160 generations, most of the parame-
ters reached their target value, the exception being the half-
saturation constant of phytoplankton for phosphate uptake,
KPHY (Table 3). This parameter still shows considerable vari-
ability at the end of the optimization (generation 200), al-
though by that time is it quite close to the – rather low –
target value.

The misfit function, its variance, and the parameter vari-
ance do not decrease monotonically throughout the optimiza-
tion trajectory. In particular, after an initial decline over ca.
60 generations, parameter and misfit variance increase again.
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Figure 4. Model misfit, its variance, calculated from individuals of each population (both transformed logarithmically by log10) and compo-
nents of the twin experiment. Left panel: the thick black line shows the average misfit of all 10 individuals of a generation. Red lines indicate
the maximum and minimum misfit. Mid panel: variance of misfit. Right panel: contribution of each component of the misfit function. Blue:
oxygen. Red: nitrate. Black: phosphate.

Figure 5. Model misfit, plotted for each pair of parameter combinations of the twin experiment. Color indicates misfit (see the color bars on
the right). A cross indicates the target value, i.e., the value of the reference experiment. A circle indicates the parameter of one individual of
the last generation. Note that for better visibility we restrict the parameter range to its boundaries (see Table 2).
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Figure 6. As Fig. 5, but only plotted for a region ±2 % around the average parameter value of the last generation, regardless of generation
and associated misfit. Note that these parameters can have occurred early in the optimization and even be associated with a large misfit (that
would arise from at least one of the other parameters, causing a large misfit). Note that the color scale is different than in Fig. 5.

Further increases in variance can be seen around generation
100, and, at the end, when the algorithm widens its search
area again, probably in search of an optimal KPHY. It seems
encouraging that the algorithm does not get stuck in a local
minimum, but, at the expense of deterioration of the misfit,
continues to search for an even better parameter set.

The largest fraction of the misfit function is related to oxy-
gen, followed by the misfit to nitrate, and then phosphate.
The dominance of oxygen and nitrate is not surprising, as
these tracers are not conservative; i.e., their global inventory
might change due to air–sea gas exchange, denitrification,
and nitrogen fixation (see also Kriest and Oschlies, 2015),
so that the model may not only err with respect to the spa-
tial distribution of these tracers, but also with respect to their
global mean concentration.

In Fig. 5 we finally exploit the shape of the misfit function,
shown on a color scale for every two pairs of parameters.
As can be seen from the misfit plotted against R−O2 :P and b

(upper right corner), these two parameters are quite well con-
strained, with a very well-defined minimum around the tar-
get value. All other parameters show more or less elongated
search “canyons”. Much of the algorithm search starts away
from the target value; however, the algorithm finally manages
to approach the target value even when the search path is not
straight, but curved in the two-dimensional projections of the
parameter space. Further, even when the algorithm exceeds
the target value (e.g., for the maximum growth rate of zoo-
plankton, µZOO; lower right corner), despite the already low
misfit function, the algorithm finally returns to the somewhat
lower value (compare also to Fig. 3, lower left panel).

Summarizing, CMA-ES seems capable of dealing even
with our irregular search landscape, when iterated for a long
enough time and with a sufficiently large population size.
A problem remains with regards to the half-saturation con-
stant of phytoplankton for phosphate uptake: zooming into
the scatter plot presented in Fig. 5 reveals that for this pa-

www.geosci-model-dev.net/10/127/2017/ Geosci. Model Dev., 10, 127–154, 2017



140 I. Kriest et al.: Calibrating a global biogeochemical ocean model

v

(a) (b) (c)

Figure 7. As Fig. 4, but for optimization OBS-WIDE. Note that in the left plot, we now show the raw value of the misfit function (not log
transformed). The optimization finished at generation 95.

rameter the search landscape becomes quite uninformative
(Fig. 6), with similar misfits around ±2 % of its last value.
Thus, a low misfit can be achieved within a wide range of
this parameter.

One reason for this low sensitivity of the misfit function
to KPHY may be found in the fact that, in the twin, against
which the model is optimized, only very few (1 %) phos-
phate values are at or below the target value of KPHY =
0.03125 mmol P m−3. Therefore, besides the dominance of
oxygen in the misfit function (Fig. 4), the misfit function is
further dominated by phosphate concentrations outside the
oligotrophic surface regions, rendering it quite insensitive to
changes in the half-saturation constant at low values. In addi-
tion, a closer look at the misfit topography (Fig. 5) points to-
wards a potential correlation of µZOO and κZOO, which may
complicate the algorithm’s search for an optimum set of pa-
rameters, thereby slowing down its convergence.

3.2 Optimization against observed nutrients and
oxygen distributions

3.2.1 Wide boundary constraints for zooplankton
(OBS-WIDE, OBS-WIDE-20)

When optimizing the model against observed concentrations
with exactly the same setup as for experiment TWIN, opti-
mization OBS-WIDE reaches the internal termination crite-
rion of the CMA-ES at generation 95. Instead of declining
exponentially towards zero, the misfit only declines from an
average initial value of ≈ 0.8 to 0.477 (Fig. 7, Table 3), i.e.,
only slightly less than the misfit of the reference run (0.529).
Also, the variance of misfit as well as that of the parameters
show a more or less gradual decline, without any intermittent
increase (see the Supplement). Another notable difference to
TWIN is the higher contribution of phosphate to the misfit
function (Fig. 7).

Some parameters diverge strongly from those of the ref-
erence run. In particular, the phytoplankton’s half-saturation
constant for light, Ic, increases strongly up to its upper
boundary (Fig. 8; Table 3; see also the Supplement for a

plot of the topography of the misfit function). However, the
stronger light limitation of phytoplankton growth is coun-
teracted by a strong decrease in zooplankton growth rate,
µZOO, and a strong increase in its quadratic mortality rate,
κZOO. As a consequence, average and maximum zooplank-
ton concentrations are < 25 and < 50 % of that of the ref-
erence run in the surface layer (Fig. 9), while phytoplank-
ton is strongly increased, when compared to the reference
run. Most likely because the zooplankton–detritus pathway is
nearly shut off, DOM concentrations are strongly increased.
The reorganization of the pelagic food web in this optimized
model scenario is reflected in the global annual biogeochem-
ical fluxes: primary production is enhanced by almost 14 %,
but loss through grazing is reduced to about 1/3 of that of the
reference run (Table 4). As a consequence, the largest frac-
tion of recycling is through remineralization of detritus and
DOM (> 95 % of annual production), and only 4 % through
zooplankton excretion, while in the reference run zooplank-
ton recycles almost 15 % of annual production. Due to the
reduced particle sinking speed, shallow (130 m) and deep
(2030 m) particle fluxes are reduced, as is benthic burial.
While some of the simulated fluxes are within the observed
estimates, overly low zooplankton concentration, as well as
the resulting low zooplankton grazing, are far outside ob-
served estimates (see Table 4).

Therefore, although optimization OBS-WIDE against ob-
servations has decreased the misfit to observations to≈ 90 %
of that of the (subjectively tuned) reference run, the outcome
is not overly satisfying with respect to the optimized param-
eters and the resulting dynamical behavior of the model. Ob-
viously, the very wide boundary constraints we chose for the
zooplankton parameters led to a solution where zooplankton
is almost dead – a statistically optimal but biologically mean-
ingless solution.

To examine whether this optimization became trapped in a
local minimum, in experiment OBS-WIDE-20 we increased
the population size of CMA-ES from λ= 10 to λ= 20. Due
to a larger population, in this optimization the variability of
fitness (Fig. 10) and parameter values (Fig. 11) is maintained
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Figure 8. As Fig. 3, but for optimization OBS-WIDE. The optimization finished at generation 95.

over a longer period, again, as for optimization TWIN, with
intermittent increases in variance during the course of the op-
timization. Most importantly, using the setup of OBS-WIDE-
20, the optimization finds very different parameters for many
of the biogeochemical components.
R−O2 :P is now closer to the a priori value of 170, while

optimal b has increased considerably to b = 1.34 (Table 3).
The largest difference to both the reference run as well as
optimization OBS-WIDE occurs for the four biogeochemical
parameters that are more closely tied to surface processes: Ic
decreases to less than 50 % of its a priori value, while KPHY
is at its upper boundary of 0.5 mmol P m−3. Encouragingly,
zooplankton parameters are now such that zooplankton is vi-
able (Fig. 9). Its maximum growth rate is very close to the
a priori value of 2 d−1. Its mortality rate is still quite high;
however, because of its high growth rate, zooplankton plays a
considerable role in the pelagic nitrogen budget, with global
fluxes much closer to the observed ones than for optimization
OBS-WIDE (Table 4). The topography of the – rather dense
– scan of the parameter space of OBS-WIDE-20 (Fig. 12)
points towards a potential correlation between KPHY, µZOO,
and κZOO. In this projection, low misfit values occur along
a concomitant increase in KPHY with either µZOO or κZOO.
This is also reflected in the high level of parametric uncer-
tainty, as revealed by a large range of parameter values in the
vicinity of the optimum (Table 3).

Summarizing, using a larger population size and thus a
denser scan of the parameter space (see Fig. 12), CMA-ES
has found a better solution with respect to the misfit function

(see Table 3) as well as a closer fit to biogeochemical fluxes
and more plausible biological patterns.

3.2.2 Narrow boundary constraints for zooplankton
(OBS-NARR and OBS-NARR-R)

Optimizations with a population size of λ= 20, as for OBS-
WIDE-20, are computationally quite expensive, especially
when iterated over a large number of generations (Table 3).
Via the quite wide boundary constraints for zooplankton pa-
rameters, we have assumed to have almost no knowledge
about zooplankton. In the following two sensitivity exper-
iments we examine the impact of this assumption on opti-
mization performance, by restricting zooplankton parameters
to a narrower range. These experiments are again carried out
with a population size of λ= 10.

To enforce live zooplankton, we restricted the range of
zooplankton parameters to ±50 % of their reference value.
This results indeed in a solution with organic tracer concen-
trations close to that of the reference run or OBS-WIDE-20
(Fig. 9). After 182 generations, the algorithm terminates with
a misfit of 0.45 (Fig. 13), i.e., better than experiment OBS-
WIDE, but the same as for optimization OBS-WIDE-20 (Ta-
ble 3). As in TWIN and OBS-WIDE-20, misfit variance
shows intermittent increases, and the contribution of nitrate
to the misfit function dominates over that of phosphate. Like-
wise, resulting optimal parameter values are quite close to
those of OBS-WIDE-20 (Table 3). Thus, OBS-NARROW is
more similar to OBS-WIDE-20 than to OBS-WIDE, demon-
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Figure 9. Surface (first) layer concentrations (in mmol C m−3, converted via a C : P ratio of 122) for phytoplankton, zooplankton, detritus,
and DOM for the reference run and optimizations OBS-WIDE, OBS-WIDE-20, and OBS-NARR.

Figure 10. As Fig. 7, but for optimization OBS-WIDE-20. The optimization finished at generation 173.

strating the importance of good a priori knowledge about pa-
rameter values.

As for OBS-WIDE-20, the quadratic mortality of zoo-
plankton, κZOO, and the half-saturation constant of phosphate
uptake for phytoplankton, KPHY, show a strong increase, the
latter up to its upper prescribed boundary, which may be in-
terpreted as an attempt of the algorithm to force the model to-
wards higher surface nutrient concentrations in the subtrop-

ical gyres. A reduced half-saturation constant for light, on
the other hand, counteracts the grazing pressure exerted by
zooplankton, particularly in the high latitudes. Most likely
because of increased detritus production by zooplankton –
and thus increased export from the surface layer (Table 4) –
particle flux to the deep ocean is reduced by an increase in b,
i.e., a relatively slow particle sinking speed.
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Figure 11. As Fig. 8, but for optimization OBS-WIDE-20. The optimization finished at generation 173.

A closer look at the topography of the misfit function
shows that the misfit is quite insensitive to changes in some
parameters (Fig. 15; see the Supplement for a detailed plot of
misfit topography around ±2 % of the optimal parameters).
While the parameters R−O2 :P and b, which tend to exert an
influence on large temporal and spatial scales, are again quite
well constrained, many of the surface-related parameters that
act on smaller timescales, such asKPHY, show a wide scatter
across the parameter space (see also Table 3), with very little
differences in the misfit function.

However, variations in parameters after ≈ 40 genera-
tions do not strongly improve the model fit to observations
(Figs. 13 and 14). The rather constant misfit after genera-
tion 40 is quite surprising, given that some parameters still
show some significant excursions after that time, indicating
that – as already shown before – the misfit function is quite
uninformative about these parameters. This insensitivity of
inorganic tracers is also illustrated in Fig. 16, which shows
the deviation of vertically integrated tracers from observa-
tions, plotted for individuals of three different generations of
OBS-NARR (see also the blue vertical lines in Fig. 14). The
parameters of these individuals differ mainly with respect to
their combination of KPHY and κZOO. While the reference
run applies very lowKPHY = 0.03125 mmol P m−3 and mod-
erate κZOO = 3.2 (mmol P m−3)−1 d−1, individuals of the op-
timization are characterized by medium (generation 61) to
high (generations 110 and 182) KPHY, and moderate (gener-
ations 61 and 110) and high (generation 182) κZOO (see also
the blue vertical lines in Fig. 14). All individuals differ from

the reference run, yet the difference between them is almost
not visible in the simulated tracer distributions. Thus, annual
mean tracer concentrations on a global scale do not seem to
suffice in constraining some of the parameters related to the
very dynamic biological turnover at the sea surface, leading
to a large parametric uncertainty (Table 3), possibly ampli-
fied by correlation between these three parameters.

Except for deep particle fluxes, all biogeochemical fluxes
are increased compared to the reference run or experiment
OBS-WIDE, but similar to that of OBS-WIDE-20 (Table 4).
Therefore, although the misfit function so far only optimized
towards inorganic constituents, the optimized model with
narrow zooplankton parameter boundaries shows a much bet-
ter fit to observed global fluxes to primary production, zoo-
plankton grazing, shallow and deep particle flux, and benthic
burial. The seemingly better dynamical biogeochemical be-
havior of this model setup gives some confidence that the
model’s fit to inorganic tracers is not improved at the cost of
any other tracer.

Repeating optimization OBS-NARR with a different ran-
dom selection of parameters from the parameter distribution
in each generation (OBS-NARR-R) yields the same, or very
similar, best values for most of the parameters (see Table 2),
the exception being the two zooplankton parameters, µZOO
and κZOO. These two parameters of OBS-NARR-R are 7 %
(µZOO) and 16 % (κZOO) lower than in OBS-NARR; how-
ever, the misfit of both optimizations is the same (0.45). The
low sensitivity of the misfit function to zooplankton param-
eters is mirrored in similar nutrient and oxygen distributions
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Figure 12. As Fig. 5, but for optimization OBS-WIDE-20. Note that the color scale differs from that of Fig. 5.

Figure 13. As Fig. 10, but for optimization OBS-NARR. The optimization finished at generation 182.
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Figure 14. As Fig. 11, but for optimization OBS-NARR. The optimization finished at generation 182. Vertical blue lines indicate generation,
for which we also present deviations from observation of vertically integrated nutrients and oxygen from Fig. 16.

(see the Supplement) and almost identical biogeochemical
fluxes (see Table 4).

4 Discussion

4.1 Computational performance

Our results suggest that the CMA-ES optimization algorithm
performs well, particularly for the twin experiment, even
though the parameters to be estimated involve diverse tem-
poral and spatial scales. CMA-ES manages to set up curved
search paths in parameter space, and therefore is capable of
approaching an optimum within a rather complex topogra-
phy of the misfit function. Its sometimes elongated and/or
curved shape resembles many of those resulting from ear-
lier one-dimensional (Athias et al., 2000; Schartau et al.,
2001; Schartau and Oschlies, 2003a; Ward, 2009) or three-
dimensional (Kwon and Primeau, 2006, 2008) optimizations
of marine biogeochemical models. However, when impos-
ing wide boundary constraints for zooplankton parameters,
OBS-WIDE becomes trapped in a local minimum; only with
a larger population size or narrower parameter boundaries
do we find a solution that results in realistic concentrations
and fluxes of all components. Clearly, the number of ex-
periments conducted here is too small to make statistically
significant statements about the optimizers’ exploration ca-
pability with respect to the population size. But similar to
other population based heuristics, examinations with multi-

modal test functions have given evidence that larger popula-
tions increase CMA-ES’ chances of finding good local op-
tima (or even a global optimum; Hansen and Kern, 2004). It
remains to be investigated whether different configurations
of the CMA-ES, or a different optimization algorithm, e.g.,
gradient based methods or evolutionary algorithms, perform
better or worse with respect to the number of model eval-
uations required or their ability to avoid local minima (see
also Athias et al., 2000). However, there is some indication
that genetic algorithms perform better with respect to a rough
topography of the misfit function, when compared to a vari-
ational adjoint method, with an otherwise equally good fit to
marine biogeochemical observations (Ward et al., 2010).

As the computational effort remains a challenge in param-
eter optimization of global ocean BGC models, further possi-
bilities to accelerate model evaluations within the optimiza-
tion process are desirable. Surrogate-assisted approaches use
meta-models to approximate model evaluations within op-
timization (Priess et al., 2013). They are becoming prac-
tice within evolutionary frameworks coping with computa-
tionally expensive model functions (Jin, 2011). It should be
worth considering surrogate approaches with CMA-ES as in-
vestigated in Kern et al. (2006), Auger et al. (2013), and
Loshchilov et al. (2012). A general approach with EA and
EDA frameworks is to prematurely abort the fitness calcula-
tion after detecting that the corresponding individual will not
be better than the worst member of the current population.
We can benefit from such short-cut fitness computation if the
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Figure 15. As Fig. 12, but for OBS-NARR.

optimizers’ implementation supports asynchronous commu-
nication. An example of this approach is dealt with in Klie-
mann et al. (2013). There, aborting fitness calculations re-
duces the computational effort by orders of magnitude, since
the considered combinatorial problem is of minimax type.
However, short-cut fitness computation concerning ocean
models requires a more elaborated method and is not ex-
pected to reach similar savings.

4.2 Misfit function and parameter identifiability

In our study we chose annual means of dissolved nutrients
and oxygen on a rather coarse spatial grid as a measure for
model skill. By doing so, we avoid problems associated with
time lags (e.g., in phytoplankton blooms, which would result
in time lags of nutrient depletion) or meso- and submeso-
scale spatial structures (see, e.g., Wallhead et al., 2006), ob-
viously at the cost of precisely resolving parameters related
to the biological system in surface layers. Possibly as a con-
sequence of this particular misfit function, the parameters
that could be fitted best are parameters that are mostly in-
fluential in determining the nutrient or oxygen distribution

on large spatial and temporal scales, such as the stoichio-
metric ratio between oxygen and phosphorus, R−O2 :P, or
the parameter that determines particle sinking speed, b (see
also Kriest et al., 2012). Our model optimizations against
observations so far confirm a stoichiometry of R−O2 :P ≈
170 mmol O2 : mmol P, in agreement with observational es-
timates (Takahashi et al., 1985; Anderson and Sarmiento,
1994), but suggest an increase in b towards ≈ 1.3. The lat-
ter is to some extent in agreement with results obtained by
Kwon and Primeau (2006, 2008), who found an optimal b
of 1 when fitting a simple global model against observed in-
organic tracers. It should be kept in mind, however, that the
b obtained in our study not only represents particle sinking
speed, but also accounts for the effect of numerical diffusion
on our rather coarse vertical grid (Kriest and Oschlies, 2011).
Accordingly, the “true” b can be regarded as being about 10–
20 % smaller than obtained by our study. Also, as has been
shown earlier (Kriest and Oschlies, 2013), the lower bound-
ary condition simulated by benthic exchange can be very im-
portant for the ability of phosphate and oxygen to constrain
particle sinking; therefore, the results obtained in our study
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Figure 16. Model deviations from observations of vertically integrated phosphate (top), nitrate (middle), and oxygen (bottom) for the refer-
ence run, and three generations (61, 110, 182) of OBS-NARR. See the blue lines in Fig. 14 for parameter values in this generation. For each
generation, we chose the best (with respect to misfit) individual for plotting. The misfit is 0.451, 0.450, and 0.450 for generations 61, 110,
and 182, respectively.

should be regarded as specific to this particular biogeochem-
ical model.

Our optimizations against observations with wide and nar-
row boundaries for zooplankton parameters produced two so-
lutions with quite similar misfit, but with very different bi-
ological parameters, and consequently different fluxes and
concentrations of organic components in the surface layers.
Using wide boundary constraints for zooplankton parame-
ters resulted in a solution where zooplankton is almost ex-
tinct, while phytoplankton and DOM concentration are far
too high. Solutions of optimizations with unrealistic param-
eter values or concentrations for zooplankton have been ob-
served earlier (Schartau et al., 2001; Ward et al., 2010), and
point towards a necessity to better constrain this compart-
ment. Increasing the population size λ of CMA-ES in opti-
mization OBS-WIDE-20 could cure this problem, but at the
cost of a high computational demand. Restricting the range
of zooplankton parameters resulted in a better fit to nutrient
and oxygen; more importantly, concentrations and fluxes in
the latter solution are much more realistic, confirming in the
latter parameter set. This illustrates the potential benefit of a
sound a priori knowledge of parameter ranges, both in terms
of biogeochemical and computational performance.

Another possibility to avoid undesired effects like nearly
extinct zooplankton is to introduce further criteria that take
account of this issue. A technically easy approach would be

to add further objective terms to the misfit function. But fac-
ing complex model interactions, it can become difficult to
find suitable weights for the different terms in order to force
solutions to become a desired compromise of objectives. An
alternative is to deal with more than one objective function,
say f1,f2, . . .,fk . For example, we can define the deviation
of zooplankton mass from observed values as a second objec-
tive. Now, two solutions x 6= y are said to be incomparable
if fi(x) > fi(y) but fj (x) < fj (y) for some i 6= j . Multi-
objective optimization algorithms aim to find (a limited num-
ber of) good incomparable solutions, from which the user
can make a final choice that is a good compromise in his/her
opinion. The topic of multi-objective optimization is inten-
sively regarded with EAs (Deb, 2001) and EDAs (Hauschild
and Pelikan, 2011), including CMA-ES (Igel et al., 2007).

Nevertheless, even for the more realistic optimizations
OBS-WIDE-20, OBS-NARR, and OBS-NARR-R, we find
similar misfits for a rather wide range of some phytoplank-
ton and zooplankton parameters, pointing towards an inde-
terminacy of these parameters when using the current misfit
function. While it cannot be ruled out that this arises from
a correlation among these parameters, even simpler biogeo-
chemical models with less degrees of freedom might be diffi-
cult to constrain from nutrient data alone: problems were also
encountered by Kwon and Primeau (2006) when optimizing
b, DOP production, and its decay rate against phosphate on
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a global scale. They found that phosphate data alone were
not sufficient to resolve parameters associated with DOP, but
several equally good fits could be obtained with different sets
of parameters. It remains to be investigated whether this is
related to the lack of seasonal data or to phosphate concen-
tration being weakly dependent on dissolved or particular or-
ganic matter concentration. Subsequent studies with different
misfit functions that, for example, resolve monthly changes,
target the representation of surface nutrients (e.g., by using a
weighted, relative misfit; Kriest et al., 2010) or add additional
tracers to the misfit function (e.g., by combining chlorophyll
derived from remote sensing with nitrate observations; see
also Tjiputra et al., 2007) will reveal the effect of the assump-
tions made for the misfit function with respect to constraining
these parameters.

4.3 Future directions

Even the use of observations more closely related to surface
biology may not resolve the problem of indeterminacy, as
shown by Ward et al. (2010) in optimizations of two differ-
ent, zero-dimensional biogeochemical models. As in earlier
zero- and three-dimensional studies (e.g., Friedrichs, 2001;
Schartau et al., 2001; Kwon and Primeau, 2006, 2008), they
found almost identical misfits for a wide range of parameters,
an indication that these models are underdetermined, particu-
larly when attempting to estimate more than about 10 param-
eters. In our study we have chosen to tune a rather moderate
number of six parameters, but already noted some difficulty
in constraining two of these. A potential solution could be to
fix certain parameters to prior values, and thereby decrease
the dimension of the parameter space to be estimated. How-
ever, as pointed out by Ward et al. (2010), this may lead to an
underestimate of model uncertainty, and therefore not be the
ultimate solution to this problem. Future studies will address
these problems by testing different combinations of parame-
ters, in conjunction with different misfit functions.

The above-mentioned problems may even increase if we
move towards more sparsely sampled, biased, or noisy data.
So far, for the twin experiment as well as for the optimiza-
tion against observations, we assume perfect data coverage.
However, sparse data sets (as usually available from cruises
or time series stations) as well as the influence of noise have
been shown to be very influential for the ability of an op-
timization to recover results from zero- (Friedrichs, 2001;
Schartau et al., 2001; Löptien and Dietze, 2015) and three-
dimensional (Tjiputra et al., 2007) twin experiments. The
presence of noise or measurement errors should be reflected
in the termination criterion for optimization; this will, for
some parameters, influence the estimates’ optimum values
(see Fig. 8 of Schartau et al., 2016). Future studies will
have to address to what extent noise will affect the three-
dimensional optimizations presented here and how this pa-
rameter uncertainty will map onto model fluxes, or even tran-
sient scenarios.

While we found a decrease in the twin experiment’s misfit
to almost zero, the misfit of the optimization against obser-
vations remained relatively high (on average, about 15 % of
global mean tracer concentrations). Potential reasons for this
are an inappropriate biogeochemical model structure, wrong
choice of parameters to be optimized, or flaws in the physical
model. For example, it is well known that coarse-resolution
models do not resolve physical processes of the Equatorial
Pacific current system (Dietze and Loeptien, 2013), which
may result in an attempt of the optimization to “cure” defi-
cient physics by changing biogeochemical parameters. This
feature might also explain some of the sensitivities – or lack
of – found by Kwon and Primeau (2006). Solutions to this
potential flaw could be to exclude regions from the misfit
that are known to be not well represented by the physical
model, or to weigh biogeochemical misfits by the model’s fit
to observations of physical data.

To summarize, any global model study that aims to in-
versely determine parameters of a global biogeochemical
ocean model in an attempt to find the model setup “best”
suited for a particular application (and circulation) has to
consider five tasks: (1) investigate model solutions on the ap-
propriate (depending on tunable parameters) timescales, pos-
sibly including long, millennial simulations; (2) address the
potential of local minima (depending on the topography of
the misfit function); (3) investigate different parameter com-
binations and boundaries, including the misfit function’s sen-
sitivity to them; (4) disentangle the effects of physical and
biogeochemical models on model–data misfit; and (5) inves-
tigate the effect of misfit function, including data distribution
and availability in model assessment. This last point also in-
cludes decisions about weights applied to different data sets,
or for a particular form of misfit function, which may be very
influential for the optimal parameter choice (Evans, 2003). It
also depends on the desired application of the model, and the
scientific question it is supposed to address.

5 Conclusions

We have presented a framework for the optimization of
global biogeochemical ocean models that combines an of-
fline approach for transport of biogeochemical tracers with
an estimation of distribution algorithm (Covariance Matrix
Adaption Evolution Strategy, CMA-ES). A twin experiment
revealed a good performance of this algorithm with respect
to recovering six parameters that are associated with various
timescales and space scales. Optimizations against observa-
tions of annual mean nutrients and oxygen could reduce the
misfit of the model to some extent; however, even for the
“best” model solution the remaining misfit is still ≈ 15 % of
global mean tracer concentrations, which might be related
to inappropriate physics. Tests with a different circulation
(which is easy to exchange with the current framework) will
provide more insight into the impact of physical forcing on
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the ability of the biogeochemical model to fit the observa-
tions.

Encouragingly, parameter sets associated with the lowest
misfit to dissolved inorganic tracers also show the best fit to
global mean tracer fluxes not considered during optimization.
This increases our confidence in the method presented here.
Some parameter estimates are associated with a rather high
level of uncertainty. Incorporating different or additional data
sets that more closely relate to the parameters to be optimized
can help to improve estimates for these parameters. Likewise,
observations that provide information about the upper and
lower bounds of biological parameters – such as zooplankton

grazing and mortality rates – will provide a good guidance
for future optimization studies and lower their computational
demand.

6 Code availability

The source code of MOPS coupled to TMM, as well as the
optimization framework, are available as the Supplement.
The most recent TMM source code, forcing, etc., are avail-
able at https://github.com/samarkhatiwala/tmm.
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Appendix A: Source code

As research questions may diverge strongly (and therefore,
also the different user groups, hardware, biogeochemical
models, and circulations), we aimed to construct a tool that
is as generic and universally applicable as possible, with a
high level of portability among different architectures. The
model-optimization framework of TMM comprises new sub-
routines for data assimilation and misfit function evaluation,
as well as monitor routines to facilitate run-time checks of
model state, and a more generic coupling interface for bio-
geochemistry. It can thus easily be applied within an op-
timization framework. While we here focus on the coarse-
resolution model, we note that the generic structure of the
TMM framework allows the user to easily switch between
transport matrices, once these are available. Likewise, cou-
pling different biogeochemical models to the framework only
requires editing of a (few) interface subroutines. Finally, in
principle it should be possible to exchange the optimization
algorithm by any other algorithm that requires only model
misfit as input and provides a set of parameter files as output.

A1 MOPS-2.0 biogeochemical subroutines

Besides the stand-alone, forward integration of a global bio-
geochemical model, two additional tasks are required for op-
timization: computation and output of misfit, and input of
trial sets of parameters passed to the model by the optimizer.
In the following, files relevant for input of parameter vectors
and computation of misfit that have been added or changed
(with respect to MOPS-1.0; see Kriest and Oschlies, 2015)
are shown in boldface. An overview of the model structure
and layout, with emphasis on those parts that affect computa-
tion of biogeochemical fluxes and tracers, optimization, and
parameter handling, is given in the Supplement.

As noted in Kriest and Oschlies (2015), the code consists
of two files with outer routines that connect to the main driver
code tmm_main.c, and inner routines that contain the lo-
cal biogeochemical sources and sinks, and define the biogeo-
chemical parameters. These routines communicate via com-
mon blocks in header files.

1. external_forcing_mops_biogeochem.c is
the first interface between MOPS and the TMM. Be-
sides input and output of files and runtime parameters,
it determines from runtime options whether a parameter
file should be read, as well as its name. It assembles
model equivalents for the misfit function and passes
it to the main driver code, tmm_main.c. It calls the
following subroutines.

1.2. mops_biogeochem_ini.F: interface between
(1) and (1.2.1). It calls the following.

1.2.1. BGC_INI.F assigns biogeochemical parame-
ters. The routine distinguishes between param-
eters that stay fixed and derived parameters that

depend on parameters read during runtime. For
example, the stoichiometric ratio O2 : P deter-
mines the stoichiometry for nitrate loss during
denitrification (Paulmier et al., 2009). Thus, if
the former changes, the latter will have to be re-
calculated. The routine is called every time after
a new parameter vector has been read.

1.3. mops_biogeochem_set_params.F maps
the vector of parameters read by (1) to symbolic
names used by MOPS. Each call to (1.3) is fol-
lowed by a call to (1.2) and (1.2.1), to recalculate
dependent parameters.

1.1. mops_biogeochem_copy_data.F: interface
between (1) and (1.2) and (1.4).

1.4. mops_biogeochem_model.F: interface be-
tween (1) and (1.4.1). It calls

1.4.1. BGC_MODEL.F: calculates biogeochemical
sources and sinks. It now also assigns state vari-
ables to arrays that will be passed to the misfit
function.

1.5. mops_biogeochem_diagnostics.F: inter-
face (for diagnostic output) between (1) and (1.4.1).

1.6. mops_biogeochem_misfit.F: interface for
misfit computation between (1) and (1.4.1).

2. tmm_misfit.c initializes and carries out misfit com-
putation and writes misfit to either binary or ASCII files.
It communicates with the biogeochemical model in (1)
via (b).

Communication between the different modules is carried
out mainly via several header files:

a. mops_biogeochem.h introduces subroutines to (1);

b. mops_biogeochem_misfit_data.h passes in-
formation related to misfit computation between (1) and
(2).

c. BGC_PARAMS.h passes biogeochemical parameters
and profiles of tracers between all different modules
called by (1).

d. BGC_DIAGNOSTICS.h passes diagnostic variables
from (1.4.1) to (1.5).

e. BGC_MISFIT.h passes misfit variables from (1.4.1) to
(1.6).

f. BGC_CONTROL.h passes the time step and geometry
between (1.2) and (1.2.1), (1.4), and (1.4.1);

g. tmm_external_forcing.h introduces subrou-
tines in (1) to tmm_main.c; and

h. tmm_misfit.h introduces subroutines in (2) to
tmm_main.c.
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Finally, one may want to prevent computation of a simu-
lation if during spinup some parameter values or concentra-
tions lead to erroneous (e.g., negative) tracer concentrations.
Routine tmm_monitor.c may serve as a module to moni-
tor state variables, or other model properties (not used in the
current setup presented here).

A2 Optimization

As noted above, the framework presented here is set up such
that a serial script serial.job calls the optimization rou-
tine (in our case CMA-ES), which computes a population
of size= λ of parameter vectors, stored in ASCII files. The
same script then calls a parallel script parallel.job,
which starts λ model simulations. During these simulations,

the parameter files are read, and a spinup is carried out for
each individual setup. The individual model runs then output
the misfit function to specified files. When all jobs are fin-
ished, script parallel.job invokes script serial.job
again, etc. Thus, communication between both alternating
steps (creation of parameter vectors and computation of the
resulting misfit function) is carried out by these parameter
and misfit files. In addition, file nIter.txt keeps track of
the progress of optimization, and provides the information
on which generation is to be computed; it also contains the
runtime parameters for the optimizer, CMA-ES. See the in-
formation in the Supplement for more details on how this
setup works, and how to specify biogeochemical and opti-
mizer parameters used, e.g., in the work presented here.
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The Supplement related to this article is available online
at doi:10.5194/gmd-10-127-2017-supplement.
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